References of "Gérard, Jean-Claude"
     in
Bookmark and Share    
Full Text
See detailSolar Wind Interaction with the Magnetosphere of Jupiter : Impact on the Magnetopause and the Aurorae
Bonfond, Bertrand ULiege; Grodent, Denis ULiege; Gérard, Jean-Claude ULiege et al

Conference (2014, November 20)

The outcome of the interaction between the solar wind and the Jovian magnetic field bears many differences compared to the Earth's case. At Earth, the solar wind is the major particle and energy source in ... [more ▼]

The outcome of the interaction between the solar wind and the Jovian magnetic field bears many differences compared to the Earth's case. At Earth, the solar wind is the major particle and energy source in the magnetosphere. At Jupiter, the tremendous volcanism on the moon Io is the main plasma source and Jupiter's rapid rotation (relative to its size) is the main energy source for the particles populating its magnetosphere. Combined with a weaker solar wind pressure and a larger Alfvén Mach number as the distance from the Sun increases, all these parameters modify the relative importance of large scale Dungey reconnection and viscous interaction at the magnetopause. In order to study these differences, here we present a statistical analysis of magnetopause waves and flux tube event on the Jovian magnetopause, based on in-situ measurement from the spacecraft that flew-by or orbited around Jupiter. Moreover, variations of the solar wind have significant impact on the Jovian magnetospheric current systems and such changes reflect on the aurora. In this presentation, we will also review the recent findings concerning the aurora at Jupiter and their relationship with the solar wind. [less ▲]

Detailed reference viewed: 63 (5 ULiège)
See detailSpace Weather at Saturn - Auroral observations
Radioti, Aikaterini ULiege; Grodent, Denis ULiege; Gérard, Jean-Claude ULiege et al

Conference (2014, November)

Unlike to Earth, Saturn is a fast rotator and its magnetosphere is dominated by fast planetary rotation and internally driven processes. However, the interaction of the solar wind with Saturn’s ... [more ▼]

Unlike to Earth, Saturn is a fast rotator and its magnetosphere is dominated by fast planetary rotation and internally driven processes. However, the interaction of the solar wind with Saturn’s magnetosphere is not negligible and it is manifested among others in the auroral region. The interplanetary magnetic field reconnects with the dayside magnetopause at Saturn and results in enhancements in the auroral emission accompanied by entry of significant amount of open flux in the magnetosphere. The solar wind affects also the nightside magnetosphere. Dramatic enhancements of the nightside-dawn auroral emissions have been attributed to solar wind-induced auroral storms. Additionally, recent auroral observations revealed the presence of a transpolar arc at Saturn, one of the most spectacular auroral features at Earth, which could be possibly related to solar wind driven tail reconnection. Finally, there is evidence of viscous interaction of the solar wind with Saturn’s magnetosphere, which involves magnetic reconnection on a small scale. [less ▲]

Detailed reference viewed: 58 (1 ULiège)
Full Text
Peer Reviewed
See detailMapping the electron energy in Jupiter’s aurora: Hubble spectral observations
Gérard, Jean-Claude ULiege; Bonfond, Bertrand ULiege; Grodent, Denis ULiege et al

in Journal of Geophysical Research. Space Physics (2014), 119

Far ultraviolet spectral observations have been made with the Hubble Space Telescope in the time-tag mode using the Space Telescope Imaging Spectrograph (STIS) long slit. The telescope was slewed in such ... [more ▼]

Far ultraviolet spectral observations have been made with the Hubble Space Telescope in the time-tag mode using the Space Telescope Imaging Spectrograph (STIS) long slit. The telescope was slewed in such a way that the slit projection scanned from above the polar limb down to midlatitudes, allowing us to build up the first spectral maps of the FUV Jovian aurora. The shorter wavelengths are partly absorbed by the methane layer overlying part of the auroral emission layer. The long-wavelength intensity directly reflects the precipitated energy flux carried by the auroral electrons. Maps of the intensity ratio of the two spectral regions have been obtained by combining spectral emissions in two wavelength ranges. They show that the amount of absorption by methane varies significantly between the different components of the aurora and inside the main emission region. Some of the polar emissions are associated with the hardest precipitation, although the auroral regions of strong electron precipitation do not necessarily coincide with the highest electron energies. Outputs from an electron transport model are used to create maps of the distribution of the characteristic electron energies. Using model atmospheres adapted to auroral conditions, we conclude that electron energies range between a few tens to several hundred keV. Comparisons of derived energies are in general agreement with those calculated from magnetosphere-ionosphere coupling models, with values locally exceeding the standard model predictions. These results will provide useful input for three-dimensional modeling of the distribution of particle heat sources into the high-latitude Jovian upper atmosphere. [less ▲]

Detailed reference viewed: 35 (4 ULiège)
See detailVenus III book: aeronomy of the upper atmosphere
Gérard, Jean-Claude ULiege; Bougher, Stephen; Drossart, Pierre et al

Conference (2014, September 12)

Detailed reference viewed: 24 (0 ULiège)
Full Text
See detailVIRTIS-M-IR nadir and limb observations: variability of the O2(a1∆) nightglow spots
Soret, Lauriane ULiege; Gérard, Jean-Claude ULiege; Piccioni, Giuseppe et al

in EPSC2014, Vol. 9 (2014, September)

Individual nadir and limb VIRTIS-M-IR at 1.27 μm show that the O2(a1∆) nightglow emission is highly variable. This variability is observed spatially, but also in term of intensity and altitude of the ... [more ▼]

Individual nadir and limb VIRTIS-M-IR at 1.27 μm show that the O2(a1∆) nightglow emission is highly variable. This variability is observed spatially, but also in term of intensity and altitude of the emitting layer over time. Apparent wind velocities have been deduced from the nadir observations, as well as the e-folding times. Limb observations show that an increase of the emitting layer altitude is observed near the cold collar region. [less ▲]

Detailed reference viewed: 28 (3 ULiège)
Full Text
See detailJupiter's equatorward auroral features : Possible signature of magnetospheric injections
Dumont, Maïté ULiege; Grodent, Denis ULiege; Radioti, Aikaterini ULiege et al

Conference (2014, September)

We investigate the characteristics of ultraviolet auroral features located equatorward of the main emission appearing in the Hubble Space Telescope (HST) images obtained in 2000-2007. Several properties ... [more ▼]

We investigate the characteristics of ultraviolet auroral features located equatorward of the main emission appearing in the Hubble Space Telescope (HST) images obtained in 2000-2007. Several properties of the auroral emissions are analyzed. The mapped radial position and System III longitude of the observed auroral features are in good agreement with those of the injections observed in the equatorial plane by Galileo. Finally, we discuss the processes causing auroral signatures of injections. This comparative study demonstrates that the structures under study are most probably related to magnetospheric injections and sheds light to the mechanism involved in the magnetosphere-ionosphere dynamics. [less ▲]

Detailed reference viewed: 23 (7 ULiège)
Full Text
Peer Reviewed
See detailIsolating auroral FUV emission lines using compact, broadband instrumentation
Molyneux, P.M.; Bannister, N.P.; Bunce, E.J. et al

in Planetary and Space Science (2014), 103

Images of auroral emissions at far ultraviolet (FUV, 122–200 nm) wavelengths are useful tools with which to study magnetospheric-ionospheric coupling, as the scattered sunlight background in this region ... [more ▼]

Images of auroral emissions at far ultraviolet (FUV, 122–200 nm) wavelengths are useful tools with which to study magnetospheric-ionospheric coupling, as the scattered sunlight background in this region is low, allowing both dayside and nightside auroras to be imaged simultaneously. The ratio of intensities between certain FUV emission lines or regions can be used to characterise the precipitating particles responsible for auroral emissions, and hence is a useful diagnostic of magnetospheric dynamics. Here, we describe how the addition of simple transmission filters to a compact broadband imager design allows far ultraviolet emission ratios to be deduced while also providing large-scale instantaneous images of the aurora. The low mass and volume of such an instrument would make it well-suited for both small satellite Earth-orbiting missions and larger outer planet missions from which it could be used to characterise the tenuous atmospheres observed at several moons, as well as studying the auroral emissions of the gas giants. We present a study to investigate the accuracy of a technique to allow emission line ratio retrieval, as applied to the OI 130.4 nm and 135.6 nm emissions at Ganymede. The ratio of these emissions provides information about the atmospheric composition, specifically the relative abundances of O and O2. Using modelled FUV spectra representative of Ganymede's atmosphere, based on observations by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), we find that the accuracy of the retrieved ratios is a function of the magnitude of the ratio, with the best measurements corresponding to a ratio of ∼1.3 . [less ▲]

Detailed reference viewed: 43 (8 ULiège)
See detailSpectral mapping of the FUV Jovian aurora and electron energy distribution
Gérard, Jean-Claude ULiege; Bonfond, Bertrand ULiege; Grodent, Denis ULiege et al

Conference (2014, September)

Observations have been made with the Hubble Space Telescope in the timetag mode using the STIS long slit. During the 40 min of the observations, the slit spatially scanned the polar regions to build ... [more ▼]

Observations have been made with the Hubble Space Telescope in the timetag mode using the STIS long slit. During the 40 min of the observations, the slit spatially scanned the polar regions to build spectral maps of the jovian aurora. The emission is composed of the HI Lyman-alpha line and the H2 Lyman and Werner bands. The shorter wavelengths are partly absorbed by the methane layer overlying the bulk of the auroral emission. Since the CH4 absorption cross section drastically drops above 140 nm, the longer wavelengths are not absorbed and the intensity directly reflects the precipitated energy flux carried by the electrons. Maps of the intensity ratio of the two spectral regions will be presented, together with the associated auroral electron energy. These values will be compared with those expected from current magnetosphere-ionosphere model. They will provide input into 3-D modeling of the auroral heat source into the high-latitude Jovian upper atmosphere. [less ▲]

Detailed reference viewed: 27 (17 ULiège)
Full Text
Peer Reviewed
See detailSaturn’s elusive nightside polar arc
Radioti, Aikaterini ULiege; Grodent, Denis ULiege; Gérard, Jean-Claude ULiege et al

in Geophysical Research Letters (2014)

Detailed reference viewed: 42 (13 ULiège)
See detailMars dayside temperature from airglow limb profiles : comparison with in situ measurements and models
Gérard, Jean-Claude ULiege; Stiepen, Arnaud ULiege; Bougher, S. et al

Conference (2014, August 06)

Detailed reference viewed: 30 (2 ULiège)
See detailCassini Ultraviolet Images of Saturn's Aurorae
Pryor, Wayne; Jouchoux, Alain; Esposito, Larry et al

Scientific conference (2014, August 04)

Cassini has been obtaining auroral images and spectra of Saturn with the Ultraviolet Imaging Spectrograph (UVIS). We will present highlights of the auroral images, showing a variety of morphologies ... [more ▼]

Cassini has been obtaining auroral images and spectra of Saturn with the Ultraviolet Imaging Spectrograph (UVIS). We will present highlights of the auroral images, showing a variety of morphologies, including multiple arcs, spiral forms, polar cusp activity, and rotating emission features, some of them pulsating with a roughly 1-hour period. A satellite footprint of Enceladus is occasionally visible. [less ▲]

Detailed reference viewed: 21 (6 ULiège)
See detailTerrestrial OH nightglow measurements during the Rosetta flyby
Migliorini, A.; Gérard, Jean-Claude ULiege; Soret, Lauriane ULiege et al

Conference (2014, August)

During the Rosetta travel to the comet P67, the VIRTIS instrument on board the spacecraft acquired unique images of the Earth in the 1.0-5.1 μm simultaneously. These allowed to investigate the nightglow ... [more ▼]

During the Rosetta travel to the comet P67, the VIRTIS instrument on board the spacecraft acquired unique images of the Earth in the 1.0-5.1 μm simultaneously. These allowed to investigate the nightglow observed spectrum and infer the relative OH populations of levels from 1 to 9. The values are reported in the table. The results are in good agreement with the model from GRANADA code (Kaufmann et al., 2008) for the conditions of a midlatitude night atmosphere. [less ▲]

Detailed reference viewed: 22 (2 ULiège)
See detailThe Martian aurora: Spectral and spatial characteristics
Gérard, Jean-Claude ULiege; Libert, Ludivine ULiege; Stiepen, Arnaud ULiege

Conference (2014, July 05)

Detailed reference viewed: 35 (8 ULiège)
Full Text
See detailDiurnal thermosphere scale height from MEX/SPICAM grazing limb data
Stiepen, Arnaud ULiege; Gérard, Jean-Claude ULiege; Bougher, S et al

Conference (2014, July 01)

Detailed reference viewed: 15 (2 ULiège)
Full Text
See detailConstraints on the summer-to-winter transport from SPICAM/MEX nitric oxide observations
Stiepen, Arnaud ULiege; Gérard, Jean-Claude ULiege; Gagné, M.-E. et al

Conference (2014, July 01)

Detailed reference viewed: 5 (2 ULiège)
Full Text
Peer Reviewed
See detailDynamic auroral storms on Saturn as observed by the Hubble Space Telescope
Nichols, J. D.; Badman, S. V.; Baines, K. H. et al

in Geophysical Research Letters (2014), 41

We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission ... [more ▼]

We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ˜330% rigid corotation from near ˜01 h LT toward ˜08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current. [less ▲]

Detailed reference viewed: 41 (9 ULiège)
Full Text
See detailQuasi-periodic flares in Jupiter's aurora : new results
Bonfond, Bertrand ULiege; Grodent, Denis ULiege; Badman, Sarah et al

Conference (2014, April 29)

Two recent Hubble Space Telescope observation campaigns have been dedicated to the Jovian Far-UV aurora (GO 12883 – PI: D. Grodent and GO 13035 – PI: S. Badman). Both of them made use of the Time-Tag mode ... [more ▼]

Two recent Hubble Space Telescope observation campaigns have been dedicated to the Jovian Far-UV aurora (GO 12883 – PI: D. Grodent and GO 13035 – PI: S. Badman). Both of them made use of the Time-Tag mode of the Space Telescope Imaging Spectrograph (STIS), a high time resolution mode which allows to observe temporal variations on timescales of tens of seconds. In the present study, we focus on sudden and spectacular bursts of auroral emissions taking place in the active region located poleward of the main emissions and called “flares”. A previous study, based on only two image sequences acquired with rather unfavorable viewing angles, showed that these flares could reappear quasi-periodically on time scales of 2-3 minutes. Phenomena with similar timescales have been identified by in-situ spacecraft in relativistic electron and radio data as well as in reconnection signatures, for example. But the physical mechanism behind these ubiquitous signatures remains to be unveiled. Here we make use of the most recent and much larger data set to study in further details the occurrence rate, the period, the location, the extent and the motion of these quasi-periodic flares and to compare their behavior in both hemispheres. Quantifying these parameters allows us to narrow down the possibilities among likely explanations and provide a tentative scenario for these short timescale quasi-periodic features. [less ▲]

Detailed reference viewed: 25 (3 ULiège)
See detailSaturn’s elusive transpolar arc
Radioti, Aikaterini ULiege; Grodent, Denis ULiege; Gérard, Jean-Claude ULiege et al

Conference (2014, April)

Detailed reference viewed: 16 (2 ULiège)
Full Text
Peer Reviewed
See detailTime variations of O2(a1Delta) nightglow spots on the Venus nightside and dynamics of the upper mesosphere
Soret, Lauriane ULiege; Gérard, Jean-Claude ULiege; Piccioni, Giuseppe et al

in Icarus (2014), 237

The dynamical regime of the Venus upper atmosphere is mainly decomposed into three regions. The first one, located below 65 km of altitude is governed by the retrograde superrotational zonal (RSZ ... [more ▼]

The dynamical regime of the Venus upper atmosphere is mainly decomposed into three regions. The first one, located below 65 km of altitude is governed by the retrograde superrotational zonal (RSZ) circulation. The second region above 130 km is dominated by the subsolar to antisolar (SS–AS) circulation. The dynamics of the transition region in between are still not fully understood. However, the O2(a1D) nightglow emission at 1.27 lm, whose emitting layer is located at 96 km, can be used as a tracer of the dynamics in this transition region and the imaging spectrometer VIRTIS-M on board Venus Express, orbiting Venus since April 2006, acquired a large amount of nadir observations at this wavelength. Several previous studies showed that the O2(a1D) nightglow emission is statistically located near the antisolar point. In this study, individual VIRTIS-M nadir observations have been analyzed to investigate the variability of the phenomenon. Bright patches of 1.27 lm airglow have been extracted from every observation. It appears that the location of the bright patch is highly variable, even though the brightest patches occur near the antisolar point. Nadir observations have also been divided into time series, allowing generating animations to follow the intensity and the displacement of bright patches over time. Apparent wind velocities and characteristic decay/rise times and have been deduced from these time series. The speed of the displacements varies from 0 up to 213 m s 1, with a mean value of 54 m s 1. Owing to the high variability of the direction of the displacements both in the short and the long terms, no clear trend of a global motion at 96 km can be deduced from these observations. The mean decay time is 750 min while the mean rise time is 1550 min. The decay time can be explained as a combination of radiative decay and atomic oxygen transport. [less ▲]

Detailed reference viewed: 21 (9 ULiège)
Full Text
Peer Reviewed
See detailLatitudinal structure of the Venus O2 infrared airglow: A signature of small-scale dynamical processes in the upper atmosphere
Gérard, Jean-Claude ULiege; Soret, Lauriane ULiege; Piccioni, Giuseppe et al

in Icarus (2014), 236

Images of the nightside limb of Venus have been obtained in the northern hemisphere with the VIRTIS multispectral infrared imager on board Venus Express between April 2006 and October 2008. We analyze the ... [more ▼]

Images of the nightside limb of Venus have been obtained in the northern hemisphere with the VIRTIS multispectral infrared imager on board Venus Express between April 2006 and October 2008. We analyze the latitudinal distribution of the O2(a1D) airglow limb profiles at 1.27 lm to characterize its distribution and variability. We show that the instantaneous structure of the emission is very different from the statistical global view of an enhanced emission near the equator, decreasing in brightness and slightly increasing in altitude toward the poles. The peak intensity of the limb profiles varies by a factor up to 50 between the brightest spots and the darkest regions. The bright airglow spots correspond to regions of enhanced downward flow of oxygen atoms originating from the dayside. Considerable variations in brightness and morphology are observed in the altitude–latitudinal distribution over a 24-h period. Analysis of the limb profiles indicates that secondary airglow peaks located at altitudes higher than the mean value of 96 km are observed on about 30% of the latitudinal cuts, but they are concentrated in narrow latitude areas extending over a few hundred kilometers. Most of them occur in transition regions between two altitude regimes in the 50 to 60 N region, possibly associated with the drop of the cloud top altitude observed equatorward of the ‘‘cold collar’’. We interpret these results as an indication that the strength of vertical transport in this mesosphere–thermosphere transition region is very variable both in location and time. This variability, also observed in nadir airglow images and wind measurements, is a key characteristic of the mesosphere–thermosphere transition region. It may be caused by fluctuations of the global day-to-night circulation generated by gravity waves. We show with a one dimensional model that local enhancements of eddy transport is a possibility. This variability is currently not accounted for by global circulation models that predict a single stable region of enhanced airglow in the vicinity of the antisolar point. [less ▲]

Detailed reference viewed: 35 (9 ULiège)