References of "Duchatelet, Pierre"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAn approach to retrieve information on the carbonyl fluoride (COF2) vertical distributions above Jungfraujoch by FTIR multi-spectrum multi-window fitting
Duchatelet, Pierre ULg; Mahieu, Emmanuel ULg; Ruhnke, Roland et al

in Atmospheric Chemistry and Physics (2009), 9

We present an original multi-spectrum fitting procedure to retrieve volume mixing ratio (VMR) profiles of carbonyl fluoride (COF2) from ground-based high resolution Fourier transform infrared (FTIR) solar ... [more ▼]

We present an original multi-spectrum fitting procedure to retrieve volume mixing ratio (VMR) profiles of carbonyl fluoride (COF2) from ground-based high resolution Fourier transform infrared (FTIR) solar spectra. The multi-spectrum approach consists of simultaneously combining, during the retrievals, all spectra recorded consecutively during the same day and with the same resolution. Solar observations analyzed in this study with the SFIT-2 v3.91 fitting algorithm correspond to more than 2900 spectra recorded between January 2000 and December 2007 at high zenith angles, with a Fourier Transform Spectrometer operated at the high-altitude International Scientific Station of the Jungfraujoch (ISSJ, 46.5° N latitude, 8.0° E longitude, 3580 m altitude), Switzerland. The goal of the retrieval strategy described here is to provide information about the vertical distribution of carbonyl fluoride. The microwindows used are located in the ν4 or in the ν4 COF2 infrared (IR) absorption bands. Averaging kernel and eigenvector analysis indicates that our FTIR retrieval is sensitive to COF2 inversion between 17 and 30 km, with the major contribution to the retrieved information always coming from the measurement. Moreover, there was no significant bias between COF2 partial columns, total columns or VMR profiles retrieved from the two bands. For each wavenumber region, a complete error budget including all identified sources has been carefully established. In addition, comparisons of FTIR COF2 17–30 km partial columns with KASIMA and SLIMCAT 3-D CTMs are also presented. If we do not notice any significant bias between FTIR and SLIMCAT time series, KASIMA COF2 17–30 km partial columns are lower of around 25%, probably due to incorrect lower boundary conditions. For each times series, linear trend estimation for the 2000–2007 time period as well as a seasonal variation study are also performed and critically discussed. For FTIR and KASIMA time series, very low COF2 growth rates (0.4±0.2%/year and 0.3±0.2%/year, respectively) have been derived. However, the SLIMCAT data set gives a slight negative trend (−0.5±0.2%/year), probably ascribable to discontinuities in the meteorological data used by this model. We further demonstrate that all time series are able to reproduce the COF2 seasonal cycle, which main seasonal characteristics deduced from each data set agree quite well. [less ▲]

Detailed reference viewed: 82 (24 ULg)
Full Text
Peer Reviewed
See detailTechnical Note: Harmonized retrieval of column-integrated atmospheric water vapor from the FTIR network - First examples for long-term records and station trends
Sussmann, R.; Borsdorff, T.; Rettinger, M. et al

in Atmospheric Chemistry and Physics (2009), 9(22), 8987-8999

We present a method for harmonized retrieval of integrated water vapor (IWV) from existing, long-term, measurement records at the ground-based mid-infrared solar FTIR spectrometry stations of the Network ... [more ▼]

