References of "Gillet, Marie-Claire"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOLFM4, KNG1 and Sec24C identified by proteomics and immunohistochemistry as potential markers of early colorectal cancer stages
QUESADA-CALVO, Florence ULg; MASSOT, Charlotte ULg; Bertrand, Virginie ULg et al

in Clinical Proteomics (2017), 24(9),

Abstract Background: Despite recent advances in colorectal cancer (CRC) diagnosis and population screening programs, the identification of patients with preneoplastic lesions or with early CRC stages ... [more ▼]

Abstract Background: Despite recent advances in colorectal cancer (CRC) diagnosis and population screening programs, the identification of patients with preneoplastic lesions or with early CRC stages remains challenging and is important for reducing CRC incidence and increasing patient’s survival. Methods: We analysed 76 colorectal tissue samples originated from early CRC stages, normal or inflamed mucosa by label-free proteomics. The characterisation of three selected biomarker candidates was performed by immunohisto‑ chemistry on an independent set of precancerous and cancerous lesions harbouring increasing CRC stages. Results: Out of 5258 proteins identified, we obtained 561 proteins with a significant differential distribution among groups of patients and controls. KNG1, OLFM4 and Sec24C distributions were validated in tissues and showed differ‑ ent expression levels especially in the two early CRC stages compared to normal and preneoplastic tissues. Conclusion: We highlighted three proteins that require further investigations to better characterise their role in early CRC carcinogenesis and their potential as early CRC markers. [less ▲]

Detailed reference viewed: 17 (5 ULg)
Peer Reviewed
See detailProteomic differential distribution of 53BP1 in serrated and conventional adenomas validated by histological characterisation
QUESADA-CALVO, Florence ULg; Merli, Angela-Maria ULg; MASSOT, Charlotte ULg et al

Poster (2017, February 10)

INTRODUCTION: Sessile serrated adenoma/polyp (SSA/p) is a precancerous lesion, mostly located in the right side of the colon (cecum, ascending and transverse colon). The difficulty is to visualize this ... [more ▼]

INTRODUCTION: Sessile serrated adenoma/polyp (SSA/p) is a precancerous lesion, mostly located in the right side of the colon (cecum, ascending and transverse colon). The difficulty is to visualize this lesion during colonoscopy because of its subtle appearance. MATERIAL AND METHOD: We compared proteomes of serrated polyps (SSA/p) and conventional adenomas using residual human formalin fixed paraffin embedded (FFPE) samples. FFPE-FASP method was applied on samples before label free proteomic analysis. Immunohistochemistry (IHC) characterisation of one candidate marker was performed for tissue validation on an independent set of samples including: conventional adenomas (low and high-grade dysplasia), serrated polyps (hyperplastic polyps, SSA/p and traditional serrated adenoma) and finally normal colon (taken at the margin of colorectal cancer (CRC) or of diverticular disease). RESULTS: Proteomics provided 765 proteins (out of 5992 proteins identified) significantly discriminating conventional adenomas from serrated lesions. We selected 53BP1 (Tumor suppressor p53-binding protein 1) among these for IHC validation, because of its tumor suppressor gene function and role as a mediator of DNA damage checkpoint. 53BP1 appeared significantly up-regulated in proteomes of low and high grade adenomas compared to these of normal tissue and SSA/p. 53BP1 IHC signal was located in the nucleus and the percentage of positive nucleus decreased in serrated polyps, especially in crypts and in the border epithelium, confirming part of the proteomic results. CONCLUSION: This study highlights potential marker proteins, including 53BP1 from which IHC signal was strongly decreased in some serrated polyps. The loss of 53BP1 has been associated with tumour progression and poor prognosis, while little is currently known about its involvement in precancerous CRC lesions. 53BP1 decrease of expression in the nucleus and therefore possible loss of function in some epithelial cells could reflect important changes occurring during dysplasia to neoplasia progression in serrated lesions. [less ▲]

Detailed reference viewed: 45 (14 ULg)
Full Text
Peer Reviewed
See detailIdentification of proteins discriminating inflammation induced dysplasia from simple inflammation in ulcerative colitis by laser capture microdissection and label free proteomics – a pilot study
Merli, Angela-Maria ULg; QUESADA-CALVO, Florence ULg; MASSOT, Charlotte ULg et al

Conference (2017, February 09)

Chronic colonic inflammation in ulcerative colitis (UC) may induce dysplasia, which can itself progress and transform into neoplasia. Diagnosis of dysplasia in UC remains difficult particularly when ... [more ▼]

