References of "Demoulin, Philippe"
     in
Bookmark and Share    
Full Text
See detailRecent Evolution of atmospheric OCS above the Jungfraujoch station : implications for the stratospheric aerosol layer.
Mahieu, Emmanuel ULg; Zander, Rodolphe ULg; Demoulin, Philippe ULg et al

in Proceedings of the Atmospheric Spectroscopy Applications. (2005)

Detailed reference viewed: 5 (0 ULg)
Full Text
Peer Reviewed
See detailThe exploitation of ground-based Fourier transform infrared observations for the evaluation of tropospheric trends of greenhouse gases over Europe
De Mazière, Martine; Vigouroux, Corinne; Gardiner, Tom et al

in Environmental Sciences (2005), 2(2-3), 283-293

Solar absorption measurements using Fourier transform infrared (FTIR) spectrometry carry information about the atmospheric abundances of many constituents, including non-CO2 greenhouse gases. Such ... [more ▼]

Solar absorption measurements using Fourier transform infrared (FTIR) spectrometry carry information about the atmospheric abundances of many constituents, including non-CO2 greenhouse gases. Such observations have regularly been made for many years as a contribution to the Network for the Detection of Stratospheric Change (NDSC). They are the only ground-based remote sensing observations available nowadays that carry information about a number of greenhouse gases in the free troposphere. This work focuses on the discussion of the information content of FTIR long-term monitoring data of some direct and indirect greenhouse gases (CH4, N2O, O3 and CO and C2H6, respectively), at six NDSC stations in Western Europe. This European FTIR network covers the polar to subtropical regions. At several stations of the network, the observations span more than a decade. Existing spectral time series have been reanalyzed according to a common optimized retrieval strategy, in order to derive distinct tropospheric and stratospheric abundances for the above-mentioned target gases. A bootstrap resampling method has been implemented to evaluate trends of the tropospheric burdens of the target gases, including their uncertainties. In parallel, simulations of the target time series are being made with the Oslo CTM2 model: comparisons between the model results and the observations provide valuable information to improve the model and, in particular, to optimize emission estimates that are used as inputs to the model simulations. The work is being performed within the EC project UFTIR. The paper focuses on N2O for which the first trend results have been obtained. [less ▲]

Detailed reference viewed: 51 (11 ULg)
Full Text
See detailGeophysical Validation of SCIAMACHY NO2 Vertical Columns: Overview of Early 2004 Results
Lambert, Jean-Christopher; Blumenstock, Thomas; Boersma, F. et al

in Proceedings of the Second Workshop on the Atmospheric Chemistry Validation of ENVISAT (ACVE-2), ESA-ESRIN, Frascati, Italy, 3-7 May 2004 (ESA SP-562, August 2004) ESC01JL1 (2004, August)

Following the recommendations drawn after the Commissioning Phase of the ENVISAT satellite in 2002, SCIAMACHY near real time data processors were upgraded to version 5.01 in early 2004. Before public ... [more ▼]

Following the recommendations drawn after the Commissioning Phase of the ENVISAT satellite in 2002, SCIAMACHY near real time data processors were upgraded to version 5.01 in early 2004. Before public release of the new SCIAMACHY nitrogen dioxide (NO2) vertical column data product, several validation teams investigated its improvement and assessed its geophysical consistency by means of correlative studies involving NDSC-affiliated ground-based networks of DOAS UV-visible and FTIR spectrometers and the ERS-2 GOME satellite. In parallel, preliminary SCIAMACHY NO2 column data products generated by research processors under development at scientific institutes were also tested, using the same correlative data and validation procedures. Digesting the results obtained by a list of validation teams and SCIAMACHY data processing teams, this overview paper draws a preliminary quality assessment of the SCIAMACHY NO2 column data sets available in spring 2004. [less ▲]

Detailed reference viewed: 10 (0 ULg)
Full Text
See detailFirst Ground-Based Validation of SCIAMACHY V5.01 Ozone Column
Lambert, Jean-Christopher; Allaart, M; Andersen, S.B. et al

in Proceedings of the Second Workshop on the Atmospheric Chemistry Validation of ENVISAT (ACVE-2), ESA-ESRIN, Frascati, Italy, 3-7 May 2004 (ESA SP-562, August 2004) ESC01JL1 (2004, August)

In early 2004, the near real-time data processor of ENVISAT SCIAMACHY (SCI_NL) was upgraded to version 5.01. Based on the correlative measurements acquired and collected during the commissioning phase of ... [more ▼]

In early 2004, the near real-time data processor of ENVISAT SCIAMACHY (SCI_NL) was upgraded to version 5.01. Based on the correlative measurements acquired and collected during the commissioning phase of the satellite in 2002, a preliminary validation was organised to verify the improvement and assess the geophysical consistency of the new SCIAMACHY ozone vertical column data product. The present overview summarises the results obtained by a list of validation teams and involving ground-based data acquired from pole to pole by complementary ground-based sensors. The studies conclude to an improvement compared to previous versions 3.5x. They also confirm the presence of expected errors (e.g. dependence on solar elevation and on ozone column) inherited from the GOME Data Processor GDP 2.4, on which the SCIAMACHY processor SCI_NL is based. [less ▲]

Detailed reference viewed: 13 (3 ULg)
Full Text
See detailComparisons between SCIAMACHY Scientific Products and Ground-Based FTIR Data for Total Columns of CO, CH4 and N2O
De Mazière, M.; Barret, B.; Blumenstock, T. et al

Scientific conference (2004, May)

Total column amounts of CO, CH4 and N2O retrieved from SCIAMACHY nadir observations in its near-infrared channels have been compared to data from a ground-based network of Fourier-transform infrared (FTIR ... [more ▼]

Total column amounts of CO, CH4 and N2O retrieved from SCIAMACHY nadir observations in its near-infrared channels have been compared to data from a ground-based network of Fourier-transform infrared (FTIR) spectrometers as well as to data obtained with an FTIR instrument during a ship cruise in January-February 2003, along the African West Coast. The SCIAMACHY data considered here have been produced by two different scientific retrieval algorithms, wfm-doas (version 4.0) and IMLM (version 5.1), and cover different time periods, making the number of reliable coincidences that satisfy the temporal and spatial collocation criteria rather limited and different for both. Also the quality of the SCIAMACHY Level 1 data, and thus of the Level 2 data for the different time periods is very different. Still the comparisons demonstrate the capability of SCIAMACHY, using one of both algorithms, to deliver geophysically valuable products for the target species under consideration, on a global scale. [less ▲]

Detailed reference viewed: 22 (0 ULg)
Full Text
See detailGround-based FTIR measurements of O3- and climate-related gases in the free troposphere and lower stratosphere
De Mazière, M.; Barret, B.; Vigouroux, C. et al

in Zerefos, C. S. (Ed.) Proceedings Quadrennial Ozone Symposium (2004)

In the frame of the EC project UFTIR (Time series of Upper Free Troposphere observations from a European ground-based FTIR network), a common strategy for an optimal determination of the chemical ... [more ▼]

In the frame of the EC project UFTIR (Time series of Upper Free Troposphere observations from a European ground-based FTIR network), a common strategy for an optimal determination of the chemical composition in the free troposphere and lower stratosphere with ground-based Fourier-transform infrared (FTIR) spectrometers is being developed. The project focuses on 6 target species that are O3, CO, CH4, N2O, C2H6 and CHClF2 (HCFC-22). The strategy consists in selecting the most appropriate parameters to retrieve vertical concentration profiles from solar FTIR spectra. Among the important parameters are the spectral microwindows: they have been optimised to maximise the information content and to minimize the influence of poorly known spectroscopic data and interfering species. [less ▲]