We present a method for harmonized retrieval of integrated water vapor (IWV) from existing, long-term, measurement records at the ground-based mid-infrared solar FTIR spectrometry stations of the Network for the Detection of Atmospheric Composition Change (NDACC). Correlation of IWV from FTIR with radiosondes shows an ideal slope of 1.00(3). This optimum matching is achieved via tuning one FTIR retrieval parameter, i.e., the strength of a Tikhonov regularization constraining the derivative (with respect to height) of retrieved water profiles given in per cent difference relative to an a priori profile. All other FTIR-sonde correlation parameters (intercept = 0.02(12) mm, bias = 0.02(5) mm, standard deviation of coincident IWV differences (stdv) = 0.27 mm, R = 0.99) are comparable to or better than results for all other ground-based IWV sounding techniques given in the literature. An FTIR-FTIR side-by-side intercomparison reveals a strong exponential increase in stdv as a function of increasing temporal mismatch starting at Δt ≈ 1 minute. This is due to atmospheric water vapor variability. Based on this result we derive an upper limit for the precision of the FTIR IWV retrieval for the smallest Δt (= 3.75 min) still giving a statistically sufficient sample (32 coincidences), i.e., precision (IWVFTIR) < 0.05 mm (or 2.2 % of the mean IWV). The bias of the IWV retrievals from the two different FTIR instruments is nearly negligible (0.02(1) mm). The optimized FTIR IWV retrieval is set up in the standard NDACC algorithm SFIT 2 without changes to the code. A concept for harmonized transfer of the retrieval between different stations deals with all relevant control parameters; it includes correction for differing spectral point spacings (via regularization strength), and final quality selection of the retrievals (excluding the highest residuals (measurement minus model), 5% of the total). As first application examples long-term IWV data sets are retrieved from the FTIR records of the Zugspitze (47.4 °N, 11.0 °E, 2964 m a.s.l.) and Jungfraujoch (46.5 °N, 8.0 °E, 3580 m a.s.l.) NDACC sites. Station-trend analysis comprises a linear fit after subtracting an intra-annual model (3 Fourier components) and constructing an uncertainty interval [95 % confidence] via bootstrap resampling. For the Zugspitze a significant trend of 0.79 [0.65, 0.92] mm/decade is found for the time interval [1996 - 2008], whereas for the Jungfraujoch no significant trend is found. This confirms recent findings that strong variations of IWV trends do occur above land on the local to regional scale (≈250 km) in spite of homogeneous surface temperature trends. This paper provides a basis for future exploitation of more than a dozen existing, multi-decadal FTIR measurement records around the globe for climate studies. [less ▲]

Detailed reference viewed: 49 (13 ULg)
Full Text
See detailTime series of 12CO and 13CO at northern mid-latitudes: Determination of Partial Column and δ13C seasonal and interannual variations
Mahieu, Emmanuel ULg; Duchatelet, Pierre ULg; Rinsland, C. P. et al

in Geophysical Research Abstracts (2009, April), 11(EGU2009-10017-1),

Carbon monoxide (CO) is an important reactive gas in the troposphere. It is emitted at the ground level by fossil fuel combustion and biomass burning. Biogenic sources and oceans as well as oxidation of ... [more ▼]

Carbon monoxide (CO) is an important reactive gas in the troposphere. It is emitted at the ground level by fossil fuel combustion and biomass burning. Biogenic sources and oceans as well as oxidation of methane and nonmethane hydrocarbons complete the emissions budget. Large uncertainties still affect the relative contributions of the identified anthropogenic and natural sources. Destruction by the hydroxyl radical (OH) is the main removal process for CO in both the troposphere and the stratosphere. The resulting average tropospheric lifetime of CO varies from several weeks to a few months. Two approaches have been developed and optimized to independently retrieve abundances of 12CO and 13CO from high-resolution ground-based infrared solar spectra, using sets of carefully selected lines and the SFIT-2 (v3.91) algorithm which implements the optimal estimation method. The corresponding products will be described and characterized in terms of error budget and information content. These strategies have allowed us to produce partial column time series of 12CO and 13CO, using spectra recorded on a regular basis at the Jungfraujoch station (46.5ºN, 8.0ºE, 3580 m asl, Swiss Alps), a site of the Network for the Detection of Atmospheric Composition Change (NDACC). The seasonal and interannual changes observed in the 12CO,13CO and δ13C (13C/12C) data sets will be presented and discussed. Complementary zonal mean time series derived from occultation measurements collected by the ACE-FTS instrument onboard the Canadian SCISAT-1 platform since 2004 will also be included and analyzed, focusing on the upper troposphere-lower stratosphere region of the atmosphere. Finally, we will use GEOS-Chem 3-D chemistry transport model results to help in the interpretation of the short and long-term variations characterizing the ground-based and satellite data sets, focusing on the factors influencing the partitioning between the two CO isotopologues. [less ▲]

Detailed reference viewed: 39 (11 ULg)
Full Text
See detailDetermination of isotopic fractionation delta13C of methane from ground-based FTIR observations performed at the Jungfraujoch
Duchatelet, Pierre ULg; Mahieu, Emmanuel ULg; Sussmann, Ralf et al

Poster (2009, April)

Atmospheric methane (CH4) is a strong greenhouse gas that has important chemical impacts on both the troposphere and the stratosphere. In the troposphere, oxidation of methane is a major regulator of OH ... [more ▼]

Atmospheric methane (CH4) is a strong greenhouse gas that has important chemical impacts on both the troposphere and the stratosphere. In the troposphere, oxidation of methane is a major regulator of OH and is a source of formaldehyde, carbon monoxide and hydrogen. In the stratosphere, CH4 plays a central role (i), due to its contribution to the stratospheric water vapor budget, and (ii), as a sink for chlorine atoms which reduces the rate of stratospheric ozone depletion. Because the different sources of methane (natural and anthropogenic like wetlands, rice paddies, termites, natural gas escape, biomass burning, etc) have distinct 13C/12C ratios (usually reported in “delta” notation δ13C), measurements of atmospheric 13CH4 content, in addition to those of the main isotopologue (12CH4), can be used to investigate individual source strengths as well as their spatial and temporal distributions. Characterization of the isotopic fractionation of methane is therefore important, for example, to help models constrain estimates of the global methane budget. However, experimental data for the 13C/12C isotope ratio are sparse. The currently accepted average value of δ13C in atmospheric methane is about -47‰ (Platt et al., 2004). The first goal of this work is to develop and to characterize (in terms of information content and error budget) an original retrieval approach to derive 13CH4 columns from ground-based Fourier transform infrared (FTIR) spectra recorded at the International Scientific Station of the Jungfraujoch (ISSJ; 46.5°N, 8.0°E, 3580m a.s.l., Swiss Alps). The retrieval strategy is based on a Tikhonov L1 approach which has been originally developed for 12CH4 by Sussmann et al. (2008) [see also contributions by Sussmann et al. to this conference (EGU2009-7869)]. In order to validate our 13CH4 products, comparisons with satellite ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) measurements are performed. Then, atmospheric δ13C ratios derived from the FTIR measurements will be compared to values published in the literature and critically discussed. References: Platt, U., W. Allan and D. Lowe, Hemispheric average Cl atom concentration from 13C/12C ratios in atmospheric methane, Atmos. Chem. Phys., 4, 2393-2399, 2004. Sussmann, R., Forster, F., Borsdorff, T., et al.: Satellite validation of column-averaged methane on global scale: ground-based data from 15 FTIR stations versus last generation ENVISAT/SCIAMACHY retrievals, IGAC 10th International Conference, Annecy, France, 7-12 Sep 2008. [less ▲]

Detailed reference viewed: 81 (11 ULg)
Full Text
See detailNew multi-station and multi-decadal trend data on precipitable water. Recipe to match FTIR retrievals from NDACC long-time records to radio sondes within 1mm accuracy/precision
Sussmann, Ralf; Borsdorf, Tobias; Rettinger, M. et al

in Geophysical Research Abstracts (2009), 11

We present an original optimum strategy for retrieval of precipitable water from routine ground-based midinfrared FTS measurements performed at a number globally distributed stations within the NDACC ... [more ▼]

