References of "Detrembleur, Christophe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPatenting activity in manufacturing organoclays for nanocomposite applications
Naveau, Elodie ULg; Detrembleur, Christophe ULg; Jérôme, Christine ULg et al

in Recent Patents on Materials Science (2009), 2(1), 43-49

For the last two decades, intensive research has been focused on developing reinforced polymers with incorporation of nanometric fillers. Amongst the different types of nanofillers, those based on layered ... [more ▼]

For the last two decades, intensive research has been focused on developing reinforced polymers with incorporation of nanometric fillers. Amongst the different types of nanofillers, those based on layered silicates (commonly known as clays), have been most widely investigated. Dispersing clay sheets on a nanoscopic scale (so-called exfoliation) indeed allows materials with enhanced thermal, mechanical, rheological, flame retardancy and barrier properties to be produced. However, the nanocomposite performances are strongly dependent upon the extent of clay exfoliation. In order to enhance the compatibility between the pristine clay, hydrophilic, and the polymer, hydrophobic, and to achieve a good delamination of the nanolayers, an organo-modification of the clay is most usually necessary. This mini-review will provide an outline of patenting activity in the field of manufacturing organoclays through ionic exchange. The variety of organic modifiers and the diverse processing techniques will be detailed, aiming to extract the most relevant organoclays for successful nanocomposite formation at industrial scale. [less ▲]

Detailed reference viewed: 87 (6 ULg)
Full Text
See detailDesign of perfluorinated macroligand for the implementation of atom transfer radical polymerization in supercritical carbon dioxide
Grignard, Bruno ULg; Jérôme, Christine ULg; Calberg, Cédric ULg et al

Conference (2008, November 28)

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical ... [more ▼]

Due to an increasing need for polymers with well-defined architecture (diblock-, graft-, star-shaped copolymers), molecular weight and/or functional end-groups, the use of controlled radical polymerization (CRP) in scCO2 has started to gain attention. Among all the controlled processes, Atom Transfer Radical Polymerization has emerged as a robust tool for the preparation of polymers with well-defined molecular weight, architecture and chain-end functionality. The goal of the research relies on the development of ATRP of vinyl monomers in scCO2. Perfluorinated polymethacrylate, i.e. poly2,2,2-trifluoroethyl methacrylate (PFMA), was successfully prepared by homogenous ATRP using a polymeric ligand in order to complex the copper catalyst. CO2-soluble poly(2,2,2-trifluoroethylmethacrylate) was also prepared in supercritical CO2 by supported ATRP using a “pseudo-homogeneous” catalyst consisting of copper (I) ligated by macroligand immobilized onto an inorganic support, that results in polymers with well defined molecular weight and low polydispersity. The first efficient dispersion ATRP of methyl methacrylate (MMA) in scCO2 using a fluorinated polymeric ligand that had a dual role, i.e., the complexation of the copper salt and the stabilization of PMMA growing particles was also reported and the concept of dispersion ATRP was extended to the dispersion ATRP of styrene, to the synthesis of diblock copolymers beads using PMMA beads as macroinitiators, leading to (co)polymers with predictable molecular weight and narrow polydispersity. Finally, because both ATRP and alkyne-azide Huisgen’s 1,3-dipolar cycloaddition relies on the use of a Cu(I) catalyst, synthesis of pyrene end-functionalized polymers by simultaneous dispersion ATRP and click reaction was also investigated in supercritical carbon dioxide, leading to the formation of PMMA of well defined characteristics that was collected as fluorescent micropheres. [less ▲]

Detailed reference viewed: 69 (7 ULg)
Full Text
Peer Reviewed
See detailSynthesis of highly functionalized poly(alkyl cyanoacrylate) nanoparticles by means of click chemistry
Nicolas, Julien; Bensaid, Fehti; Desmaële, Didier et al

in Macromolecules (2008), 41(22), 8418-8428

A general methodology was proposed to prepare highly functionalized poly(alkyl cyanoacrylate) nanoparticles by means of Huisgen 1,3-dipolar cyclo-addition, the so-called click chemistry. To achieve this ... [more ▼]

A general methodology was proposed to prepare highly functionalized poly(alkyl cyanoacrylate) nanoparticles by means of Huisgen 1,3-dipolar cyclo-addition, the so-called click chemistry. To achieve this goal, different protocols were investigated to obtain azidopoly(ethylene glycol) cyanoacetate of variable molar mass, followed by a Knoevenagel condensation−Michael addition reaction with hexadecyl cyanoacetate to produce a poly[(hexadecyl cyanoacrylate)-co-azidopoly(ethylene glycol) cyanoacrylate] (P(HDCA-co-N3PEGCA)) copolymer, displaying azide functionalities at the extremity of the PEG chains. As a proof of concept, model alkynes were quantitatively coupled either to the P(HDCA-co-N3PEGCA) copolymers in homogeneous medium followed by self-assembly in aqueous solution or directly at the surface of the preformed P(HDCA-co-N3PEGCA) nanoparticles in aqueous dispersed medium, both yielding highly functionalized nanoparticles. This versatile approach, using alkyl cyanoacrylate derivatives, opened the door to ligand-functionalized and biodegradable nanoparticles with “stealth” properties for biomedical applications. [less ▲]

Detailed reference viewed: 94 (10 ULg)
Full Text
Peer Reviewed
See detailDispersion Atom Transfer Radical Polymerization of vinyl monomers in supercritical carbon dioxide
Grignard, Bruno ULg; Jérôme, Christine ULg; Calberg, Cédric ULg et al

in Macromolecules (2008), 41(22), 8575-8563

Controlled dispersion atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was successfully carried out in supercritical carbon dioxide in the presence of aminated fluoropolymers ... [more ▼]

Controlled dispersion atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was successfully carried out in supercritical carbon dioxide in the presence of aminated fluoropolymers. These materials played the dual role of macroligand for the copper bromide and also steric stabilizer to support formation of polymer microspheres. The livingness of the PMMA beads was confirmed by the one-pot two-step PMMA chain extension and the synthesis of poly(methyl methacrylate)-b-poly(2,2,2-trifluoroethyl methacrylate) (PMMA-b-PFMA) diblock copolymer in scCO2. Successful activator generated by electron transfer (AGET) for ATRP of MMA, using tin ethylhexanoate as a reducing agent, is also discussed, and the concept of dispersion ATRP of MMA was successfully extended to the controlled dispersion polymerization of styrene by ATRP leading to the formation of PS microparticles. Finally, due to the high solubility of the catalyst in scCO2, the purification of PMMA was investigated by supercritical fluid extraction, leading to the preparation of PMMA beads with low residual catalyst traces. [less ▲]

Detailed reference viewed: 75 (8 ULg)
See detailFoams of polycaprolactone/MWNT nanocomposites for efficient EMI shielding
Thomassin, Jean-Michel ULg; Pagnoulle, Christophe; Bednarz, Lukasz et al

Conference (2008, September 09)

Detailed reference viewed: 24 (3 ULg)
Full Text
Peer Reviewed
See detailTemperature responsive complex coacervate core micelles with a PEO and PNIPAAm corona
Voets, Ilya K.; Moll, Puck M.; Aqil, Abdelhafid et al

in Journal of Physical Chemistry B (2008), 112(35), 10833-10840

In aqueous solutions at room temperature, poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP38-b-PEO211 and poly(acrylic acid)-block-poly(isopropyl acrylamide), PAA55-b-PNIPAAm88 ... [more ▼]