Detailed reference viewed: 15 (1 ULg)
Full Text
See detailThe evolution of inorganic chlorine above the Jungfraujoch station: an update.
Mahieu, Emmanuel ULg; Duchatelet, Pierre ULg; Zander, Rodolphe ULg et al

in Zerefos, C. S. (Ed.) Proceedings of the 20th Quadrennial Ozone Symposium (2004)

Within the frame of the NDSC, the total vertical column abundances of HCl and ClONO2, by far the two most important inorganic chlorine reservoirs at northern mid-latitudes, have been further monitored ... [more ▼]

Within the frame of the NDSC, the total vertical column abundances of HCl and ClONO2, by far the two most important inorganic chlorine reservoirs at northern mid-latitudes, have been further monitored above the Jungfraujoch station (Swiss Alps, 46.5ºN, 8.0ºE, 3580m a.s.l.), by analyzing infrared solar absorption spectra recorded with very high-resolution Fourier spectrometers. The mean temporal evolution of the sum of their monthly mean abundance time series indicates that the total stratospheric inorganic chlorine loading (Cly) has decreased slowly (-0.7+/-0.3%/yr, 1-sigma) since it peaked in late 1996, at the limit of being statistically significant at the 2-sigma level. Comparison with model calculations and with the evolution of surface total organic chlorine will also be discussed. [less ▲]

Detailed reference viewed: 28 (2 ULg)
Full Text
Peer Reviewed
See detailPost-Mount Pinatubo eruption ground-based infrared stratospheric column measurements of HNO3, NO, and NO2 and their comparison with model calculations
Rinsland, Curtis P.; Weisenstein, Debra K.; Ko, Malcolm K. W. et al

in Journal of Geophysical Research. Atmospheres (2003), 108(D15),

[1] Infrared solar spectra recorded between July 1991 to March 1992 and November 2002 with the Fourier transform spectrometer on Kitt Peak (31.9 degrees N latitude, 111.6 degrees W longitude, 2.09 km ... [more ▼]

[1] Infrared solar spectra recorded between July 1991 to March 1992 and November 2002 with the Fourier transform spectrometer on Kitt Peak (31.9 degrees N latitude, 111.6 degrees W longitude, 2.09 km altitude) have been analyzed to retrieve stratospheric columns of HNO3, NO, and NO2. The measurements cover a decade time span following the June 1991 Mount Pinatubo volcanic eruption and were recorded typically at 0.01 cm(-1) spectral resolution. The measured HNO3 stratospheric column shows a 20% decline from 9.16 x 10(15) molecules cm(-2) from the first observation in March 1992 to 7.40 x 10(15) molecules cm(-2) at the start of 1996 reaching a broad minimum of 6.95 x 10(15) molecules cm(-2) thereafter. Normalized daytime NO and NO2 stratospheric column trends for the full post-Pinatubo eruption time period equal (+ 1.56 +/- 0.45)% yr(-1), 1 sigma, and (+ 0.52 +/- 0.32)% yr(-1), 1 sigma, respectively. The long-term trends are superimposed on seasonal cycles with ~10% relative amplitudes with respect to mean values, winter maxima for HNO3 and summer maxima for NO and NO2. The measurements have been compared with two-dimensional model calculations utilizing version 6.1 Stratospheric Aerosol and Gas Experiment ( SAGE) II sulfate aerosol surface area density measurements through 1999 and extended to the end of the time series by repeating the 1999 values. The model-calculated HNO3, NO, and NO2 stratospheric column time series agree with the measurements to within ~8% after taking into account the vertical sensitivity of the ground-based measurements. The consistency between the measured and model-calculated stratospheric time series confirms the decreased impact on stratospheric reactive nitrogen chemistry of the key heterogeneous reaction that converts reactive nitrogen to its less active reservoir form as the lower-stratospheric aerosol surface area density declined by a factor of ~20 after the eruption maximum. [less ▲]