We present an original optimum strategy for retrieval of precipitable water from routine ground-based midinfrared FTS measurements performed at a number globally distributed stations within the NDACC network. The strategy utilizes FTIR retrievals which are set in a way to match standard radio sonde operations. Thereby, an unprecedented accuracy and precision for measurements of precipitable water can be demonstrated: the correlation between Zugspitze FTIR water vapor columns from a 3 months measurement campaign with total columns derived from coincident radio sondes shows a regression coefficient of R = 0.988, a bias of 0.05 mm, a standard deviation of 0.28 mm, an intercept of 0.01 mm, and a slope of 1.01. This appears to be even better than what can be achieved with state-of-the-art micro wave techniques, see e.g., Morland et al. (2006, Fig. 9 therein). Our approach is based upon a careful selection of spectral micro windows, comprising a set of both weak and strong water vapor absorption lines between 839.4 – 840.6 cm-1, 849.0 – 850.2 cm-1, and 852.0 – 853.1 cm-1, which is not contaminated by interfering absorptions of any other trace gases. From existing spectroscopic line lists, a careful selection of the best available parameter set was performed, leading to nearly perfect spectral fits without significant forward model parameter errors. To set up the FTIR water vapor profile inversion, a set of FTIR measurements and coincident radio sondes has been utilized. To eliminate/minimize mismatch in time and space, the Tobin best estimate of the state of the atmosphere principle has been applied to the radio sondes. This concept uses pairs of radio sondes launched with a 1-hour separation, and derives the gradient from the two radio sonde measurements, in order to construct a virtual PTU profile for a certain time and location. Coincident FTIR measurements of water vapor columns (two hour mean values) have then been matched to the water columns obtained by integrating the best-estimate radio sonde profiles. This match was achieved via investigating the quality of the correlation plots between the columns derived from the radio sondes and the FTIR retrievals, and iteratively tuning the regularization strength of the FTIR retrieval. The FTIR regularization matrix is based on a Tikhonov operator which allows for empirical tuning of the regularization strength via one parameter. The figures of merit for the iterative tuning have been the slope, the intercept, and the regression coefficient of the correlation. By this way an optimum retrieval setting could be found, guaranteeing a response of the FTIR retrievals to true water vapor changes, which is matched to the radio sonde operation. As first examples for utilizing this approach to derive long-term trends of precipitable water from NDACC type long-term FTIR measurements, we present trends from two time series. I.e., one retrieved from continuous FTIR measurements at the NDACC Primary Station Zugspitze, Germany (47.42 °N, 10.98 °E, 2964 m a.s.l.), which covers the time span 1995-2009, and one from the International Scientific Station of the Jungfraujoch (ISSJ, 46.5°N, 8.0°E, 3580m a.s.l., Swiss Alps), covering the time span 1984 – 2009. A detailed trend analysis of both series via the bootstrap method will be presented. In ongoing work we apply this optimum retrieval approach to historical long-time measurement series of further selected FTIR stations of the NDACC network. Thereby we will obtain unprecedented new climate data via long term trends of precipitable water at a set of globally distributed locations. [less ▲]

Detailed reference viewed: 38 (7 ULg)
Full Text
Peer Reviewed
See detailValidation of version-4.61 methane and nitrous oxide observed by MIPAS
Payan, S.; Camy-Peyret, C.; Oelhaf, H. et al

in Atmospheric Chemistry and Physics (2009), 9(2), 413-442

The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In ... [more ▼]

The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements. [less ▲]

Detailed reference viewed: 52 (9 ULg)
Full Text
Peer Reviewed
See detailValidation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations
Mahieu, Emmanuel ULg; Duchatelet, Pierre ULg; Demoulin, Philippe ULg et al

in Atmospheric Chemistry and Physics (2008), 8

Hydrogen chloride (HCl) and hydrogen fluoride (HF) are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made ... [more ▼]

Hydrogen chloride (HCl) and hydrogen fluoride (HF) are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made halogenated source gases, in particular CFC-11 (CCl3F) and CFC-12 (CCl2F2), during the second half of the 20th century. It is important to continue monitoring the evolution of these source gases and reservoirs, in support of the Montreal Protocol and also indirectly of the Kyoto Protocol. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) is a space-based instrument that has been performing regular solar occultation measurements of over 30 atmospheric gases since early 2004. In this validation paper, the HCl, HF, CFC-11 and CFC-12 version 2.2 profile data products retrieved from ACE-FTS measurements are evaluated. Volume mixing ratio profiles have been compared to observations made from space by MLS and HALOE, and from stratospheric balloons by SPIRALE, FIRS-2 and Mark-IV. Partial columns derived from the ACE-FTS data were also compared to column measurements from ground-based Fourier transform instruments operated at 12 sites. ACE-FTS data recorded from March 2004 to August 2007 have been used for the comparisons. These data are representative of a variety of atmospheric and chemical situations, with sounded air masses extending from the winter vortex to summer sub-tropical conditions. Typically, the ACE-FTS products are available in the 10-50 km altitude range for HCl and HF, and in the 7-20 and 7-25 km ranges for CFC-11 and -12, respectively. For both reservoirs, comparison results indicate an agreement generally better than 5-10% above 20 km altitude, when accounting for the known offset affecting HALOE measurements of HCl and HF. Larger positive differences are however found for comparisons with single profiles from FIRS-2 and SPIRALE. For CFCs, the few coincident measurements available suggest that the differences probably remain within +/-20%. [less ▲]

Detailed reference viewed: 83 (32 ULg)
Full Text
See detailValidation of SCIAMACHY CH4 scientific products using ground-based FTIR measurements
Dils, Bart; De Mazière, Martine; Vigouroux, Corinne et al

Poster (2008, September)