In aqueous solutions at room temperature, poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP38-b-PEO211 and poly(acrylic acid)-block-poly(isopropyl acrylamide), PAA55-b-PNIPAAm88 spontaneously coassemble into micelles, consisting of a mixed P2MVP/PAA polyelectrolyte core and a PEO/PNIPAAm corona. These so-called complex coacervate core micelles (C3Ms), also known as polyion complex (PIC) micelles, block ionomer complexes (BIC), and interpolyelectrolyte complexes (IPEC), respond to changes in solution pH and ionic strength as their micellization is electrostatically driven. Furthermore, the PNIPAAm segments ensure temperature responsiveness as they exhibit lower critical solution temperature (LCST) behavior. Light scattering, two-dimensional 1H NMR nuclear Overhauser effect spectrometry, and cryogenic transmission electron microscopy experiments were carried out to investigate micellar structure and solution behavior at 1 mM NaNO3, T = 25, and 60 °C, that is, below and above the LCST of 32 °C. At T = 25 °C, C3Ms were observed for 7 < pH < 12 and NaNO3 concentrations below 105 mM. The PEO and PNIPAAm chains appear to be (randomly) mixed within the micellar corona. At T = 60 °C, onion-like complexes are formed, consisting of a PNIPAAm inner core, a mixed P2MVP/PAA complex coacervate shell, and a PEO corona. [less ▲]

Detailed reference viewed: 36 (0 ULg)
Full Text
See detailLow-viscosity allophanates containing actinically curable groups
Detrembleur, Christophe ULg; Weikard, Jan; Greszta-Franz, Dorota et al

Patent (2008)

A process for preparing binders containing allophanate groups which contain, at the oxygen atom of the allophanate group that is bonded via two single bonds, organic radicals with activated groups capable ... [more ▼]

A process for preparing binders containing allophanate groups which contain, at the oxygen atom of the allophanate group that is bonded via two single bonds, organic radicals with activated groups capable of participating in a polymerization reaction with ethylenically unsaturated compounds on exposure to actinic radiation; the process includes reacting A) one or more compounds containing uretdione groups with B) one or more OH-functional compounds which contain groups capable of participating in a polymerization reaction with ethylenically unsaturated compounds on exposure to actinic radiation, and C) optionally further NCO-reactive compounds, and D) in the presence of one or more compounds containing phenoxide groups, as catalysts.; The binders can be used in preparing coatings, coating materials, coating compositions, adhesives, printing inks, casting resins, dental compounds, sizes, photoresists, stereolithography systems, resins for composite materials and sealants. [less ▲]

Detailed reference viewed: 25 (4 ULg)
Full Text
Peer Reviewed
See detailJoint theoretical experimental investigation of the electron spin resonance spectra of nitroxyl radicals: application to intermediates in in situ nitroxide mediated polymerization (in situ NMP) of vinyl monomers
Zarycz, Natalia; Botek, Edith; Champagne, Benoit et al

in Journal of Physical Chemistry B (2008), 112(34), 10432-10442

Density functional theory (DFT) calculations have been performed to address the structure of nitroxide intermediates in controlled radical polymerization. In a preliminary step, the reliability of ... [more ▼]

Density functional theory (DFT) calculations have been performed to address the structure of nitroxide intermediates in controlled radical polymerization. In a preliminary step, the reliability of different theoretical methods has been substantiated by comparing calculated hyperfine coupling constants (HFCCs) to experimental data for a set of linear and cyclic alkylnitroxyl radicals. Considering this tested approach, the nature of different nitroxides has been predicted or confirmed for (a) the reaction of C-phenyl-N-tert-butylnitrone and AIBN, (b) N-tert-butyl-α-isopropylnitrone and benzoyl peroxide, (c) tert-butyl methacrylate polymerization in the presence of sodium nitrite as mediator, and (d) for the reaction of a nitroso compound with AIBN. Values of HFCC experimentally determined have been confirmed by DFT calculations. [less ▲]

Detailed reference viewed: 30 (4 ULg)
Full Text
Peer Reviewed
See detailCobalt-mediated radical polymerization of acrylonitrile: Kinetics investigations and DFT calculations
Debuigne, Antoine ULg; Michaux, Catherine; Jérôme, Christine ULg et al

in Chemistry : A European Journal (2008), 14(25), 7623-7637

The successful controlled homopolymerization of acrylonitrile (AN) by cobalt-mediated radical polymerization (CMRP) is reported for the first time. As a rule, initiation of the polymerization was carried ... [more ▼]