Chronic colonic inflammation in ulcerative colitis (UC) may induce dysplasia, which can itself progress and transform into neoplasia. Diagnosis of dysplasia in UC remains difficult particularly when tissue inflammation is present. The aim of this retrospective pilot study was to highlight proteins specifically associated with inflammation induced dysplasia in UC. We performed a pilot experiment on 15 Formalin-Fixed, Paraffin-Embedded (FFPE) samples isolated from 5 cases of UC patients with a Polypoïd Pedunculated dysplasia (UC-PP). We compared the proteomes of the UC-PP, the inflammatory (UC-I) and the normal (UC-NL) tissues of each patient. We performed Laser Capture Microdissection (LCM) in order to collect only epithelial cells, avoiding inflammatory infiltrating ones. Label free proteomic analysis using a 2D-nanoUPLC coupled with a hybrid Quadrupole-Orbitrap was applied, as well as differential analysis on the paired samples. Immunohistochemistry (IHC) characterisation of one of the selected proteins of interest was used for validation. Out of 985 quantified proteins, 7 were found significantly more abundant in UC-PP compared to UC-I tissues, with 6 being only detected in UC-PP using proteomics. One of these is Solute Carrier Family 12 member 2 (SLC12A2), also known as Na-K-2Cl co-transporter 1 (NKCC1), a protein involved in ionic balance, in T-cell migration promotion and in some features involved in cancer development like proliferation, migration or invasion. IHC results obtained were in correlation with proteomic results and showed that SLC12A2 was more abundant in UC-PP tissue than in UC-I and UC-NL tissues, with a signal clearly delimiting the dysplastic region from the surrounding inflammatory tissue. This pilot experiment shows a different proteomic profile in inflammation-associated dysplasia and simple inflammation. This should be replicated using other types of dysplasia in IBD. SLC12A2 could be a potential biomarker of inflammation-associated dysplasia. [less ▲]

Detailed reference viewed: 37 (16 ULg)
Full Text
Peer Reviewed
See detailIdentification of proteins discriminating inflammation induced dysplasia from simple inflammation in ulcerative colitis by laser capture microdissection and label free proteomics – a pilot study
Merli, Angela-Maria ULg; QUESADA-CALVO, Florence ULg; MASSOT, Charlotte ULg et al

Poster (2017, February 01)

Chronic colonic inflammation in ulcerative colitis (UC) may induce dysplasia, which can itself progress and transform into neoplasia. Diagnosis of dysplasia in UC remains difficult particularly when ... [more ▼]

Chronic colonic inflammation in ulcerative colitis (UC) may induce dysplasia, which can itself progress and transform into neoplasia. Diagnosis of dysplasia in UC remains difficult particularly when tissue inflammation is present. The aim of this retrospective pilot study was to highlight proteins specifically associated with inflammation induced dysplasia in UC. We performed a pilot experiment on 15 Formalin-Fixed, Paraffin-Embedded (FFPE) samples isolated from 5 cases of UC patients with a Polypoïd Pedunculated dysplasia (UC-PP). We compared the proteomes of the UC-PP, the inflammatory (UC-I) and the normal (UC-NL) tissues of each patient. We performed Laser Capture Microdissection (LCM) in order to collect only epithelial cells, avoiding inflammatory infiltrating ones. Label free proteomic analysis using a 2D-nanoUPLC coupled with a hybrid Quadrupole-Orbitrap was applied, as well as differential analysis on the paired samples. Immunohistochemistry (IHC) characterisation of one of the selected proteins of interest was used for validation. Out of 985 quantified proteins, 7 were found significantly more abundant in UC-PP compared to UC-I tissues, with 6 being only detected in UC-PP using proteomics. One of these is Solute Carrier Family 12 member 2 (SLC12A2), also known as Na-K-2Cl co-transporter 1 (NKCC1), a protein involved in ionic balance, in T-cell migration promotion and in some features involved in cancer development like proliferation, migration or invasion. IHC results obtained were in correlation with proteomic results and showed that SLC12A2 was more abundant in UC-PP tissue than in UC-I and UC-NL tissues, with a signal clearly delimiting the dysplastic region from the surrounding inflammatory tissue. This pilot experiment shows a different proteomic profile in inflammation-associated dysplasia and simple inflammation. This should be replicated using other types of dysplasia in IBD. SLC12A2 could be a potential biomarker of inflammation-associated dysplasia. [less ▲]

Detailed reference viewed: 32 (5 ULg)
Full Text
Peer Reviewed
See detailBiocompatibility of polymer-infiltrated-ceramicnetwork (PICN) materials with Human Gingival Keratinocytes (HGKs)
GRENADE, Charlotte ULg; Gillet, Marie-Claire ULg; PIRARD, Catherine ULg et al

in Dental Materials (2017), 33

Objective. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials, a new class of CAD–CAM composites, is poorly explored in the literature, in particular, no data are available regarding ... [more ▼]