In the framework of the past EVERGREEN project, the development of three scientific algorithms, namely WFM-DOAS (henceforward called WFMD), IMAP-DOAS (henceforward called IMAP) and IMLM, commenced in ... [more ▼]

In the framework of the past EVERGREEN project, the development of three scientific algorithms, namely WFM-DOAS (henceforward called WFMD), IMAP-DOAS (henceforward called IMAP) and IMLM, commenced in order to retrieve the total column amounts of key atmospheric trace gases, including CH4, from SCIAMACHY nadir observations in its near-infrared channels. Since then, the retrieval products of these three algorithms, have undergone serious improvements. At key phases in their development, the products have been validated by using a network of ground-based FTIR instruments. Parallel with the improved SCIAMACHY data, the FTIR groups have taken steps to optimise and harmonise their own datasets and as such the different validation efforts always used the state-of-the-art FTIR dataset. Here we present an overview of the evolution of the CH4 algorithms by re-validating the data, using the same FTIR dataset (as developed under the UFTIR project) for all algorithm versions. [less ▲]

Detailed reference viewed: 193 (6 ULg)
Full Text
See detailSatellite validation of column-averaged methane on global scale: ground-based data from 15 FTIR stations versus last generation ENVISAT/SCIAMACHY retrievals
Sussmann, Ralf; Foster, Frank; Borsdorff, Tobias et al

Poster (2008, September)

Previous work has shown that the precision of ground-based mid-infrared (MIR) FTIR spectrometry is sufficient to detect day-to-day variability of columnar methane, while first retrievals from ENVISAT ... [more ▼]

Previous work has shown that the precision of ground-based mid-infrared (MIR) FTIR spectrometry is sufficient to detect day-to-day variability of columnar methane, while first retrievals from ENVISAT/SCIAMACHY (channel 8) satellite measurements were impacted by a significant time-dependent bias due to detector icing. This prevented insight into true methane temporal variability at that time. The goal of our updated study is to investigate the precision of the last generation (channel 6) SCIAMACHY retrievals IMAP-DOAS v49 and WFM-DOAS v1.0 in comparison to retrievals from ground-based MIR measurements of the European FTIR network. We first briefly discuss the origin and magnitude of the natural variability of columnar methane. Subsequently, our study investigates all factors which can be optimized to improve precision of ground-based MIR-FTIR retrievals of columnar methane. This includes an optimized Tikhonov-type regularization tuned in a way to minimize the diurnal variability of retrieved columnar methane. We also discuss ways to select and average individual-pixel satellite data in order to reflect true day-to-day variability and make them comparable to ground-based data. [less ▲]

Detailed reference viewed: 55 (13 ULg)
Full Text
Peer Reviewed
See detailValidation of ACE-FTS N2O measurements
Strong, Kimberley; Wolff, Mareile A; Kerzenmacher, Tobias E et al

in Atmospheric Chemistry and Physics (2008), 8(16), 4759-4786

The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar ... [more ▼]

The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar occultation technique. One of these instruments, the ACE Fourier Transform Spectrometer (ACE-FTS), is measuring volume mixing ratio (VMR) profiles of nitrous oxide (N2O) from the upper troposphere to the lower mesosphere at a vertical resolution of about 3-4 km. In this study, the quality of the ACE-FTS version 2.2 N2O data is assessed through comparisons with coincident measurements made by other satellite, balloon-borne, aircraft, and ground-based instruments. These consist of vertical profile comparisons with the SMR, MLS, and MIPAS satellite instruments, multiple aircraft flights of ASUR, and single balloon flights of SPIRALE and FIRS-2, and partial column comparisons with a network of ground-based Fourier Transform InfraRed spectrometers (FTIRs). Between 6 and 30 km, the mean absolute differences for the satellite comparisons lie between -42 ppbv and +17 ppbv, with most within +/- 20 ppbv. This corresponds to relative deviations from the mean that are within +/- 15%, except for comparisons with MIPAS near 30 km, for which they are as large as 22.5%. Between 18 and 30 km, the mean absolute differences for the satellite comparisons are generally within +/- 10 ppbv. From 30 to 60 km, the mean absolute differences are within +/- 4 ppbv, and are mostly between -2 and +1 ppbv. Given the small N2O VMR in this region, the relative deviations from the mean are therefore large at these altitudes, with most suggesting a negative bias in the ACE-FTS data between 30 and 50 km. In the comparisons with the FTIRs, the mean relative differences between the ACE-FTS and FTIR partial columns (which cover a mean altitude range of 14 to 27 km) are within +/- 5.6% for eleven of the twelve contributing stations. This mean relative difference is negative at ten stations, suggesting a small negative bias in the ACE-FTS partial columns over the altitude regions compared. Excellent correlation (R=0.964) is observed between the ACE-FTS and FTIR partial columns, with a slope of 1.01 and an intercept of -0.20 on the line fitted to the data. [less ▲]

Detailed reference viewed: 58 (26 ULg)
Full Text
See detailImpact of different spectroscopic datasets on CH4 retrievals from Jungfraujoch FTIR spectra
Duchatelet, Pierre ULg; Mahieu, Emmanuel ULg; Demoulin, Philippe ULg et al

Poster (2008, August)

Methane (CH4) is released in the atmosphere by natural processes (e.g. wetlands, termites) as well as by anthropogenic activities (e.g. fossil fuel exploitation, rice agriculture, biomass burning, etc ... [more ▼]

Methane (CH4) is released in the atmosphere by natural processes (e.g. wetlands, termites) as well as by anthropogenic activities (e.g. fossil fuel exploitation, rice agriculture, biomass burning, etc). Due to its high warming potential and its relatively long chemical lifetime (~9 years), atmospheric methane plays a major role in the radiative forcing responsible of the greenhouse effect. Methane also affects climate by influencing tropospheric ozone and stratospheric water. The cycle of methane is complex and to understand it requires a complete study of its emissions and its budget of sources and sinks. High quality methane data sets are needed to perform such studies. CH4 vertical distributions as well as total and partial column time series can be retrieved from high-resolution ground-based FTIR spectra, using, e.g., the SFIT-2 algorithm which implements the Optimal Estimation Method of Rodgers. A set of 5 microwindows - located in the 2 to 5.5 µm range and jointly adopted by all partners involved in the European HYMN project (www.knmi.nl/samenw/hymn/) - are fitted simultaneously during the retrieval procedure. Although this approach provides relatively high information content, CH4 retrieved profiles very often present large oscillations in the troposphere, which might result partly from inappropriate or inconsistent spectroscopic parameters. Significant improvements on retrieval quality could be reached by using more accurate CH4 spectroscopic parameters. This contribution compares 3 different sets of CH4 spectroscopic parameters (including HITRAN 2004 and 2 versions where HITRAN 2004 have been updated by recent laboratory measurements), which have been tested using one year of high resolution FTIR solar observations performed at the International Scientific Station of the Jungfraujoch (Swiss Alps, 46.5°N, 8.0 °E, 3580m a.s.l.). The impact of these different spectroscopic datasets on retrieved CH4 partial columns and vertical profiles, as well as on the fitting quality (residuals) and on the error budget characterizing our CH4 products will be evaluated and discussed. [less ▲]

Detailed reference viewed: 25 (12 ULg)
Full Text
Peer Reviewed
See detailValidation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)
Wolff, Mareile; Kerzenmacher, Tobias; Strong, Kimberley et al

in Atmospheric Chemistry and Physics (2008), 8(13), 3529-3562

The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra ... [more ▼]

The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements. [less ▲]

Detailed reference viewed: 71 (17 ULg)
Full Text
See detailMeasured and modeled trends of stratospheric Cly and Fy column amounts in the northern hemisphere
Ruhnke, Roland; Blumenstock, Thomas; Borsdorff, Tobias et al

Poster (2008, July)

The german HGF virtual institute PEP (Pole-Equator-Pole) has been established in 2004 in order to investigate the variability of atmospheric trace constituents along a north-south transection. Within PEP ... [more ▼]

The german HGF virtual institute PEP (Pole-Equator-Pole) has been established in 2004 in order to investigate the variability of atmospheric trace constituents along a north-south transection. Within PEP the HGF centres AWI and FZK as well as the german Universities of Bremen, Karlsruhe and Potsdam combine their knowledge and capabilities in ground-based measurements and global and regional modelling of atmospheric trace constituents and aerosols. Here we present results of long-term measurements of the stratospheric column of HCl, ClONO2, HF, and O3 obtained at the different PEP stations in the northern hemisphere and in addtion at Jungfraujoch. All stations are affiliated to the NDACC (Network for the Detection of Atmospheric Composition Change). The measured time series are compared with long-term model calculations performed with a state of the art 2-D model of the University of Bremen and the 3-D CTM KASIMA. Please note, that the lowest altitude for the determination of the total columns is about 7 km leading to a slight underestimation w.r.t. the measurements. [less ▲]

Detailed reference viewed: 42 (6 ULg)
Full Text
Peer Reviewed
See detailCO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations
Clerbaux, Catherine; George, Maya; Turquety, Solène et al

in Atmospheric Chemistry and Physics (2008), 8

The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO), a good tracer of pollution plumes and atmospheric ... [more ▼]

The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO), a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS). This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006). We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane) observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES) as well as limb-viewing remote sensors (MIPAS, SMR and MLS) were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above). These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km), than 30% in the lower stratosphere (12–30 km), and than 25% from 30 to 100 km. [less ▲]

Detailed reference viewed: 66 (14 ULg)
Full Text
Peer Reviewed
See detailValidation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere
De Mazière, Martine; Vigouroux, Corinne; Bernath, Peter et al

in Atmospheric Chemistry and Physics (2008), 9(9), 2421-2435

The ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) solar occultation instrument that was launched onboard the Canadian SCISAT-1 satellite in August 2003 is measuring vertical ... [more ▼]

The ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) solar occultation instrument that was launched onboard the Canadian SCISAT-1 satellite in August 2003 is measuring vertical profiles from the upper troposphere to the lower mesosphere for a large number of atmospheric constituents. Methane is one of the key species. The version v2.2 data of the ACE-FTS CH4 data have been compared to correlative satellite, balloon-borne and ground-based Fourier transform infrared remote sensing data to assess their quality. The comparison results indicate that the accuracy of the data is within 10% in the upper troposphere – lower stratosphere, and within 25% in the middle and higher stratosphere up to the lower mesosphere (<60 km). The observed differences are generally consistent with reported systematic uncertainties. ACE-FTS is also shown to reproduce the variability of methane in the stratosphere and lower mesosphere. [less ▲]

Detailed reference viewed: 35 (8 ULg)
Full Text
See detailObservations of halogens, CO, CH4, and H2CO at Ile de La Réunion from ground-based FTIR and MAXDOAS campaign measurements
De Mazière, Martine; Vigouroux, Corinne; Hendrick, François et al

Poster (2008, April)

Ile de La Réunion is a complementary site in the Network for the Detection of Atmospheric Composition Change (NDACC), situated in the southern tropics, at 21°S, 55°E. In support of a better understanding ... [more ▼]

Ile de La Réunion is a complementary site in the Network for the Detection of Atmospheric Composition Change (NDACC), situated in the southern tropics, at 21°S, 55°E. In support of a better understanding of atmospheric chemistry and physics above tropical regions, we have implemented new ground-based MAX-DOAS (multi-axis DOAS) and FTIR (Fourier transform infrared) observations at this site, on a campaign basis since 2002. At present, we have data from 2002 (month of October), 2004 (August to October) and 2007 (end of May until the end of October). Additional campaigns are planned until the availability of a new infrastructure for permanent observations at the Maido (~ 2000 masl), around 2010. Here, we report on the available time series for a number of tropospheric species (CO, H2CO and CH4,) and stratospheric halogen species, comparisons between MAX-DOAS and FTIR data of H2CO, and comparisons of ground-based and satellite data. [less ▲]

Detailed reference viewed: 52 (4 ULg)
Full Text
See detailCarbonyl fluoride (COF2) vertical information above Jungfraujoch by FTIR and multi-spectra fitting: error budget and comparisons with KASIMA 3-D CTM model calculations
Duchatelet, Pierre ULg; Mahieu, Emmanuel ULg; Ruhnke, Roland et al

Poster (2008, April)

The major sources of fluorine in the stratosphere are CFC-11 and CFC-12. During the decomposition process, fluorine is first present in the form of carbonyl compounds (e.g. carbonyl fluoride (COF2 ... [more ▼]

The major sources of fluorine in the stratosphere are CFC-11 and CFC-12. During the decomposition process, fluorine is first present in the form of carbonyl compounds (e.g. carbonyl fluoride (COF2)). Given its long life time, COF2 is the second most abundant stratospheric fluorine reservoir. Earliest, COF2 vertical distributions were derived from occultation measurements performed by the ATMOS instrument during the SPACELAB-3 Space Shuttle mission in 1985. The Canadian FTIR spectrometer ACE-FTS, onboard the SCISAT-1 satellite, is the first instrument since the last ATMOS flight in 1994, to record COF2 vertical profiles from space. Four years of ACE-FTS occultation measurements are presently available. Several COF2 IR absorption lines located either in the so-called InSb (1-5 µm) and MCT (2-16 µm) spectral ranges can be used to determine its total column from ground-based high-resolution FTIR observations. In addition, we have proposed, during the EGU General Assembly 2007, an original retrieval procedure that allows us to derive information on the COF2 vertical distribution, between 17 and 30 km, from ground-based FTIR spectra recorded at Jungfraujoch. This “multi-microwindows multi-spectra” approach, using the SFIT-2 v3.91 algorithm, has been completely characterized in terms of fitting strategy and information content. Some examples of COF2 vertical profiles inversions were also presented. This year, we will complete the characterization of the multi-microwindows multi-spectra fitting procedure by exposing the full error budget affecting our COF2 partial and total columns products. Also, comparisons with COF2 model runs generated by the 3D CTM KASIMA (KArlsruhe SImulation model of the Middle Atmosphere) will be presented and critically discussed. [less ▲]

Detailed reference viewed: 83 (7 ULg)
Full Text
Peer Reviewed
See detailOur Changing Atmosphere: Evidence Based on Long-Term Infrared Solar Observations at the Jungfraujoch since 1950
Zander, Rodolphe ULg; Mahieu, Emmanuel ULg; Demoulin, Philippe ULg et al

in Science of the Total Environment (2008), 391(2-3), 184-95

The Institute of Astrophysics of the University of Liege has been present at the High Altitude Research Station Jungfraujoch, Switzerland, since the late 1940s, to perform spectrometric solar observations ... [more ▼]

The Institute of Astrophysics of the University of Liege has been present at the High Altitude Research Station Jungfraujoch, Switzerland, since the late 1940s, to perform spectrometric solar observations under dry and weakly polluted high-mountain conditions. Several solar atlases of photometric quality, extending altogether from the near-ultra-violet to the middle-infrared, were produced between 1956 and 1994, first with grating spectrometers then with Fourier transform instruments. During the early 1970s, scientific concerns emerged about atmospheric composition changes likely to set in as a consequence of the growing usage of nitrogen-containing agricultural fertilisers and the industrial production of chlorine-bearing compounds such as the chlorofluorocarbons and hydro-chlorofluorocarbons. Resulting releases to the atmosphere with ensuing photolysis in the stratosphere and catalytic depletion of the protective ozone layer prompted a worldwide consortium of chemical manufacturing companies to solicit the Liege group to help in clarifying these concerns by undertaking specific observations with its existing Jungfraujoch instrumentation. The following pages evoke the main steps that led from quasi full sun-oriented studies to priority investigations of the Earth's atmosphere, in support of both the Montreal and the Kyoto Protocols. [less ▲]

Detailed reference viewed: 53 (27 ULg)
Full Text
See detailH2O retrievals from Jungfraujoch infrared spectra: some spectroscopic problems.
Demoulin, Philippe ULg; Trabelsi, Samy; Mahieu, Emmanuel ULg et al

in Proceedings of the 8th Atmospheric Spectroscopy Applications Meeting (2008)

Since 1949, solar absorption spectra have been acquired at the Jungfraujoch observatory (Swiss Alps, 46.5°N, 8.0°E, 3580 m a.s.l.), first with grating spectrometers, then with Fourier transform infrared ... [more ▼]

Since 1949, solar absorption spectra have been acquired at the Jungfraujoch observatory (Swiss Alps, 46.5°N, 8.0°E, 3580 m a.s.l.), first with grating spectrometers, then with Fourier transform infrared (FTIR) spectrometers. Most observations collected with these instruments encompass water vapor absorptions, even the narrow spectral domains regularly recorded with the grating instruments to monitor the evolution of important atmospheric constituents. The aim of this work is to analyze all available spectra containing usable H2O absorption lines, to derive a long-term record of its total column in the atmosphere above the Jungfraujoch. In addition, more recent FTIR broadband spectra, with better signal-to-noise ratio and resolution, will be analyzed with state of the art algorithm, in order to derive information on the vertical distribution of H2O. [less ▲]

Detailed reference viewed: 23 (3 ULg)