References of "Delvigne, Frank"
     in
Bookmark and Share    
Peer Reviewed
See detailEnhanced biomass production of a novel Acetobacter strain isolated from Moroccan biotopes using response surface methodology approach
Mounir, Majid ULg; Hamas, Khadija; Tamraoui, Khadija et al

Conference (2016, March 21)

The objective of this work was first the isolation of novel acetic acid bacteria strains from natural Moroccan habitats, and then, the evaluation of their ability to produce microbial starters for vinegar ... [more ▼]

The objective of this work was first the isolation of novel acetic acid bacteria strains from natural Moroccan habitats, and then, the evaluation of their ability to produce microbial starters for vinegar production in large-scale. The isolation was made from figs, dates, cactus, and traditional fruit vinegars. Four strains, selected from a total of 63 isolates were confirmed to be belonged to Acetobacter species according to biochemical tests and molecular study based on 16s rDNA sequence analysis. Acetic acid fermentation tests, performed on date and apple fermented juices by the selected Acetobacter strains, showed high capacity of acidification. The most efficient strain, isolated from cactus vinegar, yielded an acidity of about 42.5 g/L on apple juice. A cell growth optimization was carried out on the most efficient strain using the response surface methodology (RSM). The linear, quadratic and interaction effects of four factors; ethanol, acetic acid, glucose and pH were studied by the application of a central composite design. 30 experiments were designed to predict the maximum concentration of cell biomass. The optimal calculated values of ethanol, acetic acid, glucose and pH allowing the prediction of the maximum biomass production (2.2 g/L) were 28.18 g/L, 10.12 g/L, 15.15 g/L and 5.33, respectively. Subsequently, further batch fermentations were carried out in a 6 L lab-bioreactor using the optimased culture medium. The results were in line with the predict values. It was concluded that the studied strain is well suited to be used as parental strain to prepare a starter for vinegar fruit production. [less ▲]

Detailed reference viewed: 62 (6 ULg)
Full Text
Peer Reviewed
See detailProduction of two entomopathogenic Aspergillus species and insecticidal activity against the mosquito Culex quinquefasciatus compared to Metarhizium anisopliae
Bawin, Thomas ULg; Seye, Fawrou; Boukraa, Slimane ULg et al

in Biocontrol Science & Technology (2016), 26(5), 617-629

Entomopathogenic micro-organisms including fungi have become increasingly studied for integrated pest management. The spore productivity and insecticidal activity of two opportunistic insect pathogenic ... [more ▼]

Entomopathogenic micro-organisms including fungi have become increasingly studied for integrated pest management. The spore productivity and insecticidal activity of two opportunistic insect pathogenic Aspergillus species (namely: Aspergillus clavatus Desmazieres and Aspergillus flavus Link (Ascomycota: Eurotiales, Trichocomaceae)) were compared to Metarhizium anisopliae sensu lato (Metchnikoff) Sorokin (Ascomycota: Hypocreales, Clavicipitaceae) for mosquito (Diptera: Culicidae) control. The production of aerial spores on wheat bran and white rice was investigated in solid-, semi-solid-, and liquid-state media supplemented with a nutritive solution. Wheat bran-based media were suitable for spore production and increased the spore yield in solid-state from 3 to 7 fold: A. clavatus produced 48.4 ± 5.2 and 15.7 ± 1.6 x 10^8 spores/g, A. flavus produced 22.3 ± 4.1 and 3.1 ± 2.5 x 10^8 spores/g, and M. anisopliae produced 39.6 ± 6.5 and 13.1 ± 2.6 x 10^8 spores/g of wheat bran or white rice, respectively. A. clavatus, A. flavus and M. anisopliae spores harvested from wheat bran-based solid-state media showed lethal concentrations (LC50) of 1.1, 1.8, and 1.3 x 10^8 spores/ml against Culex quinquefasciatus Say larvae in 72 h. Because A. clavatus and M. anisopliae displayed similar features when cultured under these conditions, our results suggest that insect pathogenic Aspergillus species may be as productive and virulent against mosquito larvae as a well-recognized entomopathogenic fungus. Wheat bran could advantageously be used in large-scale fermentation for a possible cost-effective pest control using these fungi. [less ▲]

Detailed reference viewed: 81 (17 ULg)
Full Text
Peer Reviewed
See detailFrom Valeriana officinalis to cancer therapy: the success of a bio-sourced compound
Hamaïdia, Malik ULg; Barez, Pierre-Yves ULg; Carpentier, Alexandre ULg et al

in Biotechnologie, Agronomie, Société et Environnement = Biotechnology, Agronomy, Society and Environment (2016), 20

Over the centuries, bio-sourced compounds isolated from plants, insects and microorganisms have been a potent source of drugs for the treatment of human diseases. In this review, we recapitulate the story ... [more ▼]

Over the centuries, bio-sourced compounds isolated from plants, insects and microorganisms have been a potent source of drugs for the treatment of human diseases. In this review, we recapitulate the story of one of these compounds, 2-propylpentanoic acid, derived from the Valeriana officinalis flowering plant and its path to validation as a cancer treatment. [less ▲]

Detailed reference viewed: 198 (53 ULg)
Full Text
Peer Reviewed
See detailNew perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste
Tarayre, Cédric ULg; De Clercq, Lies; Charlier, Raphaëlle et al

in Bioresource Technology (2016), 206

Phosphate rock has long been used for the production of phosphorus based chemicals. However, considering the depletion of the reservoirs and the decrease of the quality of phosphate rocks, a potential ... [more ▼]