Objective. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials, a new class of CAD–CAM composites, is poorly explored in the literature, in particular, no data are available regarding Human Gingival Keratinocytes (HGK). The first objective of this study was to evaluate the in vitro biocompatibility of PICNs with HGKs in comparison with other materials typically used for implant prostheses. The second objective was to correlate results with PICN monomer release and indirect cytotoxicity. Methods. HGK attachment, proliferation and spreading on PICN, grade V titanium (Ti), yttrium zirconia (Zi), lithium disilicate glass-ceramic (eM) and polytetrafluoroethylene (negative control) discs were evaluated using a specific insert-based culture system. For PICN and eM samples, monomer release in the culture medium was quantified by high performance liquid chromatography and indirect cytotoxicity tests were performed. Results. Ti and Zi exhibited the best results regarding HGK viability, number and coverage. eM showed inferior results while PICN showed statistically similar results to eM but also to Ti regarding cell number and to Ti and Zi regarding cell viability. No monomer release from PICN discs was found, nor indirect cytotoxicity, as for eM. Significance. The results confirmed the excellent behavior of Ti and Zi with gingival cells. Even if polymer based, PICN materials exhibited intermediate results between Ti–Zi and eM. These promising results could notably be explained by PICN high temperature–high pressure (HT–HP) innovative polymerization mode, as confirmed by the absence of monomer release and indirect cytotoxicity [less ▲]

Detailed reference viewed: 78 (14 ULg)
Full Text
Peer Reviewed
See detailPhotoreversibility and biocompatibility of polydimethylsiloxane-coumarin as adjustable intraocular lens material
Jellali, Rachid; Bertrand, Virginie ULg; Alexandre, Michaël et al

in Macromolecular Bioscience (2017)

Polydimethylsiloxane (PDMS) constitutes an interesting material for a variety of biomed- ical applications, especially as intraocular lenses (IOLs), for its excellent transparency. In this work, a ... [more ▼]

Polydimethylsiloxane (PDMS) constitutes an interesting material for a variety of biomed- ical applications, especially as intraocular lenses (IOLs), for its excellent transparency. In this work, a photoreversible PDMS-coumarin network, whose shape and properties can be adjusted postoperatively in a noninvasive manner, is developed. The synthesis of PDMS-cou- marin is achieved by amidation of a coumarin acid chloride derivative with amine-function- alized PDMSs. Under exposure of λ > 300 nm, these polymers can be cured by dimerization of coumarin. The cured polymers can be uncrosslinked via photocleavage of cyclobutane dimers upon illumination at λ < 290 nm. The diffusion of linear PDMSs in a crosslinked network and the controlled shape modification are studied, which demonstrate that these polymers are good candidates for adjustable IOL application. IOL disks prepared from these materials show high hydrophobicity and good transparency. In vitro cytotoxicity, lens epithelial cell adhesion assays, and rabbit host reaction against implanted disks demonstrate the biocompatibility of the polymer. [less ▲]

Detailed reference viewed: 24 (6 ULg)
Full Text
Peer Reviewed
See detailGC×GC-(HR)TOFMS in Cancer Research
Pesesse, Romain ULg; Stefanuto, Pierre-Hugues ULg; Bertrand, Virginie ULg et al

Conference (2016, May 30)

Detailed reference viewed: 18 (0 ULg)
Peer Reviewed
See detailComparison of early stages of colorectal cancer by label free proteomics
QUESADA CALVO, Florence ULg; MEUWIS, Marie-Alice ULg; Bertrand, Virginie ULg et al

in Acta Gastroenterologica (2015, February 27)

Introduction and objectives: Colorectal cancer (CRC) is the second most frequent cancer in women and the third in men. Identification of the mechanisms of progression in these early CRC stages is ... [more ▼]

Introduction and objectives: Colorectal cancer (CRC) is the second most frequent cancer in women and the third in men. Identification of the mechanisms of progression in these early CRC stages is important to develop new diagnostic and therapeutic tools. Formalin-Fixed Paraffin-Embedded (FFPE) specimens are materials that enable proteomic clinical research. Hence our aim was to address the comparison of FFPE samples from early CRC stages patients using shotgun proteomic analysis. Methods: We performed a retrospective study on 36 CRC tissue samples (pT1N0M0, n=16 and pT2N0M0, n=20) compared together and with 40 control tissue samples (20 patients with diverticulitis, using paired inflamed (DI) and healthy tissue (DH)). Each tissue slice was macrodissected to enrich in epithelial cells. We used FFPE-FASP kit (Expedeon) for sample preparation and protein digests were analyzed using 2D-nanoAquity UPLC separation online with Q-Tof Synapt HDMSTM G2 using ion mobility as additional separation. We performed protein identification and differential analysis using Progenesis QI for proteomics (Nonlinear Dynamics). Results and discussion: We selected 149 proteins differentially distributed between T1 and T2 CRC stages which were not significantly different between CRC and DH or DI. Only 30 proteins were significantly more abundant in T1 versus T2 and 119 were distributed inversely, with a minimum fold ratio of 2. Among those, ATP synthase subunit beta, Aspartate-tRNA ligase, Haptoglobin and Kininogen were identified. . Moreover, we validated Kininogen and 3 others proteins with a significant differential distribution between pT1N0M0 and pT2N0M0 stages by immunohistochemistry. Conclusion: This FFPE retrospective study comparing T1 and T2 CRC highlighted proteins already previously identified as potential CRC biomarkers. These proteins may reflect important early changes in cancer development and may help understanding early tumor progression. [less ▲]

Detailed reference viewed: 216 (24 ULg)