Detailed reference viewed: 50 (9 ULg)
Full Text
Peer Reviewed
See detailLong-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization
Rinsland, Curtis P.; Mahieu, Emmanuel ULg; Zander, Rodolphe ULg et al

in Journal of Geophysical Research (2003), 108(D8), 4252

Long-term time series of hydrogen chloride (HCl) and chlorine nitrate (ClONO2) total column abundances has been retrieved from high spectral resolution ground-based solar absorption spectra recorded with ... [more ▼]

Long-term time series of hydrogen chloride (HCl) and chlorine nitrate (ClONO2) total column abundances has been retrieved from high spectral resolution ground-based solar absorption spectra recorded with infrared Fourier transform spectrometers at nine NDSC (Network for the Detection of Stratospheric Change) sites in both Northern and Southern Hemispheres. The data sets span up to 24 years and most extend until the end of 2001. The time series of Cly (defined here as the sum of the HCl and ClONO2 columns) from the three locations with the longest time-span records show rapid increases until the early 1990s superimposed on marked day-to-day, seasonal and inter-annual variability. Subsequently, the buildup in Cly slows and reaches a broad plateau after 1996, also characterized by variability. A similar time evolution is also found in the total chlorine concentration at 55 km altitude derived from Halogen Occultation Experiment (HALOE) global observations since 1991. The stabilization of inorganic chlorine observed in both the total columns and at 55 km altitude indicates that the near-global 1993 organic chlorine (CCly) peak at the Earth’s surface has now propagated over a broad altitude range in the upper atmosphere, though the time lag is difficult to quantify precisely from the current data sets, due to variability. We compare the three longest measured time series with two-dimensional model calculations extending from 1977 to 2010, based on a halocarbon scenario that assumes past measured trends and a realistic extrapolation into the future. The model predicts broad Cly maxima consistent with the long-term observations, followed by a slow Cly decline reaching 12–14% relative to the peak by 2010. The data reported here confirm the effectiveness of the Montreal Protocol and its Amendments and Adjustments in progressively phasing out the major man-related perturbations of the stratospheric ozone layer, in particular, the anthropogenic chlorine-bearing source gases. [less ▲]

Detailed reference viewed: 27 (11 ULg)
Full Text
See detailValidation of ENVISAT-1 Level-2 Products Related to Lower Atmosphere O3 and NOy Chemistry by a FTIR Quasi-global Network
De Mazière, Martine; Coosemans, Thierry; Barret, Brice et al

in Proceedings of Envisat Validation Workshop, Frascati, Italy, December 9-13, 2002, ESA SP-531, 2003 (2003)

A coordinated action involving eleven stations of the ground -based Network for Detection of Stratospheric Change (NDSC) equipped with Fourier transform infrared (FTIR) instruments was conducted to ... [more ▼]

A coordinated action involving eleven stations of the ground -based Network for Detection of Stratospheric Change (NDSC) equipped with Fourier transform infrared (FTIR) instruments was conducted to contribute to the validation of the three atmospheric chemistry instruments onboard ENVISAT, that are MIPAS, SCIAMACHY and GOMOS. The target products for validation are total columns of O3, CH4, CO and some important NOy species (NO2, HNO3, NO) and the source gas N2O. Together the eleven stations cover the latitudes between 79 °N and 78°S, including polar, mid-latitude and subtropical and tropical locations. The goal is to contribute to the assessment of the data quality of the aforementioned ENVISAT instruments, from a quasi -global perspective. The period of intensive ground-based data collection for the benefit of the ENVISAT Validation Commissioning Phase that is dealt with in the present paper is July 15 to December 1, 2002. The FTIR network involved collected a data set corresponding to an equivalent of approximately 400 days of measurements; about three quarter of the data have already been submitted to the ENVISAT Calval database and are included in the present work. Unfortunately, the distribution of ENVISAT data has been slow and limited. Only a limited number of coincidences has been found for making data inter -comparisons. Therefore, the conclusions drawn in this paper are very preliminary and cover only a limited set of data products from SCIAMACHY only. Our findings up to now concerning the above mentioned target products are the following: (1) SCIAMACHY near infrared operational products (CO, CH4, N 2O) have no scientific meaning yet, (2), the operational SCIAMACHY total vertical O3 column product derived in the ultraviolet window has undergone some improvements with changing versions of the processor(s) but it still underestimates the column by about 5 – 10 %, (3), the operational SCIAMACHY total vertical O3 column product derived in the visible window is unrealistically large, and (4), the operational NO2 total column product from SCIAMACHY seems to largely overestimate the real column, but very few coincidences and large dispersions of the data do inhibit any further conclusion at present. In a next phase, the same ground-based correlative data set will be exploited to further validate the ENVISAT data as soon as more and reprocessed data will be distributed. [less ▲]

