References of "Delvigne, Frank"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDetermination of Zinc, Cadmium and Lead Bioavailability in Contaminated Soils at the Single-Cell Level by a Combination of Whole-Cell Biosensors and Flow Cytometry
Hurdebise, Quentin ULg; Tarayre, Cédric ULg; Fischer, Christophe ULg et al

in Sensors (2015)

Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this ... [more ▼]

Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pPZntAgfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP) accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pPZntAgfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pPZntAgfp could be used as a monitoring tool for contaminated soils being processed. [less ▲]

Detailed reference viewed: 67 (22 ULg)
Full Text
Peer Reviewed
See detailThermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: toward a microbial resource management approach
Kinet, Romain ULg; Destain, Jacqueline ULg; Hiligsmann, Serge ULg et al

in Bioresource Technology (2015), 189

A cellulolytic consortium was isolated from a composting plant in order to boost the initial hydrolysis step encountered in anaerobic digestion. Improvement of the cellulose degradation, as well as biogas ... [more ▼]

A cellulolytic consortium was isolated from a composting plant in order to boost the initial hydrolysis step encountered in anaerobic digestion. Improvement of the cellulose degradation, as well as biogas production, was observed for the cultures inoculated with the exogenous consortium. Metagenomics analyses pointed out a weak richness (related to the number of OTUs) of the exogenous consortium induced by the selective pressure (cellulose as sole carbon source) met during the initial isolation steps. Main microbial strains determined were strictly anaerobic and belong to the Clostridia class. During cellulose anaerobic degradation, pH drop induced a strong modification of the microbial population. Despite the fact that richness and evenness were very weak, the exogenous consortium was able to adapt and to maintain the cellulolytic degradation potential. This important result point out the fact that simplified microbial communities could be used in order to increase the robustness of mixed cultures involved in environmental biotechnology. [less ▲]

Detailed reference viewed: 88 (26 ULg)
Full Text
Peer Reviewed
See detailPhenotypic variability in bioprocessing conditions can be tracked on the basis of on-line flow cytometry and fits to a scaling law
Baert, Jonathan ULg; Kinet, Romain ULg; Brognaux, Alison ULg et al

in Biotechnology Journal (2015)

Noise in gene and protein expression is a major cause for bioprocess deviation. However, this phenomenon has been only scarcely considered in real bioprocessing conditions. In this work, a scaling-law ... [more ▼]

Noise in gene and protein expression is a major cause for bioprocess deviation. However, this phenomenon has been only scarcely considered in real bioprocessing conditions. In this work, a scaling-law derived from a genome-scale studies based on GFP reporter systems has been calibrated to an on-line flow cytometry device, allowing thus to get an insight at the level of promoter activity and associated noise during a whole microbial culture carried out in bioreactor. We show that most of the GFP reporter systems investigated and thus corresponding genes could be included inside the area covered by the scaling-law. The experimental results suggest that this scaling-law could be used to predict the dynamics of promoter activity, as well as the associated noise, in bioprocessing conditions. The knowledge acquired throughout this work could be used for the design of more robust expression systems. [less ▲]

Detailed reference viewed: 105 (41 ULg)
Full Text
Peer Reviewed
See detailScalable temperature induced stress for the large-scale production of functionalized Bifidobacteria
Nguyen, Huu Thanh ULg; Razafindralambo, Hary; Richel, Aurore ULg et al

in Journal of Industrial Microbiology & Biotechnology (2015)

The application of sub-lethal stresses is known to be an efficient strategy to enhance survival of probiotic bacteria during drying processes. In this context, we previously showed that the application of ... [more ▼]

The application of sub-lethal stresses is known to be an efficient strategy to enhance survival of probiotic bacteria during drying processes. In this context, we previously showed that the application of heat stress upon the entry into stationary phase increased significantly the viability of Bifidobacterium bifidum. However, this heat shock has been considered only in small scale bioreactor and no information is available for a possible scaling-up strategy. Five different operating scales (0.2 L, 2 L, 20 L, 200 L and 2000 L) have thus been tested and the results showed that the viability of B. bifidum increases from 3.15 to 6.57 folds, depending on the scale considered. Our observations pointed out the fact that the heat stress procedure is scalable according to the main outcome, i.e. increases in cell viability, but other factors have to be taken into account. Among these factors, dissolved carbon dioxide seems to play a significant role since it explain the differences observed between the test performed at lab-scale and in industrial conditions. [less ▲]

