References of "Desaive, Thomas"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailReducing the impact of insulin sensitivity variability on glycaemic outcomes using separate stochastic models within the STAR glycaemic protocol.
Thomas, Felicity; Pretty, Christopher G.; Fisk, Liam et al

in Biomedical engineering online (2014), 13

BACKGROUND: The metabolism of critically ill patients evolves dynamically over time. Post critical insult, levels of counter-regulatory hormones are significantly elevated, but decrease rapidly over the ... [more ▼]

BACKGROUND: The metabolism of critically ill patients evolves dynamically over time. Post critical insult, levels of counter-regulatory hormones are significantly elevated, but decrease rapidly over the first 12-48 hours in the intensive care unit (ICU). These hormones have a direct physiological impact on insulin sensitivity (SI). Understanding the variability of SI is important for safely managing glycaemic levels and understanding the evolution of patient condition. The objective of this study is to assess the evolution of SI over the first two days of ICU stay, and using this data, propose a separate stochastic model to reduce the impact of SI variability during glycaemic control using the STAR glycaemic control protocol. METHODS: The value of SI was identified hourly for each patient using a validated physiological model. Variability of SI was then calculated as the hour-to-hour percentage change in SI. SI was examined using 6 hour blocks of SI to display trends while mitigating the effects of noise. To reduce the impact of SI variability on achieving glycaemic control a new stochastic model for the most variable period, 0-18 hours, was generated. Virtual simulations were conducted using an existing glycaemic control protocol (STAR) to investigate the clinical impact of using this separate stochastic model during this period of increased metabolic variability. RESULTS: For the first 18 hours, over 80% of all SI values were less than 0.5 x 10(-3) L/mU x min, compared to 65% for >18 hours. Using the new stochastic model for the first 18 hours of ICU stay reduced the number of hypoglycaemic measurements during virtual trials. For time spent below 4.4, 4.0, and 3.0 mmol/L absolute reductions of 1.1%, 0.8% and 0.1% were achieved, respectively. No severe hypoglycaemic events (BG < 2.2 mmol/L) occurred for either case. CONCLUSIONS: SI levels increase significantly, while variability decreases during the first 18 hours of a patients stay in ICU. Virtual trials, using a separate stochastic model for this period, demonstrated a reduction in variability and hypoglycaemia during the first 18 hours without adversely affecting the overall level of control. Thus, use of multiple models can reduce the impact of SI variability during model-based glycaemic control. [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
Peer Reviewed
See detailWhen the value of gold is zero.
Chase, J. Geoffrey; Moeller, Knut; Shaw, Geoffrey M. et al

in BMC research notes (2014), 7

This manuscript presents the concerns around the increasingly common problem of not having readily available or useful "gold standard" measurements. This issue is particularly important in critical care ... [more ▼]

This manuscript presents the concerns around the increasingly common problem of not having readily available or useful "gold standard" measurements. This issue is particularly important in critical care where many measurements used in decision making are surrogates of what we would truly wish to use. However, the question is broad, important and applicable in many other areas.In particular, a gold standard measurement often exists, but is not clinically (or ethically in some cases) feasible. The question is how does one even begin to develop new measurements or surrogates if one has no gold standard to compare with?We raise this issue concisely with a specific example from mechanical ventilation, a core bread and butter therapy in critical care that is also a leading cause of length of stay and cost of care. Our proposed solution centers around a hierarchical validation approach that we believe would ameliorate ethics issues around radiation exposure that make current gold standard measures clinically infeasible, and thus provide a pathway to create a (new) gold standard. [less ▲]

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailContinuous stroke volume estimation from aortic pressure using zero dimensional cardiovascular model: proof of concept study from porcine experiments.
Kamoi, Shun; Pretty, Christopher; Docherty, Paul et al

in PloS one (2014), 9(7), 102476

INTRODUCTION: Accurate, continuous, left ventricular stroke volume (SV) measurements can convey large amounts of information about patient hemodynamic status and response to therapy. However, direct ... [more ▼]

INTRODUCTION: Accurate, continuous, left ventricular stroke volume (SV) measurements can convey large amounts of information about patient hemodynamic status and response to therapy. However, direct measurements are highly invasive in clinical practice, and current procedures for estimating SV require specialized devices and significant approximation. METHOD: This study investigates the accuracy of a three element Windkessel model combined with an aortic pressure waveform to estimate SV. Aortic pressure is separated into two components capturing; 1) resistance and compliance, 2) characteristic impedance. This separation provides model-element relationships enabling SV to be estimated while requiring only one of the three element values to be known or estimated. Beat-to-beat SV estimation was performed using population-representative optimal values for each model element. This method was validated using measured SV data from porcine experiments (N = 3 female Pietrain pigs, 29-37 kg) in which both ventricular volume and aortic pressure waveforms were measured simultaneously. RESULTS: The median difference between measured SV from left ventricle (LV) output and estimated SV was 0.6 ml with a 90% range (5th-95th percentile) -12.4 ml-14.3 ml. During periods when changes in SV were induced, cross correlations in between estimated and measured SV were above R = 0.65 for all cases. CONCLUSION: The method presented demonstrates that the magnitude and trends of SV can be accurately estimated from pressure waveforms alone, without the need for identification of complex physiological metrics where strength of correlations may vary significantly from patient to patient. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailContinuous glucose control in the ICU: report of a 2013 round table meeting.
Wernerman, Jan; Desaive, Thomas ULg; Finfer, Simon et al

in Critical care (London, England) (2014), 18(3), 226

Achieving adequate glucose control in critically ill patients is a complex but important part of optimal patient management. Until relatively recently, intermittent measurements of blood glucose have been ... [more ▼]

Achieving adequate glucose control in critically ill patients is a complex but important part of optimal patient management. Until relatively recently, intermittent measurements of blood glucose have been the only means of monitoring blood glucose levels. With growing interest in the possible beneficial effects of continuous over intermittent monitoring and the development of several continuous glucose monitoring (CGM) systems, a round table conference was convened to discuss and, where possible, reach consensus on the various aspects related to glucose monitoring and management using these systems. In this report, we discuss the advantages and limitations of the different types of devices available, the potential advantages of continuous over intermittent testing, the relative importance of trend and point accuracy, the standards necessary for reporting results in clinical trials and for recognition by official bodies, and the changes that may be needed in current glucose management protocols as a result of a move towards increased use of CGM. We close with a list of the research priorities in this field, which will be necessary if CGM is to become a routine part of daily practice in the management of critically ill patients. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailA patient-specific airway branching model for mechanically ventilated patients.
Damanhuri, Nor Salwa; Docherty, Paul D.; Chiew, Yeong Shiong et al

in Computational and mathematical methods in medicine (2014), 2014

Background. Respiratory mechanics models have the potential to guide mechanical ventilation. Airway branching models (ABMs) were developed from classical fluid mechanics models but do not provide accurate ... [more ▼]

Background. Respiratory mechanics models have the potential to guide mechanical ventilation. Airway branching models (ABMs) were developed from classical fluid mechanics models but do not provide accurate models of in vivo behaviour. Hence, the ABM was improved to include patient-specific parameters and better model observed behaviour (ABMps). Methods. The airway pressure drop of the ABMps was compared with the well-accepted dynostatic algorithm (DSA) in patients diagnosed with acute respiratory distress syndrome (ARDS). A scaling factor (alpha) was used to equate the area under the pressure curve (AUC) from the ABMps to the AUC of the DSA and was linked to patient state. Results. The ABMps recorded a median alpha value of 0.58 (IQR: 0.54-0.63; range: 0.45-0.66) for these ARDS patients. Significantly lower alpha values were found for individuals with chronic obstructive pulmonary disease (P < 0.001). Conclusion. The ABMps model allows the estimation of airway pressure drop at each bronchial generation with patient-specific physiological measurements and can be generated from data measured at the bedside. The distribution of patient-specific alpha values indicates that the overall ABM can be readily improved to better match observed data and capture patient condition. [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
Peer Reviewed
See detailInterstitial insulin kinetic parameters for a 2-compartment insulin model with saturable clearance
Pretty, Christopher G.; Le Compte, Aaron; Penning, Sophie ULg et al

in Computer Methods & Programs in Biomedicine (2014)

