References of "Detrembleur, Christophe"
     in
Bookmark and Share    
Full Text
See detailPolymer composite material structures comprising carbon based conductive loads
Jérôme, Robert ULg; Pagnoulle, Christophe; Detrembleur, Christophe ULg et al

Patent (2009)

The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 wt% to 6 wt% carbon ... [more ▼]

The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 wt% to 6 wt% carbon based conductive loads, such as e.g. carbon nanotubes, dispersed in the foamed polymer matrix. The polymer composite material structure according to embodiments of the present invention shows good shielding and absorbing properties notwithstanding the low amount of carbon based conductive loads. The present invention furthermore provides a method for forming a polymer composite material structure comprising carbon based conductive loads. [less ▲]

Detailed reference viewed: 38 (2 ULg)
Full Text
See detailKey role of metal-coordination in cobalt-mediated radical polymerization of vinyl acetate
Debuigne, Antoine ULg; Poli, Rinaldo; Jérôme, Robert ULg et al

in Matyjaszewski, Krzysztof (Ed.) Controlled/living radical polymerization: progress in RAFT, DT, NMP & OMRP (2009)

Cobalt mediated radical polymerization (CMRP) of vinyl acetate (VAc) follows a reversible termination mechanism when initiated from a preformed alkyl-cobalt(III) complex. In these particular conditions ... [more ▼]

Cobalt mediated radical polymerization (CMRP) of vinyl acetate (VAc) follows a reversible termination mechanism when initiated from a preformed alkyl-cobalt(III) complex. In these particular conditions, CMRP functions as a stable free radical process and fine tuning of the Co-C bond strength becomes crucial. Increase of temperature and addition of molecules, such as water, dimethylformamide and dimethylsulfoxide, able to coordinate the cobalt complex appeared as efficient strategies to weaken the Co-C bond and thus to speed up the polymerization while maintaining a very good control of the VAc polymerization. The key role of metal-coordination was investigated by kinetic measurements combined with DFT calculations. [less ▲]

Detailed reference viewed: 79 (11 ULg)
Full Text
Peer Reviewed
See detailGold-loaded carbon nanoparticles from poly(vinyl alcohol)-b-poly(acrylonitrile) non-shell-cross-linked micelles
Bryaskova, Rayna; Willet, Nicolas ULg; Duwez, Anne-Sophie ULg et al

in Chemistry : An Asian Journal (2009), 4(8), 1338-1345

Herein we show that a new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) block copolymer dispersed in water can be easily loaded with gold nanoparticles by addition of chlorauric acid followed by ... [more ▼]

Herein we show that a new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) block copolymer dispersed in water can be easily loaded with gold nanoparticles by addition of chlorauric acid followed by reduction by sodium borohydride. After deposition of the so-loaded micelles onto a silicon wafer, followed by an appropriate thermal treatment, the poly(acrylonitrile) core of the micelles is carbonized, while the poly(vinyl alcohol) shell is completely decomposed and volatilized, leading to gold encapsulated in carbon nanoparticles. The morphology of the micelles is maintained during thermal treatment without requiring shell-cross-linking of the micelles prior to pyrolysis. [less ▲]

Detailed reference viewed: 114 (36 ULg)
Full Text
See detailLow-viscosity allophanates having actinically hardenable groups
Detrembleur, Christophe ULg; Weikard, Jan; Richter, Frank et al

Patent (2009)

Die vorliegende Erfindung betrifft niedrigviskose Umsetzungsprodukte von Polyisocyanaten, die aktivierte unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter ... [more ▼]

Die vorliegende Erfindung betrifft niedrigviskose Umsetzungsprodukte von Polyisocyanaten, die aktivierte unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation reagierende Gruppen enthalten, ein Verfahren zu ihrer Herstellung sowie deren Verwendung in Beschichtungsmitteln. [less ▲]

Detailed reference viewed: 53 (4 ULg)
Full Text
See detailUnusual quantitative (co)polymer chain coupling reaction based on isoprene and cobalt complexes
Debuigne, Antoine ULg; Jérôme, Christine ULg; Detrembleur, Christophe ULg

Conference (2009, July 15)

Nowadays, progresses in medicine, biotechnology, microelectronic and many other fields are more and more sustained by the development of novel polymer materials with constantly improved properties and ... [more ▼]

