References of "Detrembleur, Christophe"
     in
Bookmark and Share    
See detailOrganometallic-mediated radical polymerization, a versatile tool for the precision synthesis of unprecedented copolymers
Detrembleur, Christophe ULiege; Cordella, Daniela ULiege; Demarteau, Jérémy ULiege et al

Conference (2015, December 17)

Controlled radical polymerization techniques give access to innovative (multi)functional polymeric materials for advanced applications. Organometallic-mediated radical polymerization (OMRP) is one of ... [more ▼]

Controlled radical polymerization techniques give access to innovative (multi)functional polymeric materials for advanced applications. Organometallic-mediated radical polymerization (OMRP) is one of these techniques that enable the preparation of unprecedented copolymers, and is based on the temporary deactivation of the propagating chains by a transition metal complex. The strength of the carbon-metal bond at the polymer chain-end is dictating the reactivity of the system. One of the most efficient OMRP process involves the commercially available Co(acac)2. Recent studies have demonstrated that the system reactivity is easily modulated by the addition of some molecules able to coordinate the cobalt complex, by tuning the temperature, or by UV irradiation. The facile modulation of the C-Co bond strength has enabled to control the polymerization of monomers of opposite reactivity, such as vinyl esters and acrylates, and to synthesize novel well-defined (co)polymers under very mild experimental conditions. In this talk, we will discuss some recent breakthroughs in the field that illustrate the huge potential of the process for the design of unique functional macromolecules. More precisely, we will describe the first control of the copolymerization of ethylene with a series of functional vinyl monomers under mild experimental conditions that leads to random copolymers with ethylene content up to 60 mol% and negligible chain branching. The first one-pot synthesis of novel ethylene-based block copolymers will also be discussed. Additionally, we will demonstrate the implementation of the OMRP process to aqueous based media by describing, amongst other examples, the precision synthesis of innovative functional (telechelic) poly(ionic liquid)s (PILs) in water. [less ▲]

Detailed reference viewed: 77 (9 ULiège)
See detailNovel organocobalt based on acetylacetonate ligands for the precision synthesis of telechelic polymers
Demarteau, Jérémy ULiege; Cordella, Daniela ULiege; Kermagoret, Anthony et al

Conference (2015, December 17)

Organocobalt(III) with acetylacetonate ligands is the most representative example of R-Co bearing a weak C-Co bond that can release alkyl radicals under mild experimental conditions without requiring a ... [more ▼]

Organocobalt(III) with acetylacetonate ligands is the most representative example of R-Co bearing a weak C-Co bond that can release alkyl radicals under mild experimental conditions without requiring a photoactivation. The unique isolated specimen is a short oligo(vinyl acetate) end-capped by Co(acac)2. The high lability of the C-Co bond of this R-Co combined to the unique capacity of Co(acac)2 to reversibly trap alkyl radicals make this organocobalt unique for the precision synthesis of unprecedented polymers by the so-called Cobalt-Mediated Radical Polymerization (CMRP) technique. The growth of unstabilized and highly reactive growing radicals formed by the addition of R· to unconjugated olefins (vinyl esters, vinyl amides, vinyl imidazolium, vinyl chloride, ethylene) is controlled by the reversible formation of a weak C-Co bond at the polymer chain end. The lack of alternatives to this R-Co, especially to the structure of the alkyl group, has placed limitations on further innovation in (macro)molecular design. Other functional variants that would enable attractive chain-end derivatizations are unfortunately not available. In this communication, we will address this important challenge by describing an innovative synthetic route towards the preparation of a new functional R-Co(acac)2 that are characterized by a weak C-Co bond. We will report the conditions required for initiating and controlling the radical polymerization of various monomers from these R-Co. We will also demonstrate their utility for the production of novel telechelic polymers under mild experimental conditions, syntheses that can be carried out in water. [less ▲]

Detailed reference viewed: 73 (17 ULiège)
Full Text
Peer Reviewed
See detailExperimental and computational micro–mechanical investigations of compressive properties of polypropylene/multi–walled carbon nanotubes nanocomposite foams
Wan, Fangyi; Tran, Minh Phuong; Leblanc, Christophe ULiege et al

in Mechanics of Materials (2015), 91(Part 1), 95-118

The compressive behavior of nanocomposite foams is studied by both experimental and computational micro-mechanics approaches with the aim of providing an efficient computational model for this kind of ... [more ▼]