Detailed reference viewed: 15 (2 ULg)
Full Text
Peer Reviewed
See detailEarly detection of abnormal left ventricular relaxation in acute myocardial ischemia with a quadratic model.
MORIMONT, Philippe ULg; Pironet, Antoine ULg; Desaive, Thomas ULg et al

in Medical engineering & physics (2014)

AIMS: The time constant of left ventricular (LV) relaxation derived from a monoexponential model is widely used as an index of LV relaxation rate, although this model does not reflect the non-uniformity ... [more ▼]

AIMS: The time constant of left ventricular (LV) relaxation derived from a monoexponential model is widely used as an index of LV relaxation rate, although this model does not reflect the non-uniformity of ventricular relaxation. This study investigates whether the relaxation curve can be better fitted with a "quadratic" model than with the "conventional" monoexponential model and if changes in the LV relaxation waveform due to acute myocardial ischemia could be better detected with the quadratic model. METHODS AND RESULTS: Isovolumic relaxation was assessed with quadratic and conventional models during acute myocardial ischemia performed in 6 anesthetized pigs. Mathematical development indicates that one parameter (Tq) of the quadratic model reflects the rate of LV relaxation, while the second parameter (K) modifies the shape of the relaxation curve. Analysis of experimental data obtained in anesthetized pigs showed that the shape of LV relaxation consistently deviates from the conventional monoexponential decay. During the early phase of acute myocardial ischemia, the rate and non-uniformity of LV relaxation, assessed with the quadratic function, were significantly enhanced. Tq increased by 16% (p<0.001) and K increased by 12% (p<0.001) within 30 and 60min, respectively, after left anterior descending (LAD) coronary artery occlusion. However, no significant changes were observed with the conventional monoexponential decay within 60min of ischemia. CONCLUSIONS: The quadratic model better fits LV isovolumic relaxation than the monoexponential model and can detect early changes in relaxation due to acute myocardial ischemia that are not detectable with conventional methods. [less ▲]

Detailed reference viewed: 14 (3 ULg)
Full Text
Peer Reviewed
See detailImpact of sensor and measurement timing errors on model-based insulin sensitivity
Pretty, Christopher ULg; Signal, Matthew; Fisk, Liam et al

in Computer Methods & Programs in Biomedicine (2013)

Detailed reference viewed: 16 (2 ULg)
Full Text
Peer Reviewed
See detailInsulin Sensitivity during Hypothermia in Critically Ill Patients
Sah Pri, Azurahisham; Chase, J. Geoffrey; Le Compte, Aaron J. et al

Poster (2013, September)

Detailed reference viewed: 26 (4 ULg)
Full Text
Peer Reviewed
See detailEffects of Neurally Adjusted Ventilatory Assist (NAVA) levels in non-invasive ventilated patients: titrating NAVA levels with electric diaphragmatic activity and tidal volume matching
Chiew, YS; Chase, JG; LAMBERMONT, Bernard ULg et al

in BioMedical Engineering OnLine (2013)

BACKGROUND: Neurally adjusted ventilatory assist (NAVA) delivers pressure in proportion to diaphragm electrical activity (Eadi). However, each patient responds differently to NAVA levels. This study aims ... [more ▼]