Detailed reference viewed: 18 (0 ULg)
See detailMonitoring of the variability and long-term evolution of tropospheric constituents by Infrared solar absorption spectrometry at the Jungfraujoch, Switzerland.
Zander, Rodolphe ULg; Mahieu, Emmanuel ULg; Duchatelet, Pierre ULg et al

in Borrell, P.; Borrell, P. M.; Burrows, J. P. (Eds.) et al Sounding the Troposphere from Space: A new era for Atmospheric Chemistry. (2003)

Detailed reference viewed: 4 (1 ULg)
Full Text
Peer Reviewed
See detailRetrieval and characterization of ozone profiles from solar infrared spectra at the Jungfraujoch
Barret, B.; De Maziere, M.; Demoulin, Philippe ULg

in Journal of Geophysical Research. Atmospheres (2002), 107(D24),

[1] Vertical distributions of ozone from June 1996 to November 2000 have been retrieved from high-resolution Fourier transform infrared (FTIR) solar absorption spectra recorded at the primary Network for ... [more ▼]

[1] Vertical distributions of ozone from June 1996 to November 2000 have been retrieved from high-resolution Fourier transform infrared (FTIR) solar absorption spectra recorded at the primary Network for Detection of Stratospheric Change station of the Jungfraujoch in the Swiss Alps (46.5degreesN, 8degreesE, 3580 m above sea level (asl). The retrievals were performed using the Optimal Estimation Method (OEM), both in a narrow spectral interval (1002.567-1003.2 cm(-1)) and in a broad spectral interval (1000.0-1005.0 cm(-1)) in the O-3 9.6-mum band. A thorough characterization of the retrievals has been performed following the lines of OEM, including an information content analysis, a study of the correlations between retrieved instrumental parameters and retrieved ozone concentrations, and an evaluation of the O-3 profile error budget. It is demonstrated that the information content is significantly higher for spectra in the broad microwindow, resulting in higher vertical resolutions, on the order of 8 km, of the retrieved profiles extending up to 40 km, and less correlations between retrieved parameters. An independent statistical verification of the retrieval results and their characterization has been performed by comparison of the FTIR ozone profiles with independent measurements. These are the ozone profile measurements from balloon soundings at Payerne, from the microwave radiometer at Bern and the lidar at Observatoire de Haute-Provence (OHP), and the total column data from the Dobson spectrophotometer at Arosa. Applying the optimum retrieval procedure in the broad spectral interval, an excellent agreement has been found between the FTIR O-3 profile data and the correlative data. The largest offset of the FTIR data in comparison with the correlative data is found with respect to the lidar data in the 24- to 40-km layer, and is on the order of 5%. No systematic biases have been found in the troposphere, neither in the upper troposphere-lower stratosphere (UTLS) up to 18 km. The dispersion of the relative differences between the data sets, if any, is never larger than half of the natural ozone variability. [less ▲]