Detailed reference viewed: 231 (17 ULg)
Full Text
See detailAmélioration de la biodégradation du biphényle par Rhodococcus erythropolis t902.1 en présence de Fe2O3 et de nanoparticules de fer encapsulées dans un xérogel de silice
Wannoussa, Wissal ULg; Hiligsmann, Serge ULg; Tasseroul, Ludivine ULg et al

in Déchets Sciences et Techniques (2015), 69

In this work, the effect of iron oxide particles Fe2O3 and iron nanoparticles encapsulated in a porous silica matrix (xerogel Fe/SiO2) was investigated on biphenyl biodegradation by the strain Rhodococcus ... [more ▼]

In this work, the effect of iron oxide particles Fe2O3 and iron nanoparticles encapsulated in a porous silica matrix (xerogel Fe/SiO2) was investigated on biphenyl biodegradation by the strain Rhodococcus erythropolis T902.1. After 18 days of incubation biodegradation yields of 75% and 85% were achieved respectively in presence of non-autoclaved or autoclaved xerogel Fe/SiO2 at 10-5 M iron. These results are 42 and 60 % higher than in standard conditions without nanoparticles. They suggest that the autoclave procedure lead to the release of some iron less anchored in the silica matrix. This study highlights that siderophore production by Rhodococcus erythropolis T902.1 would be related to the presence of iron nanoparticles in the culture. It suggests that the production of these strong chelating compounds decreases with increase of iron release from xerogel Fe/SiO2. Moreover, most of the surfactants synthesized by Rhodococcus erythropolis T902.1 which are glycolipids containing trehalose (hexose), would be linked to cell surface and not excreted in the culture medium; the biomass hexose content also increased by 85% in presence of iron nanoparticles. [less ▲]

Detailed reference viewed: 106 (24 ULg)
Full Text
Peer Reviewed
See detailApplication of Steam Explosion as Pretreatment on Lignocellulosic Material: A Review
Jacquet, Nicolas ULg; Maniet, Guillaume ULg; Vanderghem, Caroline ULg et al

in Industrial & Engineering Chemistry Research (2015), 54(10), 2593-2598

Steam explosion is a thermo-mechanicochemical pretreatment which allows the breakdown of lignocellulosic structural components by the action of heating, formation of organic acids during the process, and ... [more ▼]

Steam explosion is a thermo-mechanicochemical pretreatment which allows the breakdown of lignocellulosic structural components by the action of heating, formation of organic acids during the process, and shearing forces resulting in the expansion of the moisture. Two distinct stages compose the steam-explosion process: vapocracking and explosive decompression which include modification of the material components: hydrolysis of hemicellulosic components (mono- and oligosaccharides released), modification of the chemical structure of lignin, and modification of the cellulose crystallinity index, etc. These effects allow the opening of lignocellulosic structures and influence the enzymatic hydrolysis yield of the material. [less ▲]

Detailed reference viewed: 66 (16 ULg)
Full Text
Peer Reviewed
See detailInvestigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009
Beckers, L.; Masset, J.; Hamilton, C. et al

in Biochemical Engineering Journal (2015), 98

Fermentative hydrogen production has often been described as inhibited by its own gas production. In this work, hydrogen production by Clostridium butyricum was investigated in batch Biochemical Hydrogen ... [more ▼]

Fermentative hydrogen production has often been described as inhibited by its own gas production. In this work, hydrogen production by Clostridium butyricum was investigated in batch Biochemical Hydrogen Potential (BHP) tests and in a 2.5L anaerobic sequenced batch reactor (AnSBR) under different operating conditions regarding liquid-to-gas mass transfer. Through the addition of both stirring up to 400rpm and nitrogen sparging, the yields were enhanced from 1.6 to 3.1molH2molglucose -1 and the maximum hydrogen production rates from 140 to 278mLh-1. These original results were achieved with a pure Clostridium strain. They showed that hydrogen production was improved by a higher liquid-to-gas hydrogen transfer resulting in a lower dissolved hydrogen concentration in the culture medium and therefore in a lower bacterial inhibition. In addition, biohydrogen partitioning between the gas and the liquid phase did not conform to Henry's Law due to critical supersaturation phenomena up to seven-fold higher than the equilibrium conditions. Therefore, dissolved hydrogen concentration should be systematically measured instead of the headspace hydrogen partial pressure. A model was proposed to correlate H2 production yield and rate by the pure C. butyricum strain CWBI1009 with mass transfer coefficient KLa. [less ▲]

Detailed reference viewed: 70 (10 ULg)
Full Text
Peer Reviewed
See detailThe use of microorganisms of cassava retting for the production of pectinolytic enzymes
Kouhounde, Sonagnon Hermann Serge ULg; Adeoti, Kifouli; Delvigne, Frank ULg et al

in Journal of Microbiology Biotechnology and Food Sciences (2014), 4(3), 277-281

Detailed reference viewed: 22 (3 ULg)
Full Text
Peer Reviewed
See detailBioRefine Project: Detection of bioavailability of Metallic Trace Elements in soils by the use of microbial biosensors
Tarayre, Cédric ULg; Hurdebise, Quentin ULg; Fischer, Christophe ULg et al

Poster (2014, September 09)

Zinc, lead and cadmium are the main Metallic Trace Elements (MTEs) found in soils contaminated by the mining industry in Europe. MTEs are spread in the environment because of the disruption of ... [more ▼]

Zinc, lead and cadmium are the main Metallic Trace Elements (MTEs) found in soils contaminated by the mining industry in Europe. MTEs are spread in the environment because of the disruption of biogeochemical cycles caused by human activities. Due to their low mobility and biodegradability, they accumulate in soils where they are strongly bound to particles. It has become necessary to understand interactions between MTEs and the environment and to implement remediation actions. This work is focused on remediation monitoring techniques by using whole cell microbial biosensors able to detect zinc, lead and cadmium. Biosensors provide a signal in response to the bio-available concentration in MTEs, which are valuable for the design of efficient techniques involving bioremediation. Whole cell biosensors used in this work are based on Escherichia coli strains carrying a fluorescent reporter system. The reporter element contains a promoter sensitive to MTEs and a gene coding for the Green Fluorescent Protein (GFP). MTEs activate the synthesis of GFP, which is a very stable protein, causing the accumulation of GFP inside the cells. Then, fluorescence can be measured by flow cytometry. In this study, two biosensors were investigated: E. coli pPzraPgfp and E. coli pPzntAgfp. The last strain provided a linear response to zinc up to 20 mg/l and a curvilinear response to cadmium up to 0.15 mg/l. No detection was highlighted regarding lead. In practical cases, soils and wastes are contaminated by several types of MTEs. Consequently, combined contaminations were also tested. This work allowed highlighting that the strain E. coli pPzntAgfp can be used to assess the bioavailability of cadmium in soils, although the experimental procedure must be improved. This work is supported by the BioRefine Project, a European project in which various member states focus on recovery of inorganics from organic wastestreams. We gratefully acknowledge the INTERREG IVB NWE programme, which financed the BioRefine Project (ref. 320J-BIOREFINE). [less ▲]

Detailed reference viewed: 117 (8 ULg)
Full Text
Peer Reviewed
See detailDesign of a fungal biofilm reactor for recombinant protein production from Aspergillus oryzae
Zune, Quentin ULg; Delepierre, Anissa ULg; Bauwens, Julien ULg et al

Poster (2014, September 07)

Fungi are microorganisms exhibiting high secretive power of various metabolites and have the ability to perform post-translational modifications during protein synthesis. In the field of fermentation ... [more ▼]