The compressive behavior of nanocomposite foams is studied by both experimental and computational micro-mechanics approaches with the aim of providing an efficient computational model for this kind of material. The nanocomposites based on polypropylene (PP) and different contents of multi-walled carbon nanotubes (CNTs) are prepared by melt mixing method. The nanocomposite samples are foamed using super-critical carbon dioxide (ScCO2) as blowing agent at different soaking temperatures. The influence of this foaming parameter on the morphological characteristics of the foam micro-structure is discussed. Differential Scanning Calorimetry (DSC) measurements are used to quantify the crystallinity degree of both nanocomposites and foams showing that the crystallinity degree is reduced after the foaming process. This modification leads to mechanical properties of the foam cell walls that are different from the raw nanocomposite PP/CNTs material. Three--point bending tests are performed on the latter to measure the flexural modulus in terms of the crystallinity degree. Uniaxial compression tests are then performed on the foamed samples under quasi-static conditions in order to extract the macro-scale compressive response. Next, a two-level multi-scale approach is developed to model the behavior of the foamed nanocomposite material. On the one hand, the micro-mechanical properties of nanocomposite PP/CNTs cell walls are evaluated from a theoretical homogenization model accounting for the micro-structure of the semi-crystalline PP, for the degree of crystallinity, and for the CNT volume fraction. The applicability of this theoretical model is demonstrated via the comparison with experimental data from the described experimental measurements and from literature. On the other hand, the macroscopic behavior of the foamed material is evaluated using a computational micro-mechanics model using tetrakaidecahedron unit cells and periodic boundary conditions to estimate the homogenized properties. The unit cell is combined with several geometrical imperfections in order to capture the elastic collapse of the foamed material. The numerical results are compared to the experimental measurements and it is shown that the proposed unit cell computational micro-mechanics model can be used to estimate the homogenized behavior, including the linear and plateau regimes, of nanocomposite foams. [less ▲]

Detailed reference viewed: 277 (74 ULiège)
Full Text
See detailPrecision design of polymers via organometallic-mediated radical polymerization of 'less activated' vinyl monomers
Debuigne, Antoine ULiege; Demarteau, Jérémy ULiege; Kermagoret, Anthony et al

Conference (2015, November 15)

Detailed reference viewed: 39 (17 ULiège)
See detailPolymer chemistry for theragnostics
Liu, Ji; Detrembleur, Christophe ULiege; Duguet, Etienne et al

Conference (2015, November)

Stimuli-responsive nano-materials have been playing increasingly important roles in the biomedical field due to their ability to adapt their physico-chemical properties in response to external stimuli ... [more ▼]

Stimuli-responsive nano-materials have been playing increasingly important roles in the biomedical field due to their ability to adapt their physico-chemical properties in response to external stimuli, such as temperature, pH, ionic strength, magnetic field, etc. Nanohybrids combining inorganic particles and stimuli-responsive polymers are particularly well-suited to develop advanced drug nanocarriers for targeted delivery and concomitant diagnostics. Based on the recent developments in controlled radical polymerization, especially cobalt-mediated radical polymerization, various hybrid nanostructures have been synthesized and tested as drug delivery systems able to trigger the drug release in response to dedicated environment conditions or external stimuli. Studies on cytotoxicity, cellular uptake and in vitro triggered release with cell culture will also highlight the potential of these new materials. [less ▲]

Detailed reference viewed: 129 (8 ULiège)
See detailControlled radical cross-linking copolymerization
Weiss-Maurin; Detrembleur, Christophe ULiege; Taton, Daniel

Scientific conference (2015, October 22)

Detailed reference viewed: 15 (3 ULiège)
See detailNew synthetic possibilities offered by organometallic-mediated radical polymerization
Debuigne, Antoine ULiege; Demarteau, Jérémy ULiege; Kermagoret, Anthony et al

Scientific conference (2015, October 08)

In the last years, considerable efforts have been devoted to the development of methods for controlling the radical polymerization of vinyl monomers and designing a large range of well-defined ... [more ▼]

In the last years, considerable efforts have been devoted to the development of methods for controlling the radical polymerization of vinyl monomers and designing a large range of well-defined macromolecular structures with specific properties. Although significant progress has been made, there is still room for improvements especially for the so-called ‘less activated’ monomers (LAMs) like vinyl esters, N-vinylamides, olefins, etc. This presentation aims to describe the potential of the Organometallic-Mediated Radical Polymerization (OMRP) for controlling the polymerization of these challenging monomers. Basic principles of OMRP will be presented as well as cutting edge developments in this field like the precision design of ethylene-vinyl acetate copolymers (EVAs) or the synthesis of novel alkylcobalt(III) species used as functional OMRP initiator for producing unique well-defined α-functional polymers. [less ▲]

Detailed reference viewed: 60 (6 ULiège)
Full Text
Peer Reviewed
See detailHalomethyl-cobalt(bis-acetylacetonate) for the controlled synthesis of functional polymers
Demarteau, Jérémy ULiege; Kermagoret, Anthony; German, Ian et al

in Chemical Communications (2015), 51(76), 14334-14337

Novel organocobalt complexes featuring weak C–CoL2 bonds (L = acetylacetonate) are prepared and used as sources of halomethyl radicals. They permit the precision synthesis of a-halide functionalized and ... [more ▼]

Novel organocobalt complexes featuring weak C–CoL2 bonds (L = acetylacetonate) are prepared and used as sources of halomethyl radicals. They permit the precision synthesis of a-halide functionalized and telechelic polymers in organic media or in water. Substitution of halide by azide allows derivatization of polymers using the CuAAC click reaction. [less ▲]

Detailed reference viewed: 70 (32 ULiège)
Full Text
See detailBioinspired polymers for the functionalization of stainless steel surfaces by green processes
Detrembleur, Christophe ULiege

Scientific conference (2015, September 17)

Detailed reference viewed: 23 (2 ULiège)
See detailNew efficient organocatalytic system for solvent-free chemical fixation of CO2 into epoxides
Panchireddy, Satyannarayana ULiege; Gennen, Sandro ULiege; Alves, Margot ULiege et al

Poster (2015, September 11)

Due to concerns about global warming combined with the decrease of fossil resources, the chemical transformation of carbon dioxide (CO2) into added-value products has gained interest in both academic and ... [more ▼]

Due to concerns about global warming combined with the decrease of fossil resources, the chemical transformation of carbon dioxide (CO2) into added-value products has gained interest in both academic and industrial fields. To date, the chemical fixation of CO2 onto epoxides with the formation of cyclic carbonates (CC) is one of the most promising ways to valorise CO2 at an industrial scale. Indeed, CC are useful monomers for polycarbonate synthesis and they can react with primary amines to produce 2-hydroxyethylurethane. This reaction can be extrapolated to the synthesis of non-isocyanate polyurethanes (NIPUs) by a step growth polymerization between bifunctional CC and diamines. [less ▲]

Detailed reference viewed: 145 (12 ULiège)
Full Text
See detailCobalt-mediated radical polymerization for the precision design of novel poly(ionic liquid) copolymers in aqueous media
Cordella, Daniela ULiege; Kermagoret, Anthony; Debuigne, Antoine ULiege et al

Poster (2015, September 11)

Poly(ionic liquid)s (PILs) have emerged as a special class of polyelectrolyte materials, featuring tunable solubility, high ionic conductivity, and a broad range of glass transition temperatures. Due to ... [more ▼]

Poly(ionic liquid)s (PILs) have emerged as a special class of polyelectrolyte materials, featuring tunable solubility, high ionic conductivity, and a broad range of glass transition temperatures. Due to their specific properties emanating from the ionic liquid (IL) units and their intrinsic polymeric nature, PILs find potential applications in various areas, such as analytical chemistry, biotechnology, gas separation, dispersants, solid ionic conductors for energy, catalysis, etc. In recent years, controlled radical polymerization (CRP) techniques have been applied to the synthesis of structurally well-defined PILs, with control attained over molar mass, dispersity, and end-group fidelity. In this poster, we will report on the implementation of cobalt-mediated radical polymerization (CMRP) technique for the precision synthesis of unprecedented PILs (co)polymers. We will discuss how an organocobalt complex can efficiently control the growth of vinyl imidazolium chains and lead to PILs with predicted molar masses and low polydispersities under mild experimental conditions, thus at low temperature and using water as a green polymerization medium. The huge potential of this system will be highlighted by describing the one-pot synthesis of all vinyl imidazolium-based block copolymers in aqueous media. This CMRP is unique for providing well-defined vinyl imidazolium based-copolymers for advanced PILs applications. [less ▲]

Detailed reference viewed: 92 (11 ULiège)
See detailNovel organocobalt for the synthesis of functional polymers
Demarteau, Jérémy ULiege; Kermagoret, Anthony; Jérôme, Christine ULiege et al

Poster (2015, September 11)

Organocobalt(III) with acetylacetonate (acac) ligands is the most representative example of R-Co bearing a labile C-Co bond that can release alkyl radicals under mild experimental conditions without ... [more ▼]

Organocobalt(III) with acetylacetonate (acac) ligands is the most representative example of R-Co bearing a labile C-Co bond that can release alkyl radicals under mild experimental conditions without requiring a photoactivation. The unique isolated R-Co is a short oligo(vinyl acetate) end-capped by Co(acac)2. The high lability of its C-Co bond combined to the unique capacity of Co(acac)2 to reversibly trap alkyl radicals make this R-Co unique for the precision design of unprecedented polymers by Cobalt-Mediated Radical Polymerization (CMRP). The growth of unstabilized and highly reactive growing radicals formed by the addition of R• to unconjugated vinyl monomers (vinyl esters, vinyl amides, vinyl imidazolium, vinyl chloride, etc;) is controlled by the reversible formation of a weak C-Co bond at the polymer chain end. The lack of alternatives to this R-Co, especially to the structure of the alkyl group, has however placed limitations on post-functionalizations of end-chains. Other functional variants that would enable attractive chain-end derivatizations are unfortunately not available. In this poster, we will address this important challenge by describing an innovative synthetic route towards the preparation of new functional R-Co(acac)2 that are sources of halomethyl radicals under mild experimental conditions. The efficiency of these novel organocobalt complexes for the precision synthesis of end-functional and telechelic polymers will be described. Also, the solubility of these complexes in water enables the facile production of end-functionalized water soluble poly(ionic liquid)s. Further derivatizations of the halomethyl group at the chain-end of polymers produced by this system will be demonstrated by click reaction, largely broadening the range of possible functional groups. Finally, besides numerous applications in macromolecular engineering, this unexplored family of R-Co presents a high potential in radical reactions in organic synthesis by the facile production of halomethyl radicals. [less ▲]

Detailed reference viewed: 92 (11 ULiège)
Full Text
Peer Reviewed
See detailLow bandgap copolymers based on monofluorinated isoindigo towards efficient polymer solar cells
Tomassetti, Mirco ULiege; Ouhib, Farid ULiege; Wislez, Arnaud ULiege et al

in Polymer Chemistry (2015), 6(33), 6040-6049

To explore the effectiveness of monofluorinated isoindigo as an electron-deficient building block in push–pull conjugated polymers for organic solar cell applications, four low bandgap copolymers are ... [more ▼]

To explore the effectiveness of monofluorinated isoindigo as an electron-deficient building block in push–pull conjugated polymers for organic solar cell applications, four low bandgap copolymers are effectively synthesized and characterized. The effects of fluorine introduction, thiophene spacer length and polymer molar mass on the general electro-optical polymer characteristics, thin film blend micro- structure and electronic performance are investigated. Isoindigo monofluorination effectively improves the power conversion efficiency from 2.8 up to 5.0% upon molar mass optimization, without using any processing additives or post-treatments. [less ▲]

Detailed reference viewed: 33 (7 ULiège)
Full Text
Peer Reviewed
See detailOrganocatalytic promoted coupling of carbon dioxide with epoxides: a rational investigation of the cocatalytic activity of various hydrogen bond donors
Alves, Margot ULiege; Grignard, Bruno ULiege; Gennen, Sandro ULiege et al

in Catalysis Science & Technology (2015), 5(9), 4636-4643

A catalytic platform based on an onium salt used in combination with organic cocatalysts of various structures was developed for the efficient CO2/epoxide coupling under mild conditions. Through detailed ... [more ▼]

A catalytic platform based on an onium salt used in combination with organic cocatalysts of various structures was developed for the efficient CO2/epoxide coupling under mild conditions. Through detailed kinetic studies by in-situ FT-IR spectroscopy, a rational investigation of the efficiency of a series of commercially available hydrogen bond donors co-catalysts was realized and the influence of different parameters such as the pressure, the temperature, the catalyst loading, and the nature of the epoxide on the reaction kinetics was evaluated. Fluorinated alcohols were found to be more efficient than other hydrogen bond donor activators proposed previously in the literature under similar conditions. [less ▲]

Detailed reference viewed: 97 (25 ULiège)
See detailOrganometallic-mediated radical polymerization for the precision design of novel poly(ionic liquid) copolymers in water
Cordella, Daniela ULiege; Kermagoret, Anthony; Debuigne, Antoine ULiege et al

Conference (2015, August 18)

In recent years, poly(ionic liquid)s (PIL)s were found to take an enabling role in important fields of polymer chemistry and material science. PILs combine the unique properties of ionic liquids with the ... [more ▼]

In recent years, poly(ionic liquid)s (PIL)s were found to take an enabling role in important fields of polymer chemistry and material science. PILs combine the unique properties of ionic liquids with the flexibility and properties of macromolecular architectures giving rise to a new family of functional polymers that opens new area of applications such as polymer electrolytes in electrochemical devices, powerful dispersants and stabilizers, absorbing membranes, precursors for carbon materials, porous polymers, etc. Controlled radical polymerization techniques have recently emerged as powerful tools for the precision design of novel PILs architectures and functionalities, enabling a considerable extension of the applications of PILs with the emergence of new properties. Many efforts are devoted to tentatively control the radical polymerization of ionic liquid monomers (ILs) that directly leads to PILs without requiring further polymer derivatization. Poly(vinyl imidazolium)s belong to a class of PILs of high interest but the control radical polymerization of their corresponding monomer is touchy due to the high reactivity of their propagating radical. In this communication, we will report on the implementation of organometallic-mediated radical polymerization (OMRP) technique for the precision synthesis of unprecedented PILs (co)polymers by direct polymerization of ILs in water. We will first discuss how a commercially available cobalt complex can efficiently control the growth of poly(vinyl imidazolium) chains and lead to PILs with predicted molar masses and low dispersities under mild experimental conditions. The efficiency of the process will then be illustrated by the one-pot synthesis of vinyl imidazolium-based block copolymers in aqueous media. This OMRP technique, highly compatible to water and active under moderate temperatures (30-40°C), is unique for providing well-defined vinyl imidazolium based-copolymers and novel PILs assemblies, and open new application fields. [less ▲]

Detailed reference viewed: 38 (4 ULiège)
Full Text
Peer Reviewed
See detailDesign of hybrid nanovehicles for remotely triggered drug release: an overview
Liu, Ji; Detrembleur, Christophe ULiege; Mornet, Stéphane et al

in Journal of Materials Chemistry B (2015), 3(30), 6117-6147

n the past few decades, various nanovehicles have been developed as drug delivery systems, in which inorganic and organic components are integrated within a nano-object. Upon the application of remote ... [more ▼]

n the past few decades, various nanovehicles have been developed as drug delivery systems, in which inorganic and organic components are integrated within a nano-object. Upon the application of remote stimuli, e.g. alternating magnetic field, near infrared or ultrasound radiations, the release of guest molecules can be triggered in a quite controlled manner. Herein, we review different hybrid nanostructures which have already been reported for the remotely triggered release, such as those based on (1) host–guest conjugates, (2) core–corona nanoparticles, (3) polymer nanogels, (4) polymer micelles, (5) liposomes, (6) mesoporous silica particles and (7) hollow nanoparticles. Moreover, we also summarize six underlying mechanisms that govern such a kind of remotely triggered release behaviours: (1) enhanced diffusion and/or permeation, (2) thermo- or photo-labile bond cleavage, (3) fusion of phase-changed materials, (4) photo-induced isomerisation, (5) thermo-induced swelling/de-swelling of thermo-responsive polymers, and (6) destruction of the nanostructures. The ways in which different components are incorporated into an integrated hybrid nanostructure and how they contribute to the remotely triggered release behaviours are detailed. [less ▲]

Detailed reference viewed: 108 (6 ULiège)
Full Text
Peer Reviewed
See detailAll Poly(ionic liquid)-based block copolymers by sequential controlled radical copolymerization of vinylimidazolium monomers
Cordella, Daniela ULiege; Kermagoret, Anthony; Debuigne, Antoine ULiege et al

in Macromolecules (2015), 48(15), 5230-5243

The organometallic-mediated radical polymerization (OMRP) of N-vinyl-3-alkylimidazolium-type monomers, featuring the bis(trifluoromethylsulfonyl)imide counteranion (Tf2N–), in the presence of Co(acac)2 as ... [more ▼]

The organometallic-mediated radical polymerization (OMRP) of N-vinyl-3-alkylimidazolium-type monomers, featuring the bis(trifluoromethylsulfonyl)imide counteranion (Tf2N–), in the presence of Co(acac)2 as controlling agent, is reported. Polymerizations of monomers with methyl, ethyl, and butyl substituents are fast, reaching high monomer conversion in ethyl acetate as solvent at 30 °C, and afford structurally well-defined hydrophobic poly(ionic liquid)s (PILs) of N-vinyl type. Block copolymer synthesis is also achieved by sequential OMRP of N-vinyl-3-alkylimidazolium salts carrying different alkyl chains and different counteranions (Tf2N– or Br–). These block copolymerizations are carried out at 30 °C, either under homogeneous solution in methanol or in a biphasic medium consisting of a mixture of ethyl acetate and water. Unprecedented PIL-b-PIL block copolymers are thus prepared under these conditions. However, anion exchange occurs at the early stage of the growth of the second block. Finally, diblock copolymers generated in the biphasic medium can be readily coupled by addition of isoprene, forming all PIL-based and symmetrical ABA-type triblock copolymers in a one-pot process. Such a direct block copolymerization method, involving vinylimidazolium monomers bearing different alkyl chains, thus opens new opportunities in the precision synthesis of all PIL-based block copolymers of tunable properties. [less ▲]

Detailed reference viewed: 39 (12 ULiège)
See detailNanogels via cobalt-mediatged radical cross-linking copolymerization
Weiss-Maurin, Mathilde ULiege; Detrembleur, Christophe ULiege; Taton, Daniel

Conference (2015, August 08)

Detailed reference viewed: 10 (3 ULiège)
See detailSyntheses of nanogels of ionic liquids via controlled radical cross-linking copolymerization
Weiss-Maurin, Mathilde ULiege; Taton, Daniel; Detrembleur, Christophe ULiege

Poster (2015, August 06)

Cobalt-Mediated Radical Polymerization (CMRP) is one of the most efficient techniques to form sequenced copolymers between monomers of very different reactivities(e.g. vinyl acetate and acrylonitrile ... [more ▼]

Cobalt-Mediated Radical Polymerization (CMRP) is one of the most efficient techniques to form sequenced copolymers between monomers of very different reactivities(e.g. vinyl acetate and acrylonitrile). CMRP is used here to synthesize nanogels of vinylic ionic liquid monomers using different concentrations of cross-linking agent (here, divinyl imidazolium). The aim is to determine the difference in structure of the nanogels, in order to use them for the preparation of star-like and/or core-shell structures. [less ▲]

Detailed reference viewed: 22 (3 ULiège)
See detailPoly(ionic liquid)s via controlled radical cross-linking copolymerization
Weiss-Maurin, Mathilde ULiege; Taton, Daniel; Detrembleur, Christophe ULiege

Poster (2015, August)

Cobalt-Mediated Radical Polymerization (CMRP) is one of the most efficient techniques to form sequenced copolymers between monomers of very different reactivities(e.g. vinyl acetate and acrylonitrile ... [more ▼]

Cobalt-Mediated Radical Polymerization (CMRP) is one of the most efficient techniques to form sequenced copolymers between monomers of very different reactivities(e.g. vinyl acetate and acrylonitrile). CMRP is used here to synthesize nanogels of vinylic ionic liquid monomers using different concentrations of cross-linking agent (here, divinyl imidazolium). The aim is to determine the difference in structure of the nanogels, in order to use them for the preparation of star-like and/or core-shell structures. [less ▲]

Detailed reference viewed: 33 (8 ULiège)