Detailed reference viewed: 19 (2 ULg)
Full Text
See detailVALIDATION OF ENVISAT-1 LEVEL-2 PRODUCTS RELATED TO LOWER ATMOSPHERE O3 AND NOy CHEMISTRY BY A FTIR QUASI-GLOBAL NETWORK
De Mazière, M.; Coosemans, T.; Barret, B. et al

Scientific conference (2002, December)

A coordinated action involving eleven stations of the ground-based Network for Detection of Stratospheric Change (NDSC) equipped with Fourier transform infrared (FTIR) instruments was conducted to ... [more ▼]

A coordinated action involving eleven stations of the ground-based Network for Detection of Stratospheric Change (NDSC) equipped with Fourier transform infrared (FTIR) instruments was conducted to contribute to the validation of the three atmospheric chemistry instruments onboard ENVISAT, that are MIPAS, SCIAMACHY and GOMOS. The target products for validation are total columns of O3, CH4, CO and some important NOy species (NO2, HNO3, NO) and the source gas N2O. Together the eleven stations cover the latitudes between 79 °N and 78°S, including polar, mid -latitude and subtropical and tropical locations. The goal is to contribute to the assessment of the data quality of the aforementioned ENVISAT instruments, from a quasi-global perspective. The period of intensive ground-based data collection for the benefit of the ENVISAT Validation Commissioning Phase that is dealt with in the present paper is July 15 to December 1, 2002. The FTIR network involved collected a data set corresponding to an equivalent of approximately 400 days of measurements; about three quarter of the data have already been submitted to the ENVISAT Calval database and are included in the present work. Unfortunately, the distribution of ENVISAT data has been slow and limited. Only a limited number of coincidences has been found for making data inter-comparisons. Therefore, the conclusions drawn in this paper are very preliminary and cover only a limited set of data products from SCIAMACHY only. Our findings up to now concerning the above mentioned target products are the following: (1) SCIAMACHY near infrared operational products (CO, CH4, N2O) have no scientific meaning yet, (2), the operational SCIAMACHY total vertical O3 column product derived in the ultraviolet window has undergone some improvements with changing versions of the processor(s) but it still underestimates the column by about 5 – 10 %, (3), the operational SCIAMACHY total vertical O3 column product derived in the visible window is unrealistically large, and (3), the operational NO2 total column product from SCIAMACHY seems to largely overestimate the real column, but very few coincidences and large dispersions of the data do inhibit any further conclusion at present. In a next phase, the same ground-based correlative data set will be exploited to further validate the ENVISAT data as soon as more and reprocessed data will be distributed. [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailPotential of the NDSC in support of the Kyoto Protocol: Examples from the station Jungfraujoch, Switzerland
Zander, Rodolphe ULg; Mahieu, Emmanuel ULg; Servais, Christian ULg et al

in Van Ham, J.; Baede, A. P. M.; Guicherit, R. (Eds.) et al Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy Aspects (2002)

This paper gives a brief description and “raison d’être” of the Network for the Detection of Stratospheric Change (NDSC) as well as its key research tasks to address the broader goal of monitoring ... [more ▼]

This paper gives a brief description and “raison d’être” of the Network for the Detection of Stratospheric Change (NDSC) as well as its key research tasks to address the broader goal of monitoring atmospheric changes and to identify their causes and related impacts on mankind’s environment. While the Network has primarily focussed, thus far, on monitoring the ozone layer and assessing global compliance with the Montreal Protocol, ongoing implementations and new capabilities have enabled it to adapt to more recent political developments such as the Kyoto Proto-col on substances affecting the climate system. Examples of activities in support of the latter are reported, based on infrared solar observations at the Jungfraujoch station. [less ▲]

Detailed reference viewed: 62 (15 ULg)
Full Text
See detailThe NOy budget above Jungfraujoch: long-term evolution, family partition and model comparison
Demoulin, Philippe ULg; Mahieu, Emmanuel ULg; Zander, Rodolphe ULg et al

in Abstracts presented at the NDSC 2001 Symposium: Celebrating 10 years of atmospheric research (2001)

Based on high-resolution solar spectra recorded with FTIR instruments at the University of Liège laboratory located at the Jungfraujoch NDSC station (Swiss Alps, 46.5ºN, 8ºE, altitude 3580 m), the most ... [more ▼]

Based on high-resolution solar spectra recorded with FTIR instruments at the University of Liège laboratory located at the Jungfraujoch NDSC station (Swiss Alps, 46.5ºN, 8ºE, altitude 3580 m), the most important constituents making up the NOy family have been measured consistently since the mid-1980s. They include HNO3, NO, NO2 and ClONO2, which are analyzed in terms of their vertical column abundances above the site. Related trends have been determined and assessed statistically. Among these, only ClONO2 and NO2 reveal significant long-term trends. The combined column evaluation of NOy indicates a rate of change equal to (0.1+/-0.2) %/year, thus statistically undefined and barely consistent with the evolution of the source gas N2O. Trends derived from the observations will be compared critically with those deduced from a long-term run of a 2-D stratospheric model developed at the University of Oslo. The model includes full gaseous chemistry, PSCs and sulfate particles, which vary from year to year. Comparisons with similar data found in the literature are also discussed. [less ▲]

Detailed reference viewed: 9 (5 ULg)
Full Text
Peer Reviewed
See detailModeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.72, 0.82, and 0.94 μm absorption bands
Ingold, T.; Schmid, B.; Mätzler, C. et al

in Journal of Geophysical Research (2000), 105(D19), 2432724343

A Sun photometer (18 channels between 300 and 1024 nm) has been used for measuring the columnar content of atmospheric water vapor (CWV) by solar transmittance measurements in absorption bands with ... [more ▼]

A Sun photometer (18 channels between 300 and 1024 nm) has been used for measuring the columnar content of atmospheric water vapor (CWV) by solar transmittance measurements in absorption bands with channels centered at 719, 817, and 946 nm. The observable is the band-weighted transmittance function defined by the spectral absorption of water vapor and the spectral features of solar irradiance and system response. The transmittance function is approximated by a three-parameter model. Its parameters are determined from MODTRAN and LBLRTM simulations or empirical approaches using CWV data of a dual-channel microwave radiometer (MWR) or a Fourier transform spectrometer (FTS). Data acquired over a 2-year period during 1996–1998 at two different sites in Switzerland, Bern (560 m above sea level (asl)) and Jungfraujoch (3580 m asl) were compared to MWR, radiosonde (RS), and FTS retrievals. At the low-altitude station with an average CWV amount of 15 mm the LBLRTM approach (based on recently corrected line intensities) leads to negligible biases at 719 and 946 nm if compared to an average of MWR, RS, and GPS retrievals. However, at 817 nm an overestimate of 2.7 to 4.3 mm (18–29%) remains. At the high-altitude station with an average CWV amount of 1.4 mm the LBLRTM approaches overestimate the CWV by 1.0, 1.4, and 0.1 mm (58, 76, and 3%) at 719, 817, and 946 nm, compared to the FTS instrument. At the low-altitude station, CWV estimates, based on empirical approaches, agree with the MWR within 0.4 mm (2.5% of the mean); at the high-altitude site with a factor of 10 less water vapor the agreement of the SPM with the FTS is 0.0 to 0.2 mm (1 to 9% of the mean CWV there). Sensitivity analyses show that for the conditions met at the two stations with CWV ranging from 0.2 to 30 mm, the retrieval errors are smallest if the 946 nm channel is used. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailFree tropospheric CO, C2H6, and HCN above central Europe: Recent measurements from the Jungfraujoch station including the detection of elevated columns during 1998
Rinsland, C. P.; Mahieu, Emmanuel ULg; Zander, Rodolphe ULg et al

in Journal of Geophysical Research. Atmospheres (2000), 105(D19), 24235-24249

Time series of free tropospheric carbon monoxide (CO), ethane (C2H6), and hydrogen cyanide (HCN) column abundances have been derived from observations at the International Scientific Station of the ... [more ▼]

