References of "Fauconnier, Marie-Laure"
     in
Bookmark and Share    
Full Text
See detailLes volatils racinaires de l’orge : un langage souterrain ?
Barsics, Fanny ULg; Gfeller, Aurélie ULg; Fauconnier, Marie-Laure ULg et al

Scientific conference (2011, October 13)

Cette présentation résume les avancées du projet Rhizovol après une année de travaux de recherche.

Detailed reference viewed: 74 (31 ULg)
Full Text
See detailOxylipins in plant defense against aphids
Avila, Carlos; Arevalo-Soliz, Milenka; Fauconnier, Marie-Laure ULg et al

Poster (2011, July 11)

Detailed reference viewed: 30 (8 ULg)
Full Text
See detailVolatile organic compounds of the roots of barley and their role in the rhizosphere
Fiers, Marie ULg; Barsics, Fanny ULg; Camerman, Marc ULg et al

Poster (2011, May 24)

Volatile organic compounds emitted by plants are known to intervene with various biotic environmental factors. Up to now, most of the studies have been focused on aerial volatiles and root liquid exudates ... [more ▼]

Volatile organic compounds emitted by plants are known to intervene with various biotic environmental factors. Up to now, most of the studies have been focused on aerial volatiles and root liquid exudates. Very few researches have been completed concerning belowground volatiles released into the rhizosphere despite their potential capacity to carry information between organisms. The Rhizovol project, started in autumn 2010, involves 5 different units of Gembloux Agro-Bio Tech collectively studying the production of belowground volatiles by barley roots underlying various biotic interactions in the rhizosphere. Some preliminary results of each partner of the project will be presented. To achieve this goal, analytical methods allowing the sampling, separation, identification and quantification of belowground volatile compounds have to be developed, taking into account their potential modifications in the rhizosphere once released by the roots. They enable the subsequent characterization and study of the interactions between barley and its rhizospheric partners chosen for this study. These interactions imply three types of organisms: beneficial organisms, pathogenic agents and plant and insect pests. Beneficial organisms can promote the growth of barley by the emission of volatiles; on the other hand barley can support their growth and metabolism. These phenomenons will be assessed by the study of 19 strains of plant growth-promoting bacteria (PGPR). Three pathogenic agents - two fungi (Fusarium culmorum and Cochliobolus sativus) and one virus (Barley yellow dwarf virus) - were chosen as they are known to cause various diseases on barley, especially on roots. The attractive or repellent effects of barley root volatiles on the pathogenic agents or their vectors, as well as the effect of volatiles on the diseases evolution will be evaluated. The project also includes several types of pests such as plants and insects. Plants can compete with barley for space and nutrients through volatile interactions. This will be assessed by the study of autotoxicity by barley itself and allelopathy with 8 weeds and a hemiparasitic plant (Rhinanthus minor). The effects of barley volatiles can also impact the severity of the attacks by insects. This part will be conducted with wireworms as they represent worldwide known pests, and aphids, through their viral vector role. Eventually, as soil characteristics can strongly influence the diffusion of volatile compounds, the diffusion behaviour of the identified volatile biomolecules through the soil will be modelled. Tritrophic interactions (e.g. insect-plant-pathogenic fungi) will be studied based on each bitrophic interaction results. Over-all, the Rhizovol project aims at improving the knowledge of interactions mediated by volatile compounds in the rhizosphere and at establishing new biocontrol methods that could contribute to integrated disease and pest management systems. [less ▲]

Detailed reference viewed: 35 (7 ULg)
Full Text
Peer Reviewed
See detailCell wall polysaccharides hydrolysis of malting barley (Hordeum vulgare L.) : a review
Jamar, Catherine ULg; du Jardin, Patrick ULg; Fauconnier, Marie-Laure ULg

in Biotechnologie, Agronomie, Société et Environnement = Biotechnology, Agronomy, Society and Environment [=BASE] (2011), 15(2), 301-313

Detailed reference viewed: 63 (4 ULg)
Full Text
Peer Reviewed
See detailRoot-targeted biotechnology to mediate hormonal signaling and improve crop stress tolerance
Ghanem, Michel Edmond; Hichri, Imène; Smigocki, Ann C. et al

in Plant Cell Reports (2011), 30(5), 807-823

Detailed reference viewed: 55 (6 ULg)
Full Text
Peer Reviewed
See detailThe elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms
Mariutto, Martin ULg; Duby, Franceline ULg; Adam, Akram et al

in BMC Plant Biology (2011), 11

Background Some non-pathogenic rhizobacteria called Plant Growth Promoting Rhizobacteria (PGPR) possess the capacity to induce in plant defense mechanisms effective against pathogens. Precedent studies ... [more ▼]