Phosphate rock has long been used for the production of phosphorus based chemicals. However, considering the depletion of the reservoirs and the decrease of the quality of phosphate rocks, a potential market is now emerging for the recovery of phosphate from waste and its reuse for different applications. Notably, phosphate recovery from wastewater could be included in a circular economy approach. This review focuses on the use of microbial systems for phosphorus accumulation and recovery, by considering the actual range of analytical techniques available for the monitoring of phosphorus accumulating organisms, as well as the actual biochemical and metabolic engineering toolbox available for the optimization of bioprocesses. In this context, knowledge gathered from process, system and synthetic biology could potentially lead to innovative process design. [less ▲]

Detailed reference viewed: 38 (3 ULg)
Full Text
Peer Reviewed
See detailCharacterization and Evaluation of the Potential of a Diesel-Degrading Bacterial Consortium Isolated from Fresh Mangrove Sediment
Semboung Lang, Firmin ULg; Destain, Jacqueline ULg; Delvigne, Frank ULg et al

in Water, Air & Soil Pollution (2016)

Hydrocarbons are ubiquitous and persistent organic pollutants in the environment. In wetlands and marine environments, particularly in mangrove ecosystems, their increase and significant accumulation ... [more ▼]

Hydrocarbons are ubiquitous and persistent organic pollutants in the environment. In wetlands and marine environments, particularly in mangrove ecosystems, their increase and significant accumulation result from human activities such as oil and gas exploration and exploitation operations. Remediation of these ecosystems requires the development of adequate and effective strategies. Natural attenuation, biostimulation, and bioaugmentation are all biological soil treatment techniques that can be adapted to mangroves. Our experiments were performed on samples of fresh mangrove sediments from the Cameroon estuary and mainly from the Wouri River in Cameroon. This study aims to assess the degradation potential of a bacterial consortium isolated from mangrove sediment. The principle of our bioremediation experiments is based on a series of tests designed to evaluate the potential of an active indigenous microflora and three exogenous pure strains, to degrade diesel with/without adding nutrients. The experiments were conducted in laboratory flasks and a greenhouse in microcosms. In one case, as in the other, the endogenous microflora showed that it was able to degrade diesel. Under stress of the pollutant, the endogenous microflora fits well enough in the middle to enable metabolism of the pollutant. However, the Rhodococcus strain was more effective over time. The degradation rate was 77 and 90%in the vials containing the sterile sediments and non-sterile sediments, respectively. The results are comparable with those obtained in the microcosms in a greenhouse where only the endogenous microflora were used. The results of this study show that mangrove sediment contains an active microflora that can metabolize diesel. Indigenous and active microflora show an interesting potential for diesel degradation. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
Peer Reviewed
See detailFlow cytometry community fingerprinting and amplicon sequencing for the assessment of landfill leachate cellulolytic bioaugmentation
Kinet, Romain ULg; Dzaomuho, Phidias; Baert, Jonathan ULg et al

in Bioresource Technology (2016)

Flow cytometry (FCM) is a high throughput single cell technology that is actually becoming widely used for studying phenotypic and genotypic diversity among microbial communities. This technology is ... [more ▼]

Flow cytometry (FCM) is a high throughput single cell technology that is actually becoming widely used for studying phenotypic and genotypic diversity among microbial communities. This technology is considered in this work for the assessment of a bioaugmentation treatment in order to enhance cellulolytic potential of landfill leachate. The experimental results reveal the relevant increase of leachate cellulolytic potential due to bioaugmentation. Cytometric monitoring of microbial dynamics along these assays is then realized. The Flow FP package is used to establish microbial samples fingerprint from initial 2D cytometry histograms. This procedure allows highlighting microbial communities' variation along the assays. Cytometric and 16S rRNA gene sequencing fingerprinting methods are then compared. The two approaches give same evidence about microbial dynamics throughout digestion assay. There are however a lack of significant correlation between cytometric and amplicon sequencing fingerprint at genus or species level. Same phenotypical profiles of microbiota during assays matched to several 16S rRNA gene sequencing ones. Flow cytometry fingerprinting can thus be considered as a promising routine on-site method suitable for the detection of stability/variation/disturbance of complex microbial communities involved in bioprocesses. [less ▲]

Detailed reference viewed: 44 (13 ULg)
Full Text
Peer Reviewed
See detailCharacterization and Evaluation of the Potential of a Diesel-Degrading Bacterial Consortium Isolated from Fresh Mangrove Sediment
Lang, Firmin Semboung; Destain, Jacqueline ULg; Delvigne, Frank ULg et al

in Water, Air & Soil Pollution (2016), 227(2), 1-20

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailBiodegradation of Polycyclic Aromatic Hydrocarbons in Mangrove Sediments Under Different Strategies: Natural Attenuation, Biostimulation, and Bioaugmentation with Rhodococcus erythropolis T902.1
Lang, F. S.; Destain, Jacqueline ULg; Delvigne, Frank ULg et al

in Water, Air & Soil Pollution (2016), 227(9),

Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and ... [more ▼]

Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and their solubility. Their removal also depends on environmental factors, such as pH, temperature, oxygen, and the ability of the endogenous or exogenous microflora to metabolize hydrocarbons. With the aim of treating mangrove sediments polluted by hydrocarbons in a biological way, a biodegradation experiment was conducted using mangrove sediments artificially contaminated with a mixