References of "Dimitriadis, Grigorios"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBifurcation analysis and limit cycle oscillation amplitude prediction methods applied to the aeroelastic galloping problem
Vio, Gareth Arthur; Dimitriadis, Grigorios ULg; Cooper, Jonathan E

in Journal of Fluids & Structures (2007), 23(7),

A global stability and bifurcation analysis of the transverse galloping of a square section beam in a normal steady flow has been implemented. The model is an ordinary differential equation with ... [more ▼]

A global stability and bifurcation analysis of the transverse galloping of a square section beam in a normal steady flow has been implemented. The model is an ordinary differential equation with polynomial damping nonlinearity. Six methods are used to predict bifurcation, the amplitudes and periods of the ensuing Limit Cycle Oscillations: (i) Cell mapping, {ii} Harmonic Balance, (iii) Higher Order Harmonic Balance,(iv) Centre Manifold linearization, (v) Normal Form and (vi) Numerical Continuation. The resulting stability predictions are compared with each other and with results obtained from numerical integration. The advantages and disadvantages of each technique are discussed. It is shown that, despite the simplicity of the system, only two of the methods succeed in predicting its full response spectrum. These are Higher Order Harmonic Balance and Numerical Continuation. [less ▲]

Detailed reference viewed: 78 (0 ULg)
Full Text
Peer Reviewed
See detailDemonstrating the identification of nonlinear vibrating systems to undergraduate students
Dimitriadis, Grigorios ULg; Vio, Gareth Arthur

in International Journal of Mechanical Engineering Education (2007), 35(4), 336-360

The identification of nonlinear dynamic systems is increasingly becoming a necessary part of vibration testing and there is significant research effort devoted to it. However, as the current methodologies ... [more ▼]

The identification of nonlinear dynamic systems is increasingly becoming a necessary part of vibration testing and there is significant research effort devoted to it. However, as the current methodologies are still not suitable for the identification of general nonlinear systems the subject is very rarely introduced to undergraduate students. In this paper, recent progress in developing an expert approach to nonlinear system identification is used in order to demonstrate the subject within the context of an undergraduate course or as an introductory tool for postgraduate students. The demonstration is based around a software package of an Expert System designed to apply systematically a wide range of identification approaches to the system under investigation. It is shown that the software can be used to demonstrate the need for nonlinear system identification, the complexity of the procedure, the possibility of failure and the good chances of success when enough physical information about the system is available. [less ▲]

Detailed reference viewed: 48 (2 ULg)
Full Text
See detailNonlinearity Characterization for Nonlinear Dynamic System Identification Using an Expert Approach
Dimitriadis, Grigorios ULg; Vio, Gareth Arthur

in Proceedings of the 2006 International Conference on Noise and Vibration Engineering (2006, September)

The identification of nonlinear dynamic systems can be rendered significantly more parsimonious if the nonlinearity present in the system is known. While there are many successful non-parametric nonlinear ... [more ▼]

The identification of nonlinear dynamic systems can be rendered significantly more parsimonious if the nonlinearity present in the system is known. While there are many successful non-parametric nonlinear system identification methods, the resulting models do not describe the nonlinearity in physical terms and are difficult to obtain due to the large number of candidate terms that must be examined. In this paper an expert approach towards the characterization of nonlinearities in a dynamic system is presented. The methodology is based on simulations of dynamic systems with a variety of commonly occurring nonlinear functions. The responses of such systems to various types of excitation are analysed and rules are developed as to what nonlinearity is likely to be present in a system given the dynamic characteristics of measured responses. [less ▲]

Detailed reference viewed: 18 (1 ULg)
Full Text
See detailAn experimental investigation of the subsonic stall flutter
Li, Jing; Andrinopoulos, Nikolaos; Dimitriadis, Grigorios ULg

in Proceedings of the 2006 International Conference on Noise and Vibration Engineering (2006, September)

This paper reports on experimental investigations of the subsonic stall flutter of a wing in a wind tunnel. Stall flutter (also know as Dynamic Stall) is a LCO phenomenon occurring when all or part of the ... [more ▼]

This paper reports on experimental investigations of the subsonic stall flutter of a wing in a wind tunnel. Stall flutter (also know as Dynamic Stall) is a LCO phenomenon occurring when all or part of the flow over a wing separates and re-attaches at least once during a full oscillation period. In order to investigate the aeroelastic effects of the nonlinearity introduced by the boundary layer growth and flow separation and the ensuing stall-induced LCO, a wind tunnel model of a wing undergoing stall flutter is designed, built and tested. The model is a rectangular wing with constant cross-section free to move in the pitch and plunge directions, restrained by torsional and linear springs respectively. The motion of the wing is measured using laser displacement probes. Two types of stall flutter are observed and measured: 1. Non-symmetric stall flutter, where the flow separates over one side of the wing only, and 2. Symmetric stall flutter, where the flow separates over both sides of the wing (deep stall). The bifurcation behaviour of the wing is very complex and both types of LCO can be observed during a single response history. [less ▲]

Detailed reference viewed: 74 (11 ULg)
Full Text
See detailIdentification of Structural Free-play Non-linearities using the Non-Linear Resonant Decay Method
Yang, Z.; Dimitriadis, Grigorios ULg; Vio, Gareth A. et al

in Proceedings of the 2006 International Conference on Noise and Vibration Engineering (2006, September)

Structural non-linearities are becoming of increasing importance in determining the performance of a range of vibrating mechanical structures. As a consequence, the identification of systems with non ... [more ▼]

Structural non-linearities are becoming of increasing importance in determining the performance of a range of vibrating mechanical structures. As a consequence, the identification of systems with non-linearities is starting to become a necessary part of vibration testing procedures. NL-RDM (Non-Linear Resonant Decay Method) is an approach for the identification of non-linear multi-degree of freedom systems in modal space on a mode by mode basis, using an appropriated sine excitation to isolate modes or groups of modes. However, the application of NL-RDM to a multi-degree of freedom system with a discontinuous free-play non-linearity has not been attempted yet, except to treat it using high order polynomial terms. The difficulty of using NL-RDM when seeking a discontinuous free-play model lies in the choice of the so-called underlying linear model to be used in uncoupling the linear equations. In this paper, a simulated two degree of freedom lumped parameter system with a free-play non-linearity [less ▲]

Detailed reference viewed: 41 (1 ULg)
Full Text
Peer Reviewed
See detailAn Expert System for the Identification of Nonlinear Dynamical Systems
Dimitriadis, Grigorios ULg; Vio, Gareth Arthur; Shi, Dongfeng

in Huang, De-Shuang; Li, Kang; Irwin, George William (Eds.) Intelligent Computing (2006, August)

This paper describes an Expert System that can detect and quantify the nonlinearity present in a given dynamical system and, subsequently, determine and apply the most suitable nonlinear system ... [more ▼]

This paper describes an Expert System that can detect and quantify the nonlinearity present in a given dynamical system and, subsequently, determine and apply the most suitable nonlinear system identification method. The internal workings, algorithms and decision making processes of the Expert System are discussed. For demonstration purposes the Expert System is applied to a nonlinear experimental test-rig. The results show that the Expert System is an automatic tool that will detect nonlinearity, choose the best class of model for the system under investigation and perform optimal parameter estimation, so that the resulting identified models are parsimonious and accurate. [less ▲]

Detailed reference viewed: 28 (4 ULg)
Full Text
Peer Reviewed
See detailDevelopment of An Expert System for the Identification of Nonlinear Vibrating Systems
Dimitriadis, Grigorios ULg; Vio, Gareth Arthur; Shi, Dongfeng

in Brennan, M. J.; Liguore, S.; Mace, B. R. (Eds.) et al Proceedings of the IX International Conference on Recent Advances in Structural Dynamics (2006, July)

The aim of the present work is to attempt to create a logical framework to be used for the identification of nonlinear systems. It is assumed that no single identification method is general enough to work ... [more ▼]

The aim of the present work is to attempt to create a logical framework to be used for the identification of nonlinear systems. It is assumed that no single identification method is general enough to work with a significant range of systems. Therefore, this framework is based on the development of an Expert System that will detect and quantify the nonlinearity present in a given dynamical system and, subsequently, determine and apply the most suitable nonlinear system identification method or methods. [less ▲]

Detailed reference viewed: 15 (8 ULg)
Full Text
Peer Reviewed
See detailAeroelastic System Identification using Transonic CFD data for a 3D Wing
Vio, Gareth Arthur; Cooper, Jonathan Edward; Dimitriadis, Grigorios ULg et al

in Brennan, M. J.; Liguore, S.; Mace, B. R. (Eds.) et al Proceedings of the IX International Conference on Recent Advances in Structural Dynamics (2006, July)

This paper is part of a study investigating the prediction of aeroelastic behaviour subjected to non-linear aerodynamic forces. Of interest here is whether the sub-critical vibration behaviour of the ... [more ▼]

This paper is part of a study investigating the prediction of aeroelastic behaviour subjected to non-linear aerodynamic forces. Of interest here is whether the sub-critical vibration behaviour of the aeroelastic model gives any information about the onset of the LCO. It would be useful to be able to use system identification methods to estimate aeroelastic models that characterise the LCO. Such a methodology would be very useful, not only for analysis with coupled CFD/FE models, but also during flight flutter testing. In this paper, the responses to initial inputs on the Goland Wing [9] CFD/FE model at different flight speeds are analysed to determine the extent of the non-linearity below the critical onset of LCO. Analysis is also performed using a linear identification model. [less ▲]

Detailed reference viewed: 65 (3 ULg)
Full Text
See detailApplication of Higher-Order Harmonic Balance to Non-Linear Aeroelastic Systems
Dimitriadis, Grigorios ULg; Vio, Gareth Arthur; Cooper, Jonathan Edward

in Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2006, May)

The influence of non-linearities on modern aircrafts is becoming of increasing impor- tance. The ability to accurately characterise LCOs and to predict at which speed they occur is very important. Higher ... [more ▼]

The influence of non-linearities on modern aircrafts is becoming of increasing impor- tance. The ability to accurately characterise LCOs and to predict at which speed they occur is very important. Higher Order Harmonic Balance (HOHB) methods have attracted some interest from the aeroelastic community over the last two decades. Such methods carry the promise of high quality stability prediction and Limit Cycle Oscillation (LCO) amplitude and frequency prediction for non-linear aeroelastic systems. In this paper, a Higher Order Harmonic Balance scheme is devised to extend the effectiveness of the method to systems undergoing secondary Hopf bifurcations. It is shown that the proposed harmonic shifting technique can allow the HOHB method to accurately estimate both branches of limit cycles occurring after the second bifurcation. [less ▲]

Detailed reference viewed: 61 (1 ULg)
Full Text
See detailIdentification of Non-Linear Dynamic Systems using an Expert Approach
Vio, Gareth Arthur; Dimitriadis, Grigorios ULg; Cooper, Jonathan Edward

in Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2006, May)

An Expert System approach for the identification of non-linear systems is presented. The Expert System is an attempt to bring order into the non-linear system identification process. The final objective ... [more ▼]

An Expert System approach for the identification of non-linear systems is presented. The Expert System is an attempt to bring order into the non-linear system identification process. The final objective is to deliver a parsimonious mathematical model of the dy- namical system under investigation. It works by defining the key stages of the procedure and iterating between them if necessary. It takes advantage of numerous methodologies to accomplish the tasks in each of the stages and uses the results from many of them. The Expert System applies the excitation forces appropriate to each method and analyses the responses. Each stage ends with a set of recommendations that can be used to begin the next stage. The Expert System is applied to a simple non-linear dynamic system. It is shown that the Expert System procedure can automatically detect, locate and quantify the non- linearity using its array of techniques. Furthermore, it can choose a suitable model struc- ture, select appropriate terms and estimate the model parameters using an extensive set of rules. The resulting identified model is validated and shown to be an accurate represen- tation of the experimental system. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailComment on Flutter Prediction from Flight Flutter Test Data
Dimitriadis, Grigorios ULg; Cooper, Jonathan E

in Journal of Aircraft (2006), 43(3), 862-863

In a previous paper entitled “Flutter Predictions from Flight Flutter Test Data” the authors applied a number of different flutter prediction methods to data from two simulated aeroelastic aircraft models ... [more ▼]

In a previous paper entitled “Flutter Predictions from Flight Flutter Test Data” the authors applied a number of different flutter prediction methods to data from two simulated aeroelastic aircraft models and compared the resulting flutter predictions. The two simulated models were a simple three-degree-of-freedom Hancock wing model and the Sim-2 model of a generic four-engined civil transport. One of the methods examined in the paper was the Nissim and Gilyard method (NGM). Because of difficulties encountered with the Sim-2 model, the authors failed to apply the NGM successfully to it, and only results for the Hancock model were presented in the paper. With the aid of Eli Nissim, the authors have now succeeded in applying the method to the Sim-2 model and to obtain quality flutter predictions from it. In this short Comment, the initial problems encountered will be described and then the solutions will be outlined. Finally, flutter predictions for the method will be presented and compared to the flutter predictions obtained from the other methods by Dimitriadis and Cooper. [less ▲]

Detailed reference viewed: 131 (6 ULg)
Full Text
See detailVibration Testing and System Identification
Dimitriadis, Grigorios ULg

Scientific conference (2005, December 16)

This presentation is a summary of the recent activity of the Dynamics and Aeroelasticity Research Group of the University of Manchester on the subjects of Vibration Testing and System Identification.

Detailed reference viewed: 34 (3 ULg)
Full Text
See detailFlutter Clearance of a Non-linear aircraft
Benini, Guilherme; Vio, Gareth Arthur; Dimitriadis, Grigorios ULg et al

in Proceedings of the 2005 International Forum on Aeroelasticity and Structural Dynamics (2005, June)

Flight flutter testing is always carried out under the assumption that aircraft are linear. Recently, this assumption has started to come under question, especially as far as military aircraft are ... [more ▼]

Flight flutter testing is always carried out under the assumption that aircraft are linear. Recently, this assumption has started to come under question, especially as far as military aircraft are concerned. This paper deals with possible methodologies for flight flutter testing of aircraft that are no longer assumed linear. Simulated flight testing is performed for a simple non-linear aeroelastic system with cubic stiffness. The flutter speeds predicted using some of the classical linear flutter prediction methods as well as a non-linear method are compared. It is shown that, for non-linear system undergoing Hopf Bifurcations, classical linear flutter prediction can predict the flutter envelope with reasonable accuracy. However, fully non-linear system identification and stability analysis can not only predict the flutter point but also determine whether it is a linear or non-linear flutter point (i.e. whether divergent or Limit Cycle Oscillations will ensue). Additionally, the non-linear method can predict the amplitudes of LCOs that will occur post-critically. The application of the nonlinear method was successful for noise free data, but the problem of noise corruption still needs further investigation. [less ▲]

Detailed reference viewed: 30 (1 ULg)
Full Text
See detailStability and LCO Amplitude Prediction for Aeroelastic Systems with Aerodynamic and Structural Nonlinearities Using Numerical Continuation
Vio, Gareth Arthur; Dimitriadis, Grigorios ULg; Cooper, Jonathan Edward

in RTO-MP-AVT-123 Flow-Induced Unsteady Loads and the Impact on Military Applications (2005, April)

This paper deals with the prediction of stability boundaries and Limit Cycle Oscillation amplitudes for aeroelastic systems with nonlinear unsteady aerodynamic loads and/or nonlinearity in the structure ... [more ▼]

This paper deals with the prediction of stability boundaries and Limit Cycle Oscillation amplitudes for aeroelastic systems with nonlinear unsteady aerodynamic loads and/or nonlinearity in the structure. The Numerical Continuation method is used to accurately predict bifurcation conditions and LCO amplitudes for aeroelastic systems with various types of nonlinearity without the need for extensive CFD calculations. It is shown that it is possible to completely characterise the stability of systems undergoing subcritical and supercritical bifurcations. The method is applied to a pitch-plunge airfoil subjected to transonic aerodynamics and freeplay structural nonlinearity. The results from this analysis are compared to those obtained from full numerical simulation to ensure their accuracy. [less ▲]