Fungi are microorganisms exhibiting high secretive power of various metabolites and have the ability to perform post-translational modifications during protein synthesis. In the field of fermentation industry, they are ideal hosts for secondary metabolites and recombinant protein production. At the industrial-scale, equipments usually required for solid-state or submerged fermentation of filamentous fungi have demonstrated their limitations in terms of productivity, mass transfers or products recovery (1, 2). Recently, fungal biofilm reactors were designed to combine advantages from submerged and solid-state culture and reveal their usefulness for greater secondary metabolites production relative to submerged culture conditions (3). In our work, we propose the design of a fungal biofilm reactor for a recombinant protein production from an Aspergillus oryzae strain containing a GFP reporter gene system under the control of a promoter specifically induced in solid-state conditions. The fungal biofilm reactor is composed of a metal structured packing, having the function of inert support for biofilm growth, immerged or aspersed by a liquid medium. Whereas recombinant protein production is not significantly different at the flask-scale between submerged and biofilm conditions, productivity is higher in the submerged conditions at the bioreactor-scale. Presence of recombinant proteins entrapped in the biofilm matrix highlights a diffusion constraint and a lower mass transfer in our fungal biofilm reactor. However, persistence of a free liquid biomass of low viscosity and fungal biomass retention on the support are attractive for the implementation of a continuous process in our fungal biofilm reactor. Further studies will consider a 2-D proteomic comparison of the extracellular medium from fungal biofilm reactor and submerged culture conditions in order to better understand proteins secretion and identify over-expressed proteins in biofilm conditions. [less ▲]

Detailed reference viewed: 127 (14 ULg)
Full Text
Peer Reviewed
See detailImplications of microbial phenotypic heterogeneity in large-scale bioprocessing conditions
Delvigne, Frank ULg; Gorret, Nathalie; Molina-Jouve, Carole et al

Conference (2014, September)

Detailed reference viewed: 40 (17 ULg)
Full Text
Peer Reviewed
See detailMesophilic biohydrogen production by Clostridium butyricum CWBI1009 in trickling biofilter reactor
Puhulwella, Rathnasiri G.; Beckers, Laurent; Delvigne, Frank ULg et al

in International Journal of Hydrogen Energy (2014), 39

This study investigates the mesophilic biohydrogen production from glucose using a strictly anaerobic strain, Clostridium butyricum CWBI1009, immobilized in a trickling bed sequenced batch reactor (TBSBR ... [more ▼]

This study investigates the mesophilic biohydrogen production from glucose using a strictly anaerobic strain, Clostridium butyricum CWBI1009, immobilized in a trickling bed sequenced batch reactor (TBSBR) packed with a Lantec HD Q-PAC® packing material (132 ft2/ft3 specific surface). The reactor was operated for 62 days. The main parameters measured here were hydrogen composition, hydrogen production rate and soluble metabolic products. pH, temperature, recirculation flow rate and inlet glucose concentration at 10 g/L were the controlled parameters. The maximum specific hydrogen production rate and the hydrogen yield found from this study were 146 mmol H2/L.d and 1.67 mol H2/mol glucose. The maximum hydrogen composition was 83%. Following a thermal treatment, the culture was active without adding fresh inoculum in the subsequent feeding and both the hydrogen yield and the hydrogen production rate were improved. For all sequences, the soluble metabolites were dominated by the presence of butyric and acetic acids compared to other volatile fatty acids. The results from the standard biohydrogen production (BHP) test which was conducted using samples from TBSBR as inoculum confirmed that the culture generated more biogas and hydrogen compared to the pure strain of C. butyricum CWBI1009. The effect of biofilm activity was studied by completely removing (100%) the mixed liquid and by adding fresh medium with glucose. For three subsequent sequences, similar results were recorded as in the previous sequences with 40% removal of spent medium. The TBSBR biofilm density varied from top to bottom in the packing bed and the highest biofilm density was found at the bottom plates. Moreover, no clogging was evidenced in this packing material, which is characterized by a relatively high specific surface area. Following a PCA test, contaminants of the Bacillus genus were isolated and a standard BHP test was conducted, resulting in no hydrogen production. [less ▲]

Detailed reference viewed: 130 (16 ULg)