Time series of free tropospheric carbon monoxide (CO), ethane (C2H6), and hydrogen cyanide (HCN) column abundances have been derived from observations at the International Scientific Station of the Jungfraujoch (ISSJ) at 3.58-km altitude in the Swiss Alps (latitude 46.55 degreesN, 7.98 degreesE longitude). The free troposphere was assumed to extend from 3.58 to 11 km altitude, and the related columns were derived for all three molecules from high spectral resolution infrared solar spectra recorded between January 1995 and October 1999. The three molecules show distinct seasonal cycles with maxima during winter for CO and C2H6, and during spring for HCN. These seasonal changes are superimposed on interannual variations. The tropospheric columns of all three molecules were elevated during 1998. Increases were most pronounced for HCN with enhanced values throughout the year, up to a factor of 2 in January 1998 when compared to averages of the other years. The increased tropospheric columns coincide with the period of widespread wildfires during the strong El Nino warm phase of 1997-1998. The emission enhancements above ISSJ are less pronounced, and they peaked after the increases measured above Mauna Loa (19.55 degreesN, 155.6 degreesW). Tropospheric trends for CO, C2H6, and HCN of (2.40 +/- 0.49), (0.47 +/- 0.64), and (7.00 +/- 1.61)% yr(-1)(1 sigma) were derived for January 1995 to October 1999. However, if 1998 measurements are excluded from the fit, CO and HCN trends that are not statistically significant, and a statistically significant decrease in the C2H6 tropospheric column, are inferred. Comparisons of the infrared CO columns with CO in situ surface measurements suggest that the CO free tropospheric vertical Volume mixing ratio profile generally decreases with altitude throughout the year. [less ▲]

Detailed reference viewed: 39 (4 ULg)
Full Text
Peer Reviewed
See detailCorrelation relationships of stratospheric molecular constituents from high spectral resolution, ground-based infrared solar absorption spectra
Rinsland, C. P.; Goldman, A.; Connor, B. J. et al

in Journal of Geophysical Research. Atmospheres (2000), 105(D11), 14637-14652

Comparisons of chemically active species with chemically inert tracers are useful to quantify transport and mixing and assess the accuracy of model predictions. We report measurements of chemically active ... [more ▼]

Comparisons of chemically active species with chemically inert tracers are useful to quantify transport and mixing and assess the accuracy of model predictions. We report measurements of chemically active species and chemically inert tracers in the stratosphere derived from the analysis of infrared solar absorption spectra recorded with a ground-based Fourier transform spectrometer operated typically at 0.005- to 0.01-cm(-1) spectral resolution. The measurements were recorded from Kitt Peak in southern Arizona (latitude 31.9 degrees N, 111.6 degrees W, 2.09 km altitude). Time series of N2O, CH4, O3, and HNO3 vertical profiles have been retrieved from measurements in microwindows. From these results, correlations between N2O and CH4 stratospheric mixing ratios and between O3 and HNO3 lower stratospheric mixing ratios have been derived. The measured correlations between N2O versus CH4 mixing ratios are compact and show little variability with respect to season in quantitative agreement with Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) spring and autumn measurements recorded near the same latitude. Lower stratospheric O3 versus HNO3 mixing ratios measured during low to moderate aerosol loading time periods also show a compact relations though the HNO3/O3 slope is a factor of 2 lower than obtained from November 1994 ATMOS measurements near the Same latitude. We also compare Kitt Peak and ATMOS N2O versus CH4 and O3 versus HNO3 relations obtained by averaging the measurements over two broad stratospheric layers. This comparison avoids bias from the a priori profiles and the limited vertical resolution of the ground-based observations. [less ▲]

Detailed reference viewed: 7 (1 ULg)