Nowadays, progresses in medicine, biotechnology, microelectronic and many other fields are more and more sustained by the development of novel polymer materials with constantly improved properties and well-defined molecular parameters. In this context, we designed an innovative and very promising tool for macromolecular engineering. This technique, called Isoprene-Assisted Radical Coupling (I-ARC), allows to couple quantitatively polymer chains preformed by Cobalt-Mediated Radical Polymerization (CMRP), an efficient controlled radical polymerization system for vinyl acetate (VAc) and acrylonitrile (AN). Typically, addition of isoprene to well-defined polymers prepared by CMRP invariably leads to the quantitative coupling reaction of the chains, as assessed by the perfect doubling of the molar mass of the polymer. Importantly, the I-ARC reaction is not limited to macromolecules with low molar masses and homopolymers, contrary to the previously reported radical chains coupling methods. Indeed, when applied to diblock copolymers, I-ARC constitutes a straightforward approach for the synthesis of telechelic symmetrical ABA triblock copolymers, as illustrated by the preparation of poly(vinyl acetate)-b-poly(acrylonitrile)-bpoly(vinyl acetate) triblock copolymers and their derivatives. [less ▲]

Detailed reference viewed: 55 (9 ULg)
Full Text
See detailProduction of novel radiation-hardening binding agent
Detrembleur, Christophe ULg; Weikard, Jan; Fischer, Wolfgang et al

Patent (2009)

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung neuartiger Bindemittel, die unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation ... [more ▼]

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung neuartiger Bindemittel, die unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation reagierende Gruppen und gegebenenfalls auch gegenüber Isocyanaten reaktive Gruppen aufweisen, sowie deren Verwendung in Beschichtungsmitteln. [less ▲]

Detailed reference viewed: 37 (3 ULg)
See detailOrganoclays prepared in supercritical CO2: implication of onium stability on the properties of PA6 nanocomposites
Naveau, Elodie ULg; Calberg, Cédric ULg; Detrembleur, Christophe ULg et al

Conference (2009, June 23)

The organomodification of layered silicates via our patented supercritical CO2 ion-exchange process, enables the use of a large variety of surfactants, among which phosphonium and ammonium ions of the ... [more ▼]

The organomodification of layered silicates via our patented supercritical CO2 ion-exchange process, enables the use of a large variety of surfactants, among which phosphonium and ammonium ions of the very same structure. The as-obtained organoclays were melt blended with PA6 and the morphology as well as the fire properties of the nanocomposites were studied. With the same degree of nanodispersion, longer ignition times were observed with phosphonium-modified clays compared to ammonium-modified clays. [less ▲]

Detailed reference viewed: 63 (12 ULg)
Full Text
See detailProduction of polymer/clay nanocomposite foams with improved fire behaviour using supercritical fluid technology
Urbanczyk, Laetitia ULg; Calberg, Cédric ULg; Detrembleur, Christophe ULg et al

Poster (2009, June 19)

In this study, supercritical CO2 is successfully used as foaming agent to prepare poly(styrene-co-acrylonitrile) (SAN) foams containing a low amount of well-dispersed nanoclay (5wt%). This kind of ... [more ▼]

In this study, supercritical CO2 is successfully used as foaming agent to prepare poly(styrene-co-acrylonitrile) (SAN) foams containing a low amount of well-dispersed nanoclay (5wt%). This kind of nanofiller has an influence both on material cellular morphology and fire property. In fact, SAN foam filled with nanoclay has smaller cells and higher density compared to unfilled foam. Moreover, the nanocomposite foam burns more slowly and without producing any burning droplets, which is highly desirable when considering housing applications. [less ▲]

Detailed reference viewed: 100 (8 ULg)
Full Text
See detailDevelopment of multilayered chitosan-based nanofibers
Croisier, Florence ULg; Aqil, Abdelhafid ULg; Detrembleur, Christophe ULg et al

Poster (2009, June 14)

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method ... [more ▼]

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method for surface coating, based on electrostatic interactions. It enables the controllable deposition of a variety of polyelectrolytes including synthetic and natural materials, with designable layer structure, defined layer thickness and size. Electrospinning (ESP) allows the fabrication of polymer fibers ranging from nanometers to a few microns in diameter, depending on the polymer characteristics (a.o. molecular weight, solution viscosity and conductivity) and processing conditions (electric potential, distance between syringe-capillary and collection plate, concentration, flow rate). Mats of nanofibers produced by ESP display a very large surface area-to-volume ratio and high porosity with very small pore size. The nanometric scale of electrospun fibers also proves a positive effect on cellular growth, as fiber mats mimic extracellular matrix structure. The association of these two techniques with the use of biocompatible and biodegradable polymers such as chitosan, gives outstanding prospects in the field of biomedical applications, especially for the preparation of wound dressings, artificial skin or tissue engineering scaffolds. In the present study, a charged copolymer, poly(methylmethacrylate-block-methacrylic acid), was added to a poly(ε-caprolactone) or poly(D,L-lactide) solution before electrospinning in order to prepare surface charged nanofibers. Oppositely charged polyelectrolytes – chitosan and poly(styrene sulfonate) or hyaluronic acid – were then alternately deposited on these aliphatic polyester fiber “cores” using LBL method. The aliphatic polyester core was also removed selectively to confirm the growth of a multilayered shell, obtaining hollow fibers. [less ▲]

Detailed reference viewed: 164 (32 ULg)
Full Text
See detailDevelopment of multilayered chitosan-based nanofibers for tissue engineering
Croisier, Florence ULg; Aqil, Abdelhafid ULg; Detrembleur, Christophe ULg et al

Conference (2009, June 13)

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method ... [more ▼]

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method for surface coating, based on electrostatic interactions. It enables the controllable deposition of a variety of polyelectrolytes including synthetic and natural materials, with designable layer structure, defined layer thickness and size. Electrospinning (ESP) allows the fabrication of polymer fibers ranging from nanometers to a few microns in diameter, depending on the polymer characteristics (a.o. molecular weight, solution viscosity and conductivity) and processing conditions (electric potential, distance between syringe-capillary and collection plate, concentration, flow rate). Mats of nanofibers produced by ESP display a very large surface area-to-volume ratio and high porosity with very small pore size. The nanometric scale of electrospun fibers also proves a positive effect on cellular growth, as fiber mats mimic extracellular matrix structure. The association of these two techniques with the use of biocompatible and biodegradable polymers such as chitosan, gives outstanding prospects in the field of biomedical applications, especially for the preparation of wound dressings, artificial skin or tissue engineering scaffolds. In the present study, a charged copolymer, poly(methylmethacrylate-block-methacrylic acid), was added to a poly(ε-caprolactone) or poly(D,L-lactide) solution before electrospinning in order to prepare surface charged nanofibers. Oppositely charged polyelectrolytes – chitosan and poly(styrene sulfonate) or hyaluronic acid – were then alternately deposited on these aliphatic polyester fiber “cores” using LBL method. The aliphatic polyester core was also removed selectively to confirm the growth of a multilayered shell, obtaining hollow fibers. [less ▲]

Detailed reference viewed: 170 (22 ULg)
Full Text
See detailPreparation of living polymer microspheres by dispersion atom transfer radical polymerization in scCO2 using fluorinated macroligands
Grignard, Bruno ULg; Calberg, Cédric ULg; Jérôme, Christine ULg et al

Poster (2009, May 19)

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical ... [more ▼]

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical polymerization (CRP) in scCO2 has started to gain attention. Among all the controlled processes, Atom Transfer Radical Polymerization has emerged as a robust tool for the preparation of polymers with well-defined molecular weight, architecture and chain-end functionality. In a very recent paper, we reported the first efficient dispersion ATRP of methyl methacrylate (MMA) in scCO2 using a fluorinated polymeric ligand that had a dual role, i.e., the complexation of the copper salt and the stabilization of PMMA growing particles. In this contribution, we extended this new system to the dispersion ATRP of styrene, to the synthesis of diblock copolymers beads and the controlled synthesis of hyperbranched copolymers. Finally, because both ATRP and alkyne-azide Huisgen’s 1,3-dipolar cycloaddition relies on the use of a Cu(I) catalyst, synthesis of pyrene end-functionalized polymers by simultaneous dispersion ATRP and click reaction was also investigated in supercritical carbon dioxide. [less ▲]

Detailed reference viewed: 56 (8 ULg)
Peer Reviewed
See detailBioadhesive-Inspired AFM Tips
Willet, N.; Giamblanco, N.; Detrembleur, Christophe ULg et al

Conference (2009, May 14)

Detailed reference viewed: 5 (1 ULg)
Full Text
See detailFunctionalization of aliphatic polyesters by “click chemistry” in supercritical carbon dioxide
Grignard, Bruno ULg; Schmeits, Stephanie ULg; Riva, Raphaël ULg et al

Poster (2009, May 14)

The combination of ring-opening polymerization of lactones and “click” copper-catalyzed Huisgen’s [3+2] cycloaddition is known to be a very efficient strategy for the functionalization of poly(ε ... [more ▼]

The combination of ring-opening polymerization of lactones and “click” copper-catalyzed Huisgen’s [3+2] cycloaddition is known to be a very efficient strategy for the functionalization of poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA). Whenever the “click” reaction occurs in an organic solvent (THF or DMF), at relatively low temperature (35°C) and within short reaction time (2 hours), no significant degradation of polyester chains is detected. This strategy was implemented in previous works to graft alkynes substituted by different functional groups, such as hydroxyl, tertiary amines, acrylates or ammonium salts onto azide-functionalized PCL. Moreover, this approach was previously extended to the synthesis of grafted copolymers, either by the grafting of omega-alkyne-PEO onto azide-functionalized aliphatic PLA or PCL (“grafting onto” technique) either by grafting of an ATRP initiator followed by the polymerization of vinyl monomers, such as styrene (“grafting from” technique). These functionalized aliphatic polyesters are promising materials for the development of new biomedical devices. In this work, novel conditions were implemented for the “click” reaction in order to avoid the use of organic solvents and to limit the amount of catalyst remnants in functionalized aliphatic polyesters. Toward this end, if was found that the functionalization by “click” chemistry can be efficiently carried out in supercritical carbon dioxide rather than in THF or DMF. For that sake, it turned out necessary to synthesize a perfluorinated polyamine in order to solubilize the catalyst in supercritical carbon dioxide. Aliphatic polyesters are not soluble in supercritical carbon dioxide. Nevertheless, even under heterogeneous conditions, the functionalization of aliphatic polyesters by “click” chemistry is quantitative. Interestingly enough, no degradation was observed. Last but not least, the copper catalyst was easily removed by supercritical fluid extraction leading to a very low content of residual copper in the final copolyester. [less ▲]

Detailed reference viewed: 173 (18 ULg)
Full Text
See detailNovel Stealthy Gd(III)-DOTA/polymer Conjugates for Magnetic Resonance Imaging (MRI)
Grogna, Mathurin ULg; Bémelmans, Stéphanie ULg; Vanasschen, Christian ULg et al

Conference (2009, May 14)

Magnetic resonance imaging (MRI) is a routine diagnostic tool in modern clinical medicine. MRI has many advantages as a diagnostic imaging modality. It is noninvasive, delivers no radiation, and has ... [more ▼]

Magnetic resonance imaging (MRI) is a routine diagnostic tool in modern clinical medicine. MRI has many advantages as a diagnostic imaging modality. It is noninvasive, delivers no radiation, and has excellent (submillimeter) spatial resolution. Some Gadolinium(III) complexes are commonly used to enhance the contrast between adjacent tissues when the resolution/sensitivity of MRI is too low. Because free Gd3+ is very toxic in doses required for MRI, Gd(III) is chelated by poly(amino-carboxylate) such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Although DTPA/Gd3+ and DOTA/Gd3+ are water soluble, they have a very short circulation lifetime in blood, a low molecular weight and a short rotational time that make the contrast poor. To enhance the contrast, the Gd3+/complex doses have to be increased. In order to increase the sensitivity of the technique, while not increasing the concentration of the contrast agent, we were investigating different strategies to improve (i) the circulation lifetime in blood, (ii) the relaxation rate of Gd(III) (and consequently, the contrasting efficiency) and (iii) the targeting of the contrast agent. This presentation aims at reporting how a multifunctional (co)polymer can be designed and exploited for improving the contrasting ability and bioavailability of gadolinium-based complexes. [less ▲]

Detailed reference viewed: 99 (21 ULg)