References of "Detrembleur, Christophe"
     in
Bookmark and Share    
Full Text
See detailCobalt-mediated radical polymerization of vinyl monomers: investigation of cobalt-coordination
Debuigne, Antoine ULg; Piette, Yasmine ULg; Poli, Rinaldo et al

Poster (2009, September 17)

Controlled Radical Polymerization techniques have been developed to obtain well-defined architectures and to control polymer parameters. Among these systems is Cobalt-Mediated Radical Polymerization (CMRP ... [more ▼]

Controlled Radical Polymerization techniques have been developed to obtain well-defined architectures and to control polymer parameters. Among these systems is Cobalt-Mediated Radical Polymerization (CMRP), which is based on the reversible deactivation of the growing radical chains with a cobalt complex, the cobalt (II) bis(acetylacetonate). The interest of this system is not only due to its ability to control the polymerization of very reactive monomers such as vinyl acetate (VAc) and N-vinylpyrrolidone (NVP), but also its peculiar mechanism which exhibits two pathways depending on the polymerization conditions; a reversible termination process and a degenerative chain transfer mechanism. Furthermore, it has been showed that the Co-C bond strength and thus the polymerization are strongly influenced by the use of some additives, such as water, dimethylformamide, dimethylsulfoxide and pyridine, which coordinate the cobalt free site. In this presentation we report the use of a preformed alkyl-cobalt(III) adduct as initiator for the polymerization of various vinyl monomers of different reactivity (VAc, acrylonitrile,…) and on the effect of several ligands on their polymerization control. The preparation of novel block copolymers by CMRP will finally be presented. As a conclusion, cobalt-coordination appears today as a unique opportunity to adjust the Co-C bond strength and to push back the bounds of possibilities in terms of macromolecular engineering assisted by CMRP. [less ▲]

Detailed reference viewed: 89 (10 ULg)
Full Text
See detailNew perfulorinated macroligand for the implementation of dispersion atom transfer radical polymerization in sc CO2
Grignard, Bruno ULg; Calberg, Cédric ULg; Jérôme, Christine ULg et al

Poster (2009, September 17)

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical ... [more ▼]

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical polymerization (CRP) in scCO2 has started to gain attention. Among all the controlled processes, Atom Transfer Radical Polymerization has emerged as a robust tool for the preparation of polymers with well-defined molecular weight, architecture and chain-end functionality. In a very recent paper, we reported the first efficient dispersion ATRP of methyl methacrylate (MMA) in scCO2 using a fluorinated polymeric ligand that had a dual role, i.e., the complexation of the copper salt and the stabilization of PMMA growing particles. In this contribution, we extended this new system to the dispersion ATRP of styrene2, to the synthesis of diblock copolymers beads2 or to the preparation of PMMA particles by AGET ATRP. Because both ATRP and alkyne-azide Huisgen’s 1,3-dipolar cycloaddition relies on the use of a Cu(I) catalyst, synthesis of pyrene end-functionalized polymers by simultaneous dispersion ATRP and click reaction was also investigated in supercritical carbon dioxide. Finally, the immobilization of these new macroligands onto an inorganic support leads to the formation of pseudo-homogeneous catalyst that were successfully used to prepare CO2-soluble perfluorinated methacrylate and depending on the molecular weight and TEDETA composition of the macroligand, results obtained by supported ATRP without addition of Cu(II) as deactivator are identical to those obtained by homogeneous ATRP. [less ▲]

Detailed reference viewed: 52 (5 ULg)
Full Text
See detailIn situ formation of stabilizers for the implementation of dispersion nitroxide mediated polymerization of MMA in supercritical carbon dioxide
Grignard, Bruno ULg; Gigmes, Didier; Jérôme, Christine ULg et al

Poster (2009, September 17)

Controlled dispersion Nitroxide Mediated Polymerization (NMP) of methyl methacrylate (MMA) was successfully carried out for the first time in supercritical carbon dioxide (scCO2) in the presence of CO2 ... [more ▼]

Controlled dispersion Nitroxide Mediated Polymerization (NMP) of methyl methacrylate (MMA) was successfully carried out for the first time in supercritical carbon dioxide (scCO2) in the presence of CO2-philic perfluorinated surfactant that was generated “in situ”. The control of the MMA polymerization relies on the strategy developed by Charleux et al. that consists of using a SG1-based alkoxyamine, i.e. the block-builder, in the presence of small amount of styrene. In a first step, CO2 soluble polyheptadecafluorodecylacrylate was prepared in scCO2 using block-builder as an alkoxyamine. In a second step, nitroxide SG1 mediated dispersion polymerization of MMA was conducted at 70°C and 300 bar in the presence of 5 w% of SG1 terminated surfactant compared to the monomer. Different monomer to alkoxyamine molar ratios were investigated in order to target different molecular weights. In each case, the monomer conversion was high (>90 %), the experimental molecular weight was in good agreement with the theoretical value and the polydispersity was narrow (Mw/Mn ~1.2). Moreover, after depressurisation of the cell, PMMA was collected as a free flowing powder consisting of small sized microspheres. [less ▲]

Detailed reference viewed: 45 (8 ULg)
Full Text
See detailSynthesis of novel block copolymers by cobalt-mediated radical polymerization (CMRP) and isoprene-assisted radical coupling reaction (I-ARC)
Debuigne, Antoine ULg; Jérôme, Christine ULg; Detrembleur, Christophe ULg

Conference (2009, September 17)

Nowadays, progresses in medicine, biotechnology, microelectronic and many other fields are more and more sustained by the development of novel polymer materials with constantly improved properties and ... [more ▼]

Nowadays, progresses in medicine, biotechnology, microelectronic and many other fields are more and more sustained by the development of novel polymer materials with constantly improved properties and well-defined molecular parameters. In this context, we designed an innovative and very promising tool for macromolecular engineering. This technique, called Isoprene-Assisted Radical Coupling (I-ARC), allows to couple quantitatively polymer chains preformed by Cobalt-Mediated Radical Polymerization (CMRP), an efficient controlled radical polymerization system for vinyl acetate (VAc) and acrylonitrile (AN). Typically, addition of isoprene to well-defined polymers prepared by CMRP invariably leads to the quantitative coupling reaction of the chains, as assessed by the perfect doubling of the molar mass of the polymer. Importantly, the I-ARC reaction is not limited to macromolecules with low molar masses and homopolymers, contrary to the previously reported radical chains coupling methods. Indeed, when applied to diblock copolymers, I-ARC constitutes a straightforward approach for the synthesis of telechelic symmetrical ABA triblock copolymers, as illustrated by the preparation of poly(vinyl acetate)-b-poly(acrylonitrile)-b-poly(vinyl acetate) triblock copolymers and their derivatives. [less ▲]

Detailed reference viewed: 44 (2 ULg)
Full Text
See detailHerstellung von neuen strahlenhärtenden bindemitteln
Detrembleur, Christophe ULg; Weikard, Jan; Greszta-Franz, Dorota et al

Patent (2009)

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung neuartiger Bindemittel, die unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation ... [more ▼]

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung neuartiger Bindemittel, die unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation reagierende Gruppen und gegebenenfalls auch gegenüber Isocyanaten reaktive Gruppen aufweisen, sowie deren Verwendung in Beschichtungsmitteln. [less ▲]

Detailed reference viewed: 22 (3 ULg)
Full Text
See detailFoams of polyurethane/MWNT nanocomposites for efficient EMI reduction
Chen, Y. Y.; Urbanczyk, Laetitia ULg; Thomassin, Jean-Michel ULg et al

Poster (2009, September 16)

Detailed reference viewed: 58 (15 ULg)
Full Text
See detailPolymer composite material structures comprising carbon based conductive loads
Jérôme, Robert ULg; Pagnoulle, Christophe; Detrembleur, Christophe ULg et al

Patent (2009)

The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 wt% to 6 wt% carbon ... [more ▼]

The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 wt% to 6 wt% carbon based conductive loads, such as e.g. carbon nanotubes, dispersed in the foamed polymer matrix. The polymer composite material structure according to embodiments of the present invention shows good shielding and absorbing properties notwithstanding the low amount of carbon based conductive loads. The present invention furthermore provides a method for forming a polymer composite material structure comprising carbon based conductive loads. [less ▲]

Detailed reference viewed: 41 (2 ULg)
Full Text
See detailKey role of metal-coordination in cobalt-mediated radical polymerization of vinyl acetate
Debuigne, Antoine ULg; Poli, Rinaldo; Jérôme, Robert ULg et al

in Matyjaszewski, Krzysztof (Ed.) Controlled/living radical polymerization: progress in RAFT, DT, NMP & OMRP (2009)

Cobalt mediated radical polymerization (CMRP) of vinyl acetate (VAc) follows a reversible termination mechanism when initiated from a preformed alkyl-cobalt(III) complex. In these particular conditions ... [more ▼]

Cobalt mediated radical polymerization (CMRP) of vinyl acetate (VAc) follows a reversible termination mechanism when initiated from a preformed alkyl-cobalt(III) complex. In these particular conditions, CMRP functions as a stable free radical process and fine tuning of the Co-C bond strength becomes crucial. Increase of temperature and addition of molecules, such as water, dimethylformamide and dimethylsulfoxide, able to coordinate the cobalt complex appeared as efficient strategies to weaken the Co-C bond and thus to speed up the polymerization while maintaining a very good control of the VAc polymerization. The key role of metal-coordination was investigated by kinetic measurements combined with DFT calculations. [less ▲]

Detailed reference viewed: 79 (11 ULg)
Full Text
Peer Reviewed
See detailGold-loaded carbon nanoparticles from poly(vinyl alcohol)-b-poly(acrylonitrile) non-shell-cross-linked micelles
Bryaskova, Rayna; Willet, Nicolas ULg; Duwez, Anne-Sophie ULg et al

in Chemistry : An Asian Journal (2009), 4(8), 1338-1345

Herein we show that a new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) block copolymer dispersed in water can be easily loaded with gold nanoparticles by addition of chlorauric acid followed by ... [more ▼]

Herein we show that a new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) block copolymer dispersed in water can be easily loaded with gold nanoparticles by addition of chlorauric acid followed by reduction by sodium borohydride. After deposition of the so-loaded micelles onto a silicon wafer, followed by an appropriate thermal treatment, the poly(acrylonitrile) core of the micelles is carbonized, while the poly(vinyl alcohol) shell is completely decomposed and volatilized, leading to gold encapsulated in carbon nanoparticles. The morphology of the micelles is maintained during thermal treatment without requiring shell-cross-linking of the micelles prior to pyrolysis. [less ▲]

Detailed reference viewed: 114 (36 ULg)
Full Text
See detailLow-viscosity allophanates having actinically hardenable groups
Detrembleur, Christophe ULg; Weikard, Jan; Richter, Frank et al

Patent (2009)

Die vorliegende Erfindung betrifft niedrigviskose Umsetzungsprodukte von Polyisocyanaten, die aktivierte unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter ... [more ▼]

Die vorliegende Erfindung betrifft niedrigviskose Umsetzungsprodukte von Polyisocyanaten, die aktivierte unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation reagierende Gruppen enthalten, ein Verfahren zu ihrer Herstellung sowie deren Verwendung in Beschichtungsmitteln. [less ▲]

Detailed reference viewed: 53 (4 ULg)
Full Text
See detailUnusual quantitative (co)polymer chain coupling reaction based on isoprene and cobalt complexes
Debuigne, Antoine ULg; Jérôme, Christine ULg; Detrembleur, Christophe ULg

Conference (2009, July 15)

Nowadays, progresses in medicine, biotechnology, microelectronic and many other fields are more and more sustained by the development of novel polymer materials with constantly improved properties and ... [more ▼]

Nowadays, progresses in medicine, biotechnology, microelectronic and many other fields are more and more sustained by the development of novel polymer materials with constantly improved properties and well-defined molecular parameters. In this context, we designed an innovative and very promising tool for macromolecular engineering. This technique, called Isoprene-Assisted Radical Coupling (I-ARC), allows to couple quantitatively polymer chains preformed by Cobalt-Mediated Radical Polymerization (CMRP), an efficient controlled radical polymerization system for vinyl acetate (VAc) and acrylonitrile (AN). Typically, addition of isoprene to well-defined polymers prepared by CMRP invariably leads to the quantitative coupling reaction of the chains, as assessed by the perfect doubling of the molar mass of the polymer. Importantly, the I-ARC reaction is not limited to macromolecules with low molar masses and homopolymers, contrary to the previously reported radical chains coupling methods. Indeed, when applied to diblock copolymers, I-ARC constitutes a straightforward approach for the synthesis of telechelic symmetrical ABA triblock copolymers, as illustrated by the preparation of poly(vinyl acetate)-b-poly(acrylonitrile)-bpoly(vinyl acetate) triblock copolymers and their derivatives. [less ▲]

Detailed reference viewed: 55 (9 ULg)
Full Text
See detailProduction of novel radiation-hardening binding agent
Detrembleur, Christophe ULg; Weikard, Jan; Fischer, Wolfgang et al

Patent (2009)

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung neuartiger Bindemittel, die unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation ... [more ▼]

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung neuartiger Bindemittel, die unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation reagierende Gruppen und gegebenenfalls auch gegenüber Isocyanaten reaktive Gruppen aufweisen, sowie deren Verwendung in Beschichtungsmitteln. [less ▲]

Detailed reference viewed: 37 (3 ULg)
See detailOrganoclays prepared in supercritical CO2: implication of onium stability on the properties of PA6 nanocomposites
Naveau, Elodie ULg; Calberg, Cédric ULg; Detrembleur, Christophe ULg et al

Conference (2009, June 23)

The organomodification of layered silicates via our patented supercritical CO2 ion-exchange process, enables the use of a large variety of surfactants, among which phosphonium and ammonium ions of the ... [more ▼]

The organomodification of layered silicates via our patented supercritical CO2 ion-exchange process, enables the use of a large variety of surfactants, among which phosphonium and ammonium ions of the very same structure. The as-obtained organoclays were melt blended with PA6 and the morphology as well as the fire properties of the nanocomposites were studied. With the same degree of nanodispersion, longer ignition times were observed with phosphonium-modified clays compared to ammonium-modified clays. [less ▲]

Detailed reference viewed: 65 (12 ULg)
Full Text
See detailProduction of polymer/clay nanocomposite foams with improved fire behaviour using supercritical fluid technology
Urbanczyk, Laetitia ULg; Calberg, Cédric ULg; Detrembleur, Christophe ULg et al

Poster (2009, June 19)

In this study, supercritical CO2 is successfully used as foaming agent to prepare poly(styrene-co-acrylonitrile) (SAN) foams containing a low amount of well-dispersed nanoclay (5wt%). This kind of ... [more ▼]

In this study, supercritical CO2 is successfully used as foaming agent to prepare poly(styrene-co-acrylonitrile) (SAN) foams containing a low amount of well-dispersed nanoclay (5wt%). This kind of nanofiller has an influence both on material cellular morphology and fire property. In fact, SAN foam filled with nanoclay has smaller cells and higher density compared to unfilled foam. Moreover, the nanocomposite foam burns more slowly and without producing any burning droplets, which is highly desirable when considering housing applications. [less ▲]

Detailed reference viewed: 102 (8 ULg)
Full Text
See detailDevelopment of multilayered chitosan-based nanofibers
Croisier, Florence ULg; Aqil, Abdelhafid ULg; Detrembleur, Christophe ULg et al

Poster (2009, June 14)

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method ... [more ▼]

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method for surface coating, based on electrostatic interactions. It enables the controllable deposition of a variety of polyelectrolytes including synthetic and natural materials, with designable layer structure, defined layer thickness and size. Electrospinning (ESP) allows the fabrication of polymer fibers ranging from nanometers to a few microns in diameter, depending on the polymer characteristics (a.o. molecular weight, solution viscosity and conductivity) and processing conditions (electric potential, distance between syringe-capillary and collection plate, concentration, flow rate). Mats of nanofibers produced by ESP display a very large surface area-to-volume ratio and high porosity with very small pore size. The nanometric scale of electrospun fibers also proves a positive effect on cellular growth, as fiber mats mimic extracellular matrix structure. The association of these two techniques with the use of biocompatible and biodegradable polymers such as chitosan, gives outstanding prospects in the field of biomedical applications, especially for the preparation of wound dressings, artificial skin or tissue engineering scaffolds. In the present study, a charged copolymer, poly(methylmethacrylate-block-methacrylic acid), was added to a poly(ε-caprolactone) or poly(D,L-lactide) solution before electrospinning in order to prepare surface charged nanofibers. Oppositely charged polyelectrolytes – chitosan and poly(styrene sulfonate) or hyaluronic acid – were then alternately deposited on these aliphatic polyester fiber “cores” using LBL method. The aliphatic polyester core was also removed selectively to confirm the growth of a multilayered shell, obtaining hollow fibers. [less ▲]

Detailed reference viewed: 169 (32 ULg)
Full Text
See detailDevelopment of multilayered chitosan-based nanofibers for tissue engineering
Croisier, Florence ULg; Aqil, Abdelhafid ULg; Detrembleur, Christophe ULg et al

Conference (2009, June 13)

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method ... [more ▼]

By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method for surface coating, based on electrostatic interactions. It enables the controllable deposition of a variety of polyelectrolytes including synthetic and natural materials, with designable layer structure, defined layer thickness and size. Electrospinning (ESP) allows the fabrication of polymer fibers ranging from nanometers to a few microns in diameter, depending on the polymer characteristics (a.o. molecular weight, solution viscosity and conductivity) and processing conditions (electric potential, distance between syringe-capillary and collection plate, concentration, flow rate). Mats of nanofibers produced by ESP display a very large surface area-to-volume ratio and high porosity with very small pore size. The nanometric scale of electrospun fibers also proves a positive effect on cellular growth, as fiber mats mimic extracellular matrix structure. The association of these two techniques with the use of biocompatible and biodegradable polymers such as chitosan, gives outstanding prospects in the field of biomedical applications, especially for the preparation of wound dressings, artificial skin or tissue engineering scaffolds. In the present study, a charged copolymer, poly(methylmethacrylate-block-methacrylic acid), was added to a poly(ε-caprolactone) or poly(D,L-lactide) solution before electrospinning in order to prepare surface charged nanofibers. Oppositely charged polyelectrolytes – chitosan and poly(styrene sulfonate) or hyaluronic acid – were then alternately deposited on these aliphatic polyester fiber “cores” using LBL method. The aliphatic polyester core was also removed selectively to confirm the growth of a multilayered shell, obtaining hollow fibers. [less ▲]

Detailed reference viewed: 175 (22 ULg)
Full Text
See detailPreparation of living polymer microspheres by dispersion atom transfer radical polymerization in scCO2 using fluorinated macroligands
Grignard, Bruno ULg; Calberg, Cédric ULg; Jérôme, Christine ULg et al

Poster (2009, May 19)

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical ... [more ▼]

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical polymerization (CRP) in scCO2 has started to gain attention. Among all the controlled processes, Atom Transfer Radical Polymerization has emerged as a robust tool for the preparation of polymers with well-defined molecular weight, architecture and chain-end functionality. In a very recent paper, we reported the first efficient dispersion ATRP of methyl methacrylate (MMA) in scCO2 using a fluorinated polymeric ligand that had a dual role, i.e., the complexation of the copper salt and the stabilization of PMMA growing particles. In this contribution, we extended this new system to the dispersion ATRP of styrene, to the synthesis of diblock copolymers beads and the controlled synthesis of hyperbranched copolymers. Finally, because both ATRP and alkyne-azide Huisgen’s 1,3-dipolar cycloaddition relies on the use of a Cu(I) catalyst, synthesis of pyrene end-functionalized polymers by simultaneous dispersion ATRP and click reaction was also investigated in supercritical carbon dioxide. [less ▲]

Detailed reference viewed: 56 (8 ULg)