Detailed reference viewed: 46 (3 ULg)
Full Text
See detailNon-Linear Identification Using a Genetic Algorithm Approach for Model Selection
Platten, Michael F; Wright, Jan Robert; Worden, Keith et al

in Proceedings of the 23rd International Modal Analysis Conference (2005, January)

The Non-Linear Resonant Decay Method is an approach for the identification of non-linear systems with large numbers of degrees of freedom. The identified non-linear model is expressed in linear modal ... [more ▼]

The Non-Linear Resonant Decay Method is an approach for the identification of non-linear systems with large numbers of degrees of freedom. The identified non-linear model is expressed in linear modal space and comprises the modal model of the underlying linear system with additional terms representing the non-linear behaviour. Potentially, a large number of these non-linear terms will exist but not all of them will be significant. The problem of deciding which and how many terms are required for an accurate identification has previously been addressed using the Forward Selection and Backward Elimination techniques. In this paper, a Genetic Algorithm optimisation is proposed as an alternative to those methods. A simulated 5-DOF lumped parameter non-linear system is used to demonstrate the proposed optimisation. The use of separate data sets for the identification and validation of the modal model is also investigated. It is found that the Genetic Algorithm approach yields significantly better results than the Backward Elimination and Forward Selection algorithms in many cases. [less ▲]

Detailed reference viewed: 21 (0 ULg)
Full Text
See detailStability and Limit Cycle Oscillation Amplitude Prediction for Multi-DOF Aeroelastic Systems with Piecewise Linear Non-Linearities
Dimitriadis, Grigorios ULg; Vio, Gareth Arthur; Cooper, Jonathan Edward

in Proceedings of the 2004 International Conference on Noise and Vibration Engineering (2004, September)

Discontinuous non-linearities such as freeplay and bilinear stiffness are often encountered in aeroelastic systems, sometimes as a result of wear and tear. It is important to predict the effect of such ... [more ▼]

Discontinuous non-linearities such as freeplay and bilinear stiffness are often encountered in aeroelastic systems, sometimes as a result of wear and tear. It is important to predict the effect of such non-linearities on the dynamic behaviour of a system, so that adequate safety guidelines can be drafted. As a consequence, the prediction of the bifurcation behaviour of a system featuring a discontinuous nonlinearity is crucial. Additionally, the post-bifurcation behaviour of the system is also of interest since it may consist of relatively harmless Limit Cycle Oscillations (LCO) of low amplitude or of unexpected catastrophic high amplitude LCOs. In this paper the bifurcation and post-bifurcation behaviour of a simulated Multi-DOF aeroelastic system with bilinear and freeplay nonlinearities are investigated using the Harmonic Balance method and a novel method for the prediction of the bifurcation conditions and LCO amplitudes. The method is based on the fact that the nonlinearities investigated are piecewise linear. The ratios of the real parts of the system eigenvalues in the various ranges of the bilinear spring are used in order to infer LCO amplitude information. By means of a demonstration on a simulated aeroelastic system with piece-wise linear stiffness, it is shown that the proposed approach is successful in yielding the full bifurcation and post-bifurcation behaviour of the system. Comparison of the amplitude predictions obtained from the Harmonic Balance technique and the Piecewise Linearisation proposed approach show that the latter are more consistent and closer to the true amplitudes throughout the airspeed range. The bifurcation analysis is extended to the special case where the inner stiffness of the bilinear spring is equal to zero, i.e. freeplay stiffness. It is shown that the Piecewise Linear analysis fails to capture the bifurcation behaviour for this case, while the Harmonic Balance method still produces some accurate predictions. [less ▲]

Detailed reference viewed: 27 (1 ULg)
Full Text
See detailOn the solution of the aeroelastic galloping problem
Vio, Gareth Arthur; Dimitriadis, Grigorios ULg; Cooper, Jonathan Edward

in Proceedings of the 2004 International Conference on Noise and Vibration Engineering (2004, September)

A global stability analysis of the transverse galloping of a square section beam in a normal steady ow was performed. The analysis was applied to a mathematical model using experimentally measured ... [more ▼]

A global stability analysis of the transverse galloping of a square section beam in a normal steady ow was performed. The analysis was applied to a mathematical model using experimentally measured stationary aerodynamic forces. The system was modelled as an ordinary differential equation with small non-linearity in the velocity term. Three methods are used for the stability analysis: 1. a harmonic balance approach, 2. normal form theory, 3. cell mapping. The resulting stability predictions were compared with each other and with results obtained from numerical integration. It is shown that the hysteretic stability of the non-linear aeroelastic oscillator was captured by all the methods. Additionally, the methods had a varying degree of success in predicting the amplitude of limit cycle oscillations undergone by the aeroelastic oscillator. [less ▲]

Detailed reference viewed: 75 (0 ULg)
Full Text
Peer Reviewed
See detailValidating Blade Vibration Amplitudes from Blade Tip-Timing Data Analysis
Gallego-Garrido, Jon; Dimitriadis, Grigorios ULg

in Vibrations in Rotating Machinery (2004, September)

Blade Tip-Timing (BTT) is a method for the measurement of blade vibration in rotating bladed assemblies such as those found in turbomachinery. BTT data needs to be analysed by specially formulated methods ... [more ▼]

Blade Tip-Timing (BTT) is a method for the measurement of blade vibration in rotating bladed assemblies such as those found in turbomachinery. BTT data needs to be analysed by specially formulated methods, to yield the vibration frequencies and amplitudes. Although such methods have been shown to recover frequencies successfully, they have not been validated experimentally for amplitude recovery. In the present paper an improved experimental procedure for amplitude measurement is described. The paper presents a comparison between the experimental observation of the blade vibration amplitudes and the answers obtained from the BTT data analysis methods, providing experimental evidence of the ability of these methods to extract the correct blade vibration amplitudes from BTT data. [less ▲]

Detailed reference viewed: 113 (1 ULg)
Full Text
Peer Reviewed
See detailSubspace Monitoring of Multivariate Dynamic Systems
Kruger, Uwe; Treasure, Richard; Dimitriadis, Grigorios ULg

in Akay, A.; Arnas, O.; Cooper, J. E. (Eds.) et al Proceedings of 7th Biennial ASME Conference on Engineering Systems Design and Analysis (2004, July)

In this article, the monitoring of continuous processes using linear dynamic models is presented. It is outlined that dynamic extensions to conventional multivariate statistical process control (MSPC ... [more ▼]

In this article, the monitoring of continuous processes using linear dynamic models is presented. It is outlined that dynamic extensions to conventional multivariate statistical process control (MSPC) models may lead to the inclusion of large numbers of variables in the condition monitor. To prevent this, a new dynamic monitoring scheme, based on subspace identification, is introduced, which can (i) determine a set of state variable for describing process dynamics and (ii) produce a reduced set of variables to monitor process performance. This is demonstrated by an application study to a realistic simulation of a chemical process. [less ▲]

Detailed reference viewed: 19 (0 ULg)
Full Text
Peer Reviewed
See detailNonlinear System Identification using Interpolated Short Time Fourier Transform
Shi, Dongfeng; Dimitriadis, Grigorios ULg

in Akay, A.; Arnas, O.; Cooper, J. E. (Eds.) et al Proceedings of 7th Biennial ASME Conference on Engineering Systems Design and Analysis (2004, July)

For the purpose of constructing the backbone of nonlinear systems, the Interpolated Short Time Fourier Transform (ISTFT) is proposed as a means to improve the estimation accuracy of the instantaneous ... [more ▼]

For the purpose of constructing the backbone of nonlinear systems, the Interpolated Short Time Fourier Transform (ISTFT) is proposed as a means to improve the estimation accuracy of the instantaneous amplitudes and frequencies of response signals. It is shown that the backbone curves estimated by the ISTFT agree with theoretical backbone curves very well. Additionally, the restoring force can be reconstructed to specify the type of nonlinear stiffness. A curve-fitting technique is introduced to estimate the parameters of nonlinear systems on the basis of theoretical backbone curves. It is shown that a number of typical nonlinear stiffness functions such as cubic, bilinear and pre-compressed springs can be identified accurately using this new method. [less ▲]

Detailed reference viewed: 31 (0 ULg)