The successful controlled homopolymerization of acrylonitrile (AN) by cobalt-mediated radical polymerization (CMRP) is reported for the first time. As a rule, initiation of the polymerization was carried out starting from a conventional azo-initiator (V-70) in the presence of bis(acetylacetonato)cobalt(II) ([Co(acac)2]) but also by using organocobalt(III) adducts. Molar concentration ratios of the reactants, the temperature, and the solvent were tuned, and the effect of these parameters on the course of the polymerization is discussed in detail. The best level of control was observed when the AN polymerization was initiated by an organocobalt(III) adduct at 0 °C in dimethyl sulfoxide. Under these conditions, poly(acrylonitrile) with a predictable molar mass and molar mass distribution as low as 1.1 was prepared. A combination of kinetic data, X-ray analyses, and DFT calculations were used to rationalize the results and to draw conclusions on the key role played by the solvent molecules in the process. These important mechanistic insights also permit an explanation of the unexpected solvent effect that allows the preparation of well-defined poly(vinyl acetate)-b-poly(acrylonitrile) by CMRP. [less ▲]

Detailed reference viewed: 69 (5 ULg)
Full Text
Peer Reviewed
See detailSynthesis of PCL/clay masterbatches in supercritical carbon dioxide
Urbanczyk, Laetitia ULg; Calberg, Cédric ULg; Stassin, Fabrice et al

in Polymer (2008), 49(18), 3979-3986

Pre-exfoliated nanoclays were prepared through a masterbatch process using supercritical carbon dioxide as solvent and poly(epsilon-caprolactone) as organic matrix. In situ polymerization of epsilon ... [more ▼]

Pre-exfoliated nanoclays were prepared through a masterbatch process using supercritical carbon dioxide as solvent and poly(epsilon-caprolactone) as organic matrix. In situ polymerization of epsilon-caprolactone in the presence of large amount of clay was conducted to obtain these easily dispersible nanoclays, collected as a dry and fine powder after reaction. Dispersion of these pre-exfoliated nanoclays in chlorinated polyethylene was also investigated. All the results confirm the specific advantages of supercritical CO2 towards conventional solvents for filler modification. [less ▲]

Detailed reference viewed: 36 (5 ULg)
Full Text
Peer Reviewed
See detailPoly(caprolactone)/clay masterbatches prepared in supercritical CO2 as efficient clay delamination promoters in poly(styrene-co-acrylonitrile)
Urbanczyk, Laetitia ULg; Calberg, Cédric ULg; Benali, Samira et al

in Journal of Materials Chemistry (2008), 18(39), 4623-4630

Poly(styrene-co-acrylonitrile) (SAN)/clay nanocomposites with a high degree of clay exfoliation were prepared upon melt blending of pre-exfoliated poly(-caprolactone) (PCL)/organoclay masterbatches in a ... [more ▼]

Poly(styrene-co-acrylonitrile) (SAN)/clay nanocomposites with a high degree of clay exfoliation were prepared upon melt blending of pre-exfoliated poly(-caprolactone) (PCL)/organoclay masterbatches in a Brabender-type internal mixer. These highly filled masterbatches were synthesized by a one-pot process using supercritical carbon dioxide as a polymerization medium. During their dispersion into SAN, PCL is expected to act as a compatibilizer at the polymer–clay interface as it is miscible with the host matrix under these conditions. Reference nanocomposites based on direct melt mixing of the commercial organoclay were also prepared for the sake of comparison. The superiority of the masterbatch route in term of clay delamination efficiency has been evidenced by XRD analysis, visual and TEM observations. The effect of the nanocomposite morphology on the polymer properties was then investigated. A substantial improvement of the fire behaviour and a decrease in gas permeability have been observed for the nanocomposite containing the highest level of clay exfoliation, accompanied with a higher brittleness as evidenced by traction and impact tests. [less ▲]

Detailed reference viewed: 144 (7 ULg)