BACKGROUND: Neurally adjusted ventilatory assist (NAVA) delivers pressure in proportion to diaphragm electrical activity (Eadi). However, each patient responds differently to NAVA levels. This study aims to examine the matching between tidal volume (Vt) and patients' inspiratory demand (Eadi), and to investigate patient-specific response to various NAVA levels in non-invasively ventilated patients. METHODS: 12 patients were ventilated non-invasively with NAVA using three different NAVA levels. NAVA100 was set according to the manufacturer's recommendation to have similar peak airway pressure as during pressure support. NAVA level was then adjusted ±50% (NAVA50, NAVA150). Airway pressure, flow and Eadi were recorded for 15 minutes at each NAVA level. The matching of Vt and integral of Eadi (ʃEadi) were assessed at the different NAVA levels. A metric, Range90, was defined as the 5-95% range of Vt/ʃEadi ratio to assess matching for each NAVA level. Smaller Range90 values indicated better matching of supply to demand. RESULTS: Patients ventilated at NAVA50 had the lowest Range90 with median 25.6 uVs/ml [Interquartile range (IQR): 15.4-70.4], suggesting that, globally, NAVA50 provided better matching between ʃEadi and Vt than NAVA100 and NAVA150. However, on a per-patient basis, 4 patients had the lowest Range90 values in NAVA100, 1 patient at NAVA150 and 7 patients at NAVA50. Robust coefficient of variation for ʃEadi and Vt were not different between NAVA levels. CONCLUSIONS: The patient-specific matching between ʃEadi and Vt was variable, indicating that to obtain the best possible matching, NAVA level setting should be patient specific. The Range90 concept presented to evaluate Vt/ʃEadi is a physiologic metric that could help in individual titration of NAVA level. [less ▲]

Detailed reference viewed: 20 (11 ULg)
Full Text
Peer Reviewed
See detailExpiratory model-based method to monitor ARDS disease state
Van Drunen, EJ; Chiew, YS; Chase, JG et al

in BioMedical Engineering OnLine (2013)

INTRODUCTION: Model-based methods can be used to characterise patient-specific condition and response to mechanical ventilation (MV) during treatment for acute respiratory distress syndrome (ARDS ... [more ▼]

INTRODUCTION: Model-based methods can be used to characterise patient-specific condition and response to mechanical ventilation (MV) during treatment for acute respiratory distress syndrome (ARDS). Conventional metrics of respiratory mechanics are based on inspiration only, neglecting data from the expiration cycle. However, it is hypothesised that expiratory data can be used to determine an alternative metric, offering another means to track patient condition and guide positive end expiratory pressure (PEEP) selection. METHODS: Three fully sedated, oleic acid induced ARDS piglets underwent three experimental phases. Phase 1 was a healthy state recruitment manoeuvre. Phase 2 was a progression from a healthy state to an oleic acid induced ARDS state. Phase 3 was an ARDS state recruitment manoeuvre. The expiratory time-constant model parameter was determined for every breathing cycle for each subject. Trends were compared to estimates of lung elastance determined by means of an end-inspiratory pause method and an integral-based method. All experimental procedures, protocols and the use of data in this study were reviewed and approved by the Ethics Committee of the University of Liege Medical Faculty. RESULTS: The overall median absolute percentage fitting error for the expiratory time-constant model across all three phases was less than 10 %; for each subject, indicating the capability of the model to capture the mechanics of breathing during expiration. Provided the respiratory resistance was constant, the model was able to adequately identify trends and fundamental changes in respiratory mechanics. CONCLUSION: Overall, this is a proof of concept study that shows the potential of continuous monitoring of respiratory mechanics in clinical practice. Respiratory system mechanics vary with disease state development and in response to MV settings. Therefore, titrating PEEP to minimal elastance theoretically results in optimal PEEP selection. Trends matched clinical expectation demonstrating robustness and potential for guiding MV therapy. However, further research is required to confirm the use of such real-time methods in actual ARDS patients, both sedated and spontaneously breathing. [less ▲]

Detailed reference viewed: 21 (10 ULg)
Full Text
Peer Reviewed
See detailSimulation of Left Atrial Function Using a Multi-Scale Model of the Cardiovascular System
Pironet, Antoine ULg; Dauby, Pierre ULg; Paeme, Sabine ULg et al

in PLoS ONE (2013), 8(6), 65146

During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to ... [more ▼]

During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors. [less ▲]

Detailed reference viewed: 58 (32 ULg)
Full Text
Peer Reviewed
See detailEvaluation of a Model-Based Hemodynamic Monitoring Method in a Porcine Study of Septic Shock
Revie, James; Stevenson, David; Chase, J. Geoffrey et al

in Computational and Mathematical Methods in Medicine (2013)

Detailed reference viewed: 25 (7 ULg)
Full Text
Peer Reviewed
See detailNAVA enhances tidal volume and diaphragmatic electro-myographic activity matching: a Range90 analysis of supply and demand
Moorhead, K. T.; Piquilloud, L.; LAMBERMONT, Bernard ULg et al

in Journal of Clinical Monitoring and Computing (2013), 27(1)

Neurally adjusted ventilatory assist (NAVA) is a ventilation assist mode that delivers pressure in proportionality to electrical activity of the diaphragm (Eadi). Compared to pressure support ventilation ... [more ▼]

Neurally adjusted ventilatory assist (NAVA) is a ventilation assist mode that delivers pressure in proportionality to electrical activity of the diaphragm (Eadi). Compared to pressure support ventilation (PS), it improves patient-ventilator synchrony and should allow a better expression of patient's intrinsic respiratory variability. We hypothesize that NAVA provides better matching in ventilator tidal volume (Vt) to patients inspiratory demand. 22 patients with acute respiratory failure, ventilated with PS were included in the study. A comparative study was carried out between PS and NAVA, with NAVA gain ensuring the same peak airway pressure as PS. Robust coefficients of variation (CVR) for Eadi and Vt were compared for each mode. The integral of Eadi (sh{phonetic}Eadi) was used to represent patient's inspiratory demand. To evaluate tidal volume and patient's demand matching, Range90 = 5-95 % range of the Vt/sh{phonetic}Eadi ratio was calculated, to normalize and compare differences in demand within and between patients and modes. In this study, peak Eadi and sh{phonetic}Eadi are correlated with median correlation of coefficients, R > 0.95. Median sh{phonetic}Eadi, Vt, neural inspiratory time (Ti_ <br /> Neural), inspiratory time (Ti) and peak inspiratory pressure (PIP) were similar in PS and NAVA. However, it was found that individual patients have higher or smaller sh{phonetic}Eadi, Vt, Ti_ <br /> Neural, Ti and PIP. CVR analysis showed greater Vt variability for NAVA (p < 0.005). Range90 was lower for NAVA than PS for 21 of 22 patients. NAVA provided better matching of Vt to sh{phonetic}Eadi for 21 of 22 patients, and provided greater variability Vt. These results were achieved regardless of differences in ventilatory demand (Eadi) between patients and modes. © 2012 Springer Science+Business Media New York. [less ▲]

Detailed reference viewed: 32 (7 ULg)
Full Text
Peer Reviewed
See detailAssessment of ventricular contractility and ventricular-arterial coupling with a model-based sensor.
Desaive, Thomas ULg; LAMBERMONT, Bernard ULg; JANSSEN, Nathalie ULg et al

in Computer Methods & Programs in Biomedicine (2013), 109(2),

Estimation of ventricular contractility and ventricular arterial coupling is clinically important in diagnosing and treating cardiac dysfunction in the critically ill. However, experimental assessment of ... [more ▼]

Estimation of ventricular contractility and ventricular arterial coupling is clinically important in diagnosing and treating cardiac dysfunction in the critically ill. However, experimental assessment of indexes of ventricular contractility, such as the end-systolic pressure-volume relationship, requires a highly invasive maneuver and measurements that are not typical in an intensive care unit (ICU). This research describes the use of a previously validated cardiovascular system model and parameter identification process to evaluate the right ventricular arterial coupling in septic shock. Model-based ventricular arterial coupling is defined by the ratio of the end systolic right ventricular elastance (E(esrvf)) over the pulmonary artery elastance (E(pa)) or the mean pulmonary inflow resistance (R(pulin)). Results are compared to the clinical gold-standard assessment (conductance catheter method). Six anesthetized healthy pigs weighing 20-30kg received a 0.5mgkg(-1) endotoxin infusion over a period of 30min from T0 to T30, to induce septic shock and veno-venous hemofiltration was used from T60 onward. The results show good agreement with the gold-standard experimental assessment. In particular, the model-based right ventricular elastance (E(esrvf)) correlates well with the clinical gold standard (R(2)=0.69) and the model-based non-invasive coupling (E(esrvf)/R(pulin)) follow the same trends and dynamics (R(2)=0.37). The overall results show the potential to develop a model-based sensor to monitor ventricular-arterial coupling in clinical real-time. [less ▲]

Detailed reference viewed: 33 (10 ULg)
Full Text
Peer Reviewed
See detailValidation of subject-specific cardiovascular system models from porcine measurements.
Revie, J. A.; Stevenson, D. J.; Chase, J. G. et al

in Computer Methods & Programs in Biomedicine (2013), 109(2),

A previously validated mathematical model of the cardiovascular system (CVS) is made subject-specific using an iterative, proportional gain-based identification method. Prior works utilised a complete set ... [more ▼]

A previously validated mathematical model of the cardiovascular system (CVS) is made subject-specific using an iterative, proportional gain-based identification method. Prior works utilised a complete set of experimentally measured data that is not clinically typical or applicable. In this paper, parameters are identified using proportional gain-based control and a minimal, clinically available set of measurements. The new method makes use of several intermediary steps through identification of smaller compartmental models of CVS to reduce the number of parameters identified simultaneously and increase the convergence stability of the method. This new, clinically relevant, minimal measurement approach is validated using a porcine model of acute pulmonary embolism (APE). Trials were performed on five pigs, each inserted with three autologous blood clots of decreasing size over a period of four to five hours. All experiments were reviewed and approved by the Ethics Committee of the Medical Faculty at the University of Liege, Belgium. Continuous aortic and pulmonary artery pressures (P(ao), P(pa)) were measured along with left and right ventricle pressure and volume waveforms. Subject-specific CVS models were identified from global end diastolic volume (GEDV), stroke volume (SV), P(ao), and P(pa) measurements, with the mean volumes and maximum pressures of the left and right ventricles used to verify the accuracy of the fitted models. The inputs (GEDV, SV, P(ao), P(pa)) used in the identification process were matched by the CVS model to errors <0.5%. Prediction of the mean ventricular volumes and maximum ventricular pressures not used to fit the model compared experimental measurements to median absolute errors of 4.3% and 4.4%, which are equivalent to the measurement errors of currently used monitoring devices in the ICU ( approximately 5-10%). These results validate the potential for implementing this approach in the intensive care unit. [less ▲]

Detailed reference viewed: 25 (2 ULg)
Full Text
Peer Reviewed
See detailA simplified model for mitral valve dynamics.
Moorhead, K. T.; Paeme, Sabine ULg; Chase, J. G. et al

in Computer Methods & Programs in Biomedicine (2013), 109(2),

Located between the left atrium and the left ventricle, the mitral valve controls flow between these two cardiac chambers. Mitral valve dysfunction is a major cause of cardiac dysfunction and its dynamics ... [more ▼]

Located between the left atrium and the left ventricle, the mitral valve controls flow between these two cardiac chambers. Mitral valve dysfunction is a major cause of cardiac dysfunction and its dynamics are little known. A simple non-linear rotational spring model is developed and implemented to capture the dynamics of the mitral valve. A measured pressure difference curve was used as the input into the model, which represents an applied torque to the anatomical valve chords. A range of mechanical model hysteresis states were investigated to find a model that best matches reported animal data of chord movement during a heartbeat. The study is limited by the use of one dataset found in the literature due to the highly invasive nature of getting this data. However, results clearly highlight fundamental physiological issues, such as the damping and chord stiffness changing within one cardiac cycle, that would be directly represented in any mitral valve model and affect behaviour in dysfunction. Very good correlation was achieved between modeled and experimental valve angle with 1-10% absolute error in the best case, indicating good promise for future simulation of cardiac valvular dysfunction, such as mitral regurgitation or stenosis. In particular, the model provides a pathway to capturing these dysfunctions in terms of modeled stiffness or elastance that can be directly related to anatomical, structural defects and dysfunction. [less ▲]

Detailed reference viewed: 28 (9 ULg)