Background Some non-pathogenic rhizobacteria called Plant Growth Promoting Rhizobacteria (PGPR) possess the capacity to induce in plant defense mechanisms effective against pathogens. Precedent studies showed the ability of Pseudomonas putida BTP1 to induce PGPR-mediated resistance, termed ISR (Induced Systemic Resistance), in different plant species. Despite extensive works, molecular defense mechanisms involved in ISR are less well understood that in the case of pathogen induced systemic acquired resistance. Results We analyzed the activities of phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX), key enzymes of the phenylpropanoid and oxylipin pathways respectively, in tomato treated or not with P. putida BTP1. The bacterial treatment did not stimulate PAL activity and linoleate-consuming LOX activities. Linolenate-consuming LOX activity, on the contrary, was significantly stimulated in P. putida BTP1-inoculated plants before and two days after infection by B. cinerea. This stimulation is due to the increase of transcription level of two isoforms of LOX: TomLoxD and TomLoxF, a newly identified LOX gene. We showed that recombinant TomLOXF preferentially consumes linolenic acid and produces 13-derivative of fatty acids. After challenging with B. cinerea, the increase of transcription of these two LOX genes and higher linolenic acid-consuming LOX activity were associated with a more rapid accumulation of free 13-hydroperoxy-octadecatrienoic and 13-hydroxy-octadecatrienoic acids, two antifungal oxylipins, in bacterized plants. Conclusion In addition to the discovery of a new LOX gene in tomato, this work is the first to show differential induction of LOX isozymes and a more rapid accumulation of 13-hydroperoxy-octadecatrienoic and 13-hydroxy-octadecatrienoic acids in rhizobacteria mediated-induced systemic resistance. [less ▲]

Detailed reference viewed: 64 (29 ULg)
See detailStudy of oxylipins pathways by a transcriptomic analysis of two variety of
Ghars, Mohamed Ali ULg; Muhovski, Y.; Ghanem, M. et al

Poster (2010, July 11)

Detailed reference viewed: 30 (5 ULg)
Full Text
Peer Reviewed
See detailThe Resistance to Freeze-Drying and to Storage Was Determined as the Cellular Ability to Recover Its Survival Rate and Acidification Activity
Coulibaly, Ibourahema ULg; Dubois-dauphin, Robin; Destain, Jacqueline ULg et al

in International Journal of Microbiology (2010), 2010(625239),

The protective effects of the fatty acid composition and membrane action of the acidification activity of two strains of Lactobacillus kept at 20◦C were studied. The addition of sorbitol, monosodium ... [more ▼]

The protective effects of the fatty acid composition and membrane action of the acidification activity of two strains of Lactobacillus kept at 20◦C were studied. The addition of sorbitol, monosodium glutamate and glycerol during storage is causing the decline of acidification and increased concentrations of unsaturated fatty acids observed in both strains. The addition of sorbitol and monosodium glutamate does not alter the fatty acid composition, whatever the strain, but increases the resistance to freeze-drying of L. plantarum CWBI-B1419 and improves survival during storage. The addition of these preservatives and decreased activity of acidification improves the ratio unsaturated. These results indicate that the survival during storage and freeze-drying resistance are closely related to the composition of membrane fatty acids. This behaviour can be interpreted as an adaptation of L. plantarum B1419-CWBI supplemented by cryoprotectant additives such as sorbitol or monosodium glutamate sorbitol and monosodium glutamate as an additive. L. plantarum CWBI-B1419 presents a greater adaptation to culture conditions than L. paracasei ssp. paracasei LMG9192T. [less ▲]

Detailed reference viewed: 37 (19 ULg)
Full Text
Peer Reviewed
See detailThe lipoxygenase metabolic pathway in plants: potential for industrial production of natural green leaf volatiles
Gigot, Cédric ULg; Ongena, Marc ULg; Fauconnier, Marie-Laure ULg et al

in Biotechnologie, Agronomie, Société et Environnement = Biotechnology, Agronomy, Society and Environment [=BASE] (2010), 14(3), 451-460

Lipoxygenase enzymatic pathway is a widely studied mechanism in the plant kingdom. Combined actions of three enzymes: lipase, lipoxygenase (LOX) and hydroperoxide lyase (HPL) convert lipidic substrates ... [more ▼]

Lipoxygenase enzymatic pathway is a widely studied mechanism in the plant kingdom. Combined actions of three enzymes: lipase, lipoxygenase (LOX) and hydroperoxide lyase (HPL) convert lipidic substrates such as C18:2 and C18:3 fatty acids into short chain volatiles. These reactions, triggered by cell membrane disruptions, produce compounds known as Green Leaf Volatiles (GLVs) which are C6 or C9-aldehydes and alcohols. These GLVs are commonly used as flavors to confer a fresh green odor of vegetable to food products. Therefore, competitive biocatalytic productions have been developed to meet the high demand in these natural flavors. Vegetable oils, chosen for their lipidic acid profile, are converted by soybean LOX and plant HPL into natural GLVs. However this second step of the bioconversion presents low yield due to the HPL instability and the inhibition by its substrate. This paper will shortly describe the different enzymes involved in this bioconversion with regards to their chemical and enzymatic properties. Biotechnological techniques to enhance their production potentialities will be discussed along with their implication in a complete bioprocess, from the lipid substrate to the corresponding aldehydic or alcoholic flavors. [less ▲]

Detailed reference viewed: 65 (15 ULg)
See detailIdentification, characterization and expression profiling of the tomato gene TomLoxF
Mariutto, Martin ULg; Duby, Franceline ULg; Adam, Akram et al

Poster (2010, January 26)

Detailed reference viewed: 26 (8 ULg)
Full Text
Peer Reviewed
See detailAntioxidants involvement in the Ageing of Non-Green Organs
Delaplace, Pierre ULg; Fauconnier, Marie-Laure ULg; du Jardin, Patrick ULg

in Gupta, S. Dutta (Ed.) Reactive oxygen species and antioxidants in higher plants (2010)

Detailed reference viewed: 39 (18 ULg)