References of "Frère, Jean-Marie"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPositively Cooperative Binding of Zinc Ions to Bacillus cereus 569/H/9 beta-Lactamase II Suggests that the Binuclear Enzyme Is the Only Relevant Form for Catalysis
Jacquin, Olivier ULg; Balbeur, Dorothée ULg; Damblon, Christian ULg et al

in Journal of Molecular Biology (2009), 392(5), 1278-1291

Metallo-beta-lactamases catalyze the hydrolysis of most beta-lactam antibiotics and hence represent a major clinical concern. While enzymes belonging to subclass B1 have been shown to display maximum ... [more ▼]

Metallo-beta-lactamases catalyze the hydrolysis of most beta-lactam antibiotics and hence represent a major clinical concern. While enzymes belonging to subclass B1 have been shown to display maximum activity as dizinc species, the actual metal-to-protein stoichiometry and the affinity for zinc are not clear. We have further investigated the process of metal binding to the beta-lactamase H from Bacillus cereus 569/H/9 (known as BcII). Zinc binding was monitored using complementary biophysical techniques, including circular dichroism in the far-UV, enzymatic activity measurements, competition with a chromophoric chelator, mass spectrometry, and nuclear magnetic resonance. Most noticeably, mass spectrometry and nuclear magnetic resonance experiments, together with catalytic activity measurements, demonstrate that two zinc ions bind cooperatively to the enzyme active site (with K-1/K-2 >= 5) and, hence, that catalysis is associated with the dizinc enzyme species only. Furthermore, competitive experiments with the chromophoric chelator Mag-Fura-2 indicates K-2 < 80 nM. This contrasts with cadmium binding, which is clearly a noncooperative process with the mono form being the only species significantly populated in the presence of 1 molar equivalent of Cd(II). Interestingly, optical measurements reveal that although the apo and dizinc species exhibit undistinguishable tertiary structural organizations, the metal-depleted enzyme shows a significant decrease in its alpha-helical content, presumably associated with enhanced flexibility. (C) 2009 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 82 (23 ULg)
Full Text
Peer Reviewed
See detailCharacterization of the proteins encoded by the Bacillus subtilis yoxA-dacC operon.
Duez, Colette ULg; Zervosen, Astrid ULg; Teller, Nathalie et al

in FEMS Microbiology Letters (2009), 300

Abstract In Bacillus subtilis, the yoxA and dacC genes were proposed to form an operon. The yoxA gene was overexpressed in Escherichia coli and its product fused to a polyhistidine tag was purified. An ... [more ▼]

Abstract In Bacillus subtilis, the yoxA and dacC genes were proposed to form an operon. The yoxA gene was overexpressed in Escherichia coli and its product fused to a polyhistidine tag was purified. An aldose-1-epimerase or mutarotase activity was measured with the YoxA protein that we propose to rename as GalM by analogy with its counterpart in E. coli. The peptide d-Glu-delta-m-A(2)pm-d-Ala-m-A(2)pm-d-Ala mimicking the B. subtilis and E. coli interpeptide bridge was synthesized and incubated with the purified dacC product, the PBP4a. A clear dd-endopeptidase activity was obtained with this penicillin-binding protein, or PBP. The possible role of this class of PBP, present in almost all bacteria, is discussed. [less ▲]

Detailed reference viewed: 68 (24 ULg)
Full Text
Peer Reviewed
See detailThe structure of the di-zinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the "histidine" site.
Bebrone, Carine ULg; Delbrück, Heinrich; Kupper, Michaël et al

in Antimicrobial Agents and Chemotherapy (2009)

Bacteria can defend themselves against beta-lactam antibiotics through the expression of class B beta-lactamases, which cleave the beta-lactam amide bond and render the molecule harmless. There are three ... [more ▼]

Bacteria can defend themselves against beta-lactam antibiotics through the expression of class B beta-lactamases, which cleave the beta-lactam amide bond and render the molecule harmless. There are three subclasses of class B beta-lactamases (B1, B2 and B3), all of which require Zn(2+) for activity and can bind either one or two zinc ions. Whereas the B1 and B3 metallo-beta-lactamases are most active as di-zinc enzymes, subclass B2 enzymes such as Aeromonas hydrophila CphA are inhibited by the binding of a second zinc ion. We crystallized A. hydrophila CphA in order to determine the binding site of the inhibitory zinc ion. X-ray data from zinc-saturated crystals allowed us to solve the crystal structures of the di-zinc forms of the wild-type enzyme and N220G mutant. The first zinc ion binds in the "cysteine" site, as previously determined for the mono-zinc form of the enzyme. The second zinc ion occupies a slightly modified "histidine" site, where the conserved His118 and His196 residues act as metal ligands. This atypical coordination sphere probably explains the rather high dissociation constant for the second zinc ion compared to those observed in enzymes of subclasses B1 and B3. Inhibition by the second zinc ion results from immobilization of the catalytically-important His118 and His196 residues, as well as the folding of the Gly232-Asn233 loop into a position that covers the active site. [less ▲]

Detailed reference viewed: 53 (7 ULg)
Full Text
Peer Reviewed
See detailIND-6, a Highly Divergent IND-type Metallo-{beta}-lactamase from Chryseobacterium indologenes strain 597 isolated in Burkina Faso.
Zeba, Boularé; De Luca, Filomena; Dubus, Alain et al

in Antimicrobial Agents and Chemotherapy (2009)

Chryseobacterium and other genera belonging to the family Flavobacteriaceae include organisms that can behave as human pathogens and are known to cause different kinds of infections. Several ... [more ▼]

Chryseobacterium and other genera belonging to the family Flavobacteriaceae include organisms that can behave as human pathogens and are known to cause different kinds of infections. Several Flavobacteriaceae, including Chryseobacterium indologenes, are naturally resistant to beta-lactam antibiotics (including carbapenems), due to the production of a resident metallo-beta-lactamase. Although C. indologenes presently constitutes a limited clinical threat, the incidence of infections caused by this organism is increasing in some settings, where isolates that exhibit multidrug resistance phenotypes (that include aminoglycosides and quinolones) have been described. Here we report the identification and characterization of a new IND-type variant from a C. indologenes isolate from Burkina Faso resistant to beta-lactams and aminoglycosides. Its sequence identity with other IND-type metallo-beta-lactamases ranges from 72 to 90% (with IND-4 and IND-5, respectively). The purified enzyme exhibited N-terminal heterogeneity and a post-translational modification, consisting in the presence of a pyroglutamate residue at the N-terminus. IND-6 shows a broad substrate profile, with overall higher turnover rates than IND-5 and higher activities than IND-2 and IND-5 against ceftazidime and cefepime. [less ▲]

Detailed reference viewed: 31 (9 ULg)
Full Text
Peer Reviewed
See detailTem-1 Beta-Lactamase Folds in a Nonhierarchical Manner with Transient Non-Native Interactions Involving the C-Terminal Region
Lejeune, Annabelle ULg; Pain, R. H.; Charlier, Paulette ULg et al

in Biochemistry (2008), 47(4), 1186-93

The conformational stability and kinetics of refolding and unfolding of the W290F mutant of TEM-1 beta-lactamase have been determined as a function of guanidinium chloride concentration. The activity and ... [more ▼]

The conformational stability and kinetics of refolding and unfolding of the W290F mutant of TEM-1 beta-lactamase have been determined as a function of guanidinium chloride concentration. The activity and spectroscopic properties of the mutant enzyme did not differ significantly from those of the wild type, indicating that the mutation has only a very limited effect on the structure of the protein. The stability of the folded protein is reduced, however, by 5-10 kJ mol-1 relative to that of the molten globule intermediate (H), but the values of the folding rate constants are unchanged, suggesting that Trp-290 becomes organized in its nativelike environment only after the rate-limiting step; i.e., the C-terminal region of the enzyme folds very late. In contrast to the significant increase in fluorescence intensity seen in the dead time (3-4 ms) of refolding of the wild-type protein, no corresponding burst phase was observed with the mutant enzyme, enabling the burst phase to be attributed specifically to the C-terminal Trp-290. This residue is suggested to be buried in a nonpolar environment from which it has to escape during subsequent folding steps. With both proteins, fast early collapse leads to a folding intermediate in which the C-terminal region of the polypeptide chain is trapped in a non-native structure, consistent with a nonhierarchical folding process. [less ▲]

Detailed reference viewed: 86 (24 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of a cold-adapted class C beta-lactamase.
Michaux, Catherine; Massant, Jan; Kerff, Frédéric ULg et al

in FEBS Journal (2008), 275(8), 1687-97

In this study, the crystal structure of a class C beta-lactamase from a psychrophilic organism, Pseudomonas fluorescens, has been refined to 2.2 A resolution. It is one of the few solved crystal ... [more ▼]

In this study, the crystal structure of a class C beta-lactamase from a psychrophilic organism, Pseudomonas fluorescens, has been refined to 2.2 A resolution. It is one of the few solved crystal structures of psychrophilic proteins. The structure was compared with those of homologous mesophilic enzymes and of another, modeled, psychrophilic protein. The elucidation of the 3D structure of this enzyme provides additional insights into the features involved in cold adaptation. Structure comparison of the psychrophilic and mesophilic beta-lactamases shows that electrostatics seems to play a major role in low-temperature adaptation, with a lower total number of ionic interactions for cold enzymes. The psychrophilic enzymes are also characterized by a decreased number of hydrogen bonds, a lower content of prolines, and a lower percentage of arginines in comparison with lysines. All these features make the structure more flexible so that the enzyme can behave as an efficient catalyst at low temperatures. [less ▲]

Detailed reference viewed: 23 (1 ULg)
Full Text
Peer Reviewed
See detailActivation mechanism of recombinant Der p 3 allergen zymogen - Contribution of cysteine protease Der p 1 and effect of propeptide glycosylation
Dumez, Marie-Eve ULg; Teller, Nathalie; Mercier, Frédéric ULg et al

in Journal of Biological Chemistry (2008), 283(45), 30606-30617

The trypsin-like protease Der p 3, a major allergen of the house dust mite Dermatophagoides pteronyssinus, is synthesized as a zymogen, termed proDer p 3. No recombinant source of Der p 3 has been ... [more ▼]

The trypsin-like protease Der p 3, a major allergen of the house dust mite Dermatophagoides pteronyssinus, is synthesized as a zymogen, termed proDer p 3. No recombinant source of Der p 3 has been described yet, and the zymogen maturation mechanism remains to be elucidated. The Der p 3 zymogen was produced in Pichia pastoris. We demonstrated that the recombinant zymogen is glycosylated at the level of its propeptide. We showed that the activation mechanism of proDer p 3 is intermolecular and is mediated by the house dust mite cysteine protease Der p 1. The primary structure of the proDer p 3 propeptide is associated with a unique zymogen activation mechanism, which is different from those described for the trypsin-like family and relies on the house dust mite papain-like protease Der p 1. This is the first report of a recombinant source of Der p 3, with the same enzymatic activity as the natural enzyme and trypsin. Glycosylation of the propeptide was found to decrease the rate of maturation. Finally, we showed that recombinant Der p 3 is inhibited by the free modified prosequence TP1R. [less ▲]

Detailed reference viewed: 92 (14 ULg)
Full Text
Peer Reviewed
See detailCreating hybrid proteins by insertion of exogenous peptides into permissive sites of a class A beta-lactamase
Ruth, Nadia ULg; Quinting, Brigitte; Mainil, Jacques ULg et al

in FEBS Journal (2008), 275

Detailed reference viewed: 36 (11 ULg)
Full Text
Peer Reviewed
See detailMutational analysis of the zinc- and substrate-binding sites in the CphA metallo-beta-lactamase from Aeromonas hydrophila.
Bebrone, Carine ULg; Anne, Christine; Kerff, Frédéric ULg et al

in Biochemical Journal (2008), 414(1), 151-9

The subclass B2 CphA (Carbapenemase hydrolysing Aeromonas) beta-lactamase from Aeromonas hydrophila is a Zn(2+)-containing enzyme that specifically hydrolyses carbapenems. In an effort to evaluate ... [more ▼]

The subclass B2 CphA (Carbapenemase hydrolysing Aeromonas) beta-lactamase from Aeromonas hydrophila is a Zn(2+)-containing enzyme that specifically hydrolyses carbapenems. In an effort to evaluate residues potentially involved in metal binding and/or catalysis (His(118), Asp(120), His(196) and His(263)) and in substrate specificity (Val(67), Thr(157), Lys(224) and Lys(226)), site-directed mutants of CphA were generated and characterized. Our results confirm that the first zinc ion is in interaction with Asp(120) and His(263), and thus is located in the 'cysteine' zinc-binding site. His(118) and His(196) residues seem to be interacting with the second zinc ion, as their replacement by alanine residues has a negative effect on the affinity for this second metal ion. Val(67) plays a significant role in the binding of biapenem and benzylpenicillin. The properties of a mutant with a five residue (LFKHV) insertion just after Val(67) also reveals the importance of this region for substrate binding. This latter mutant has a higher affinity for the second zinc ion than wild-type CphA. The T157A mutant exhibits a significantly modified activity spectrum. Analysis of the K224Q and N116H/N220G/K224Q mutants suggests a significant role for Lys(224) in the binding of substrate. Lys(226) is not essential for the binding and hydrolysis of substrates. Thus the present paper helps to elucidate the position of the second zinc ion, which was controversial, and to identify residues important for substrate binding. [less ▲]

Detailed reference viewed: 35 (7 ULg)
Full Text
Peer Reviewed
See detailStructural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols
Lienard, Benoit M R; Garau, Gianpiero; Horsfall, Louise et al

in Organic & Biomolecular Chemistry (2008), 6(13), 2282-2294

The development of broad-spectrum metallo-beta-lactamase (MBL) inhibitors is challenging due to structural diversity and differences in metal utilisation by these enzymes. Analysis of structural data ... [more ▼]

The development of broad-spectrum metallo-beta-lactamase (MBL) inhibitors is challenging due to structural diversity and differences in metal utilisation by these enzymes. Analysis of structural data, followed by non-denturing mass spectrometric analyses, identified thiols proposed to inhibit representative MBLs from all three sub-classes: B1, B2 and B3. Solution analyses led to the identification of broad spectrum inhibitors, including potent inhibitors of the CphA MBL (Aeromonas hydrophila). Structural studies revealed that, as observed for other B1 and B3 MBLs, inhibition of the L1 MBL thiols involves metal chelation. Evidence is reported that this is not the case for inhibition of the CphA enzyme by some thiols; the crystal structure of the CphA-Zn-inhibitor complex reveals a binding mode in which the thiol does not interact with the zinc. The structural data enabled the design and the production of further more potent inhibitors. Overall the results suggest that the development of reasonably broad-spectrum MBL inhibitors should be possible. [less ▲]

Detailed reference viewed: 17 (2 ULg)
Full Text
Peer Reviewed
See detailRelationship between propeptide pH unfolding and inhibitory ability during ProDer p 1 activation mechanism
Chevigné, Andy ULg; Barumandzadeh, Roya ULg; Groslambert, Sylvie et al

in Journal of Molecular Biology (2007), 374(1), 170-185

The major allergen Der p1 of the house dust mite Dermatophagoides pteronyssinus is a papain-like cysteine protease (CA1) produced as an inactive precursor and associated with allergic diseases. The ... [more ▼]

The major allergen Der p1 of the house dust mite Dermatophagoides pteronyssinus is a papain-like cysteine protease (CA1) produced as an inactive precursor and associated with allergic diseases. The propeptide of Der p I exhibits a specific fold that makes it unique in the CA1 propeptide family. In this study, we investigated the activation steps involved in the maturation of the recombinant protease Der p 1 expressed in Pichia pastoris and the interaction of the full-length and truncated soluble propepticles with their parent enzyme in terms of activity inhibition and BIAcore interaction analysis. According to our results, the activation of protease Der p 1 is a multistep mechanism that is characterized by at least two intermediates. The propeptide strongly inhibits unglycosylated and glycosylated recombinant Der p 1 (K-D = 7 nM) at neutral pH. This inhibition is pH dependent. It decreases from pH 7 to pH 4 and can be related to conformational changes of the propepticle characterized by an increase of its flexibility and formation of a molten globule state. Our results indicate that activation of the zymogen at pH 4 is a compromise between activity preservation and propeptide unfolding. (c) 2007 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 62 (23 ULg)
See detailBiosensors based on electrochemically prepared polyanilines and bifunctional hybrid proteins
Faure, Emilie ULg; Halusiak, Emilie; Ruth, Nadia ULg et al

Poster (2007, August 31)

Detailed reference viewed: 29 (11 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide
Sauvage, Eric ULg; Duez, Colette ULg; Herman, Raphaël ULg et al

in Journal of Molecular Biology (2007), 371(2), 528-539

The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram ... [more ▼]

The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha'-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A 13-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution Of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs. (C) 2007 Elsevier Ltd. All rights reserved. [less ▲]

Detailed reference viewed: 60 (15 ULg)
Full Text
Peer Reviewed
See detailMetallo-beta-lactamases as emerging resistance determinants in Gram-negative pathogens: open issues
Cornaglia, G.; Akova, M.; Amicosante, G. et al

in International Journal of Antimicrobial Agents (2007), 29(4), 380-388

The rapid spread of acquired metallo-beta-lactamases (MBLs) among major Gram-negative pathogens is a matter of particular concern worldwide and primarily in Europe, one of first continents where the ... [more ▼]

The rapid spread of acquired metallo-beta-lactamases (MBLs) among major Gram-negative pathogens is a matter of particular concern worldwide and primarily in Europe, one of first continents where the emergence of acquired MBLs has been reported and possibly the geographical area where the increasing diversity of these enzymes and the number of bacterial species affected are most impressive. This spread has not been paralleled by accuracy/standardisation of detection methods, completeness of epidemiological knowledge or a clear understanding of what MBL production entails in terms of clinical impact, hospital infection control and antimicrobial chemotherapy. A number of European experts in the field met to review the current knowledge on this phenomenon, to point out open issues and to reinforce and relate to one another the existing activities set forth by research institutes, scientific societies and European Union-driven networks. (c) 2006 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved. [less ▲]

Detailed reference viewed: 24 (0 ULg)
Full Text
Peer Reviewed
See detailThe Bacillus licheniformis BlaP beta-lactamase as a model protein scaffold to study the insertion of protein fragments.
Vandevenne, Marylène ULg; Filée, Patrice ULg; Scarafone, Natacha ULg et al

in Protein Science : A Publication of the Protein Society (2007), 16(10), 2260-71

Using genetic engineering technologies, the chitin-binding domain (ChBD) of the human macrophage chitotriosidase has been inserted into the host protein BlaP, a class A beta-lactamase produced by Bacillus ... [more ▼]

Using genetic engineering technologies, the chitin-binding domain (ChBD) of the human macrophage chitotriosidase has been inserted into the host protein BlaP, a class A beta-lactamase produced by Bacillus licheniformis. The product of this construction behaved as a soluble chimeric protein that conserves both the capacity to bind chitin and to hydrolyze beta-lactam moiety. Here we describe the biochemical and biophysical properties of this protein (BlaPChBD). This work contributes to a better understanding of the reciprocal structural and functional effects of the insertion on the host protein scaffold and the heterologous structured protein fragments. The use of BlaP as a protein carrier represents an efficient approach to the functional study of heterologous protein fragments. [less ▲]

Detailed reference viewed: 65 (10 ULg)
Full Text
Peer Reviewed
See detailA novel extended-spectrum TEM-type beta-lactamase, TEM-138, from Salmonella enterica serovar Infantis.
chouchani, chedli; Berlemont, Renaud ULg; masmoudi, A. et al

in Antimicrobial Agents and Chemotherapy (2006), 50(9), 3183-5

A novel natural TEM beta-lactamase with extended-spectrum activity, TEM-138, was identified in a ceftazidime-resistant clinical isolate of Salmonella enterica serovar Infantis. Compared to TEM-1, TEM-138 ... [more ▼]

A novel natural TEM beta-lactamase with extended-spectrum activity, TEM-138, was identified in a ceftazidime-resistant clinical isolate of Salmonella enterica serovar Infantis. Compared to TEM-1, TEM-138 contains the following mutations: E104K, N175I, and G238S. The bla(TEM-138) gene was located on a 50-kb transferable plasmid. Expression studies with Escherichia coli revealed efficient ceftazidimase and cefotaximase activities for TEM-138. [less ▲]

Detailed reference viewed: 37 (2 ULg)
Full Text
Peer Reviewed
See detailGlycosyl transferase activity of the Escherichia coli penicillin-binding protein 1b: Specificity profile for the substrate
Fraipont, Claudine ULg; Sapunaric, Frédéric ULg; Zervosen, Astrid ULg et al

in Biochemistry (2006), 45(12), 4007-4013

The glycosyl transferase of the Escherichia coli bifunctional penicillin-binding protein (PBP) 1b catalyzes the assembly of lipid-transported N-acetylglucosaminyl-beta-1,4-N-acetylmuramoyl-L-Ala-gamma-D ... [more ▼]

The glycosyl transferase of the Escherichia coli bifunctional penicillin-binding protein (PBP) 1b catalyzes the assembly of lipid-transported N-acetylglucosaminyl-beta-1,4-N-acetylmuramoyl-L-Ala-gamma-D-Glu-meso-A(2)pm-D-Ala-D-Ala units (lipid II) into linear peptidoglycan chains. These units are linked, at C1 of N-acetylmuramic acid (MurNAc), to a C-55 undecaprenyl pyrophosphate. In an in vitro assay, lipid II functions both as a glycosyl donor and as a glycosyl acceptor substrate. Using substrate analogues, it is suggested that the specificity of the enzyme for the glycosyl donor substrate differs from that for the acceptor. The donor substrate requires the presence of both N-acetylglucosamine (GlcNAc) and MurNAc and a reactive group on C1 of the MurNAc and does not absolutely require the lipid chain which can be replaced by uridine. The enzyme appears to prefer an acceptor substrate containing a polyprenyl pyrophosphate on C1 of the MurNAc sugar. The problem of glycan chain elongation that presumably proceeds by the repetitive addition of disaccharide peptide units at their reducing end is discussed. [less ▲]

Detailed reference viewed: 29 (9 ULg)
Full Text
Peer Reviewed
See detailCharacterization of the bifunctional glycosyltransferase/acyltransferase penicillin-binding protein 4 of Listeria monocytogenes
Zawadzka-Skomial, J.; Markiewicz, Z.; Nguyen-Disteche, M. et al

in Journal of Bacteriology (2006), 188(5), 1875-1881

Multimodular penicillin-binding proteins (PBPs) are essential enzymes responsible for bacterial cell wall peptidoglycan (PG) assembly. Their glycosyltransferase activity catalyzes glycan chain elongation ... [more ▼]

Multimodular penicillin-binding proteins (PBPs) are essential enzymes responsible for bacterial cell wall peptidoglycan (PG) assembly. Their glycosyltransferase activity catalyzes glycan chain elongation from lipid II substrate (undecaprenyl-pyrophosphoryi-N-acetylglucosamine-N-acetylmuramic acid-pentapeptide), and their transpeptidase activity catalyzes cross-linking between peptides carried by two adjacent glycan chains. Listeria monocytogenes is a food-borne pathogen which exerts its virulence through secreted and cell wall PG-associated virulence factors. This bacterium has five PBPs, including two bifunctional glycosyltransferase/transpeptidase class A PBPs, namely, PBP1 and PBP4. We have expressed and purified the latter and have shown that it binds penicillin and catalyzes in vitro glycan chain polymerization with an efficiency of 1,400 M-1 s(-1) from Escherichia coli lipid II substrate. PBP4 also catalyzes the aminolysis (D-Ala as acceptor) and hydrolysis of the thiolester donor substrate benzoyl-Gly-thioglycolate, indicating that PBP4 possesses both transpeptidase and carboxyeptidase activities. Disruption of the gene lmo2229 encoding PBP4 in L. monocytogenes EGD did not. p have any significant effect on growth rate, peptidoglycan composition, cell morphology, or sensitivity to beta-lactam antibiotics but did increase the resistance of the mutant to moenomycin. [less ▲]

Detailed reference viewed: 28 (6 ULg)
Full Text
Peer Reviewed
See detailMonitoring the zinc affinity of the metallo-beta-lactamase CphA by automated nanoESI-MS
De Vriendt, K.; Van Driessche, G.; Devreese, B. et al

in Journal of the American Society for Mass Spectrometry (2006), 17(2), 180-188

Metallo-beta-lactamases are zinc containing enzymes that are able to hydrolyze and inactivate beta-lactam antibiotics. The subclass B2 enzyme CphA of Aeromonas hydrophila is a unique metallo-p-lactamase ... [more ▼]

Metallo-beta-lactamases are zinc containing enzymes that are able to hydrolyze and inactivate beta-lactam antibiotics. The subclass B2 enzyme CphA of Aeromonas hydrophila is a unique metallo-p-lactamase because it degrades only carbapenems efficiently and is only active when it has one zinc ion bound. A zinc titration experiment was used to study the zinc affinity of the wild-type and of several mutant CphA enzymes. It shows that a second Zn2+ is also bound at high ion concentrations. All samples were analyzed using mass spectrometry in combination with an automated nanoESI source. The metal-free enzyme has a bimodal charge distribution indicative of two conformational states. A completely folded enzyme is detected when the apo-enzyme has bound the first zinc. Intensity ratios of the different enzyme forms were used to deduce the zinc affinities. CphA enzymes mutated in metal ligands show decreased zinc affinity compared to wild-type, especially D120 mutants. [less ▲]

Detailed reference viewed: 24 (4 ULg)
Full Text
Peer Reviewed
See detailCrystal structure of the Mycobacterium fortuitum class A beta-lactamase: structural basis for broad substrate specificity.
Sauvage, Eric ULg; Fonze, Eveline; Quinting, Birgit et al

in Antimicrobial Agents and Chemotherapy (2006), 50(7), 2516-21

beta-Lactamases are the main cause of bacterial resistance to penicillins and cephalosporins. Class A beta-lactamases, the largest group of beta-lactamases, have been found in many bacterial strains ... [more ▼]

beta-Lactamases are the main cause of bacterial resistance to penicillins and cephalosporins. Class A beta-lactamases, the largest group of beta-lactamases, have been found in many bacterial strains, including mycobacteria, for which no beta-lactamase structure has been previously reported. The crystal structure of the class A beta-lactamase from Mycobacterium fortuitum (MFO) has been solved at 2.13-A resolution. The enzyme is a chromosomally encoded broad-spectrum beta-lactamase with low specific activity on cefotaxime. Specific features of the active site of the class A beta-lactamase from M. fortuitum are consistent with its specificity profile. Arg278 and Ser237 favor cephalosporinase activity and could explain its broad substrate activity. The MFO active site presents similarities with the CTX-M type extended-spectrum beta-lactamases but lacks a specific feature of these enzymes, the VNYN motif (residues 103 to 106), which confers on CTX-M-type extended-spectrum beta-lactamases a more efficient cefotaximase activity. [less ▲]

Detailed reference viewed: 9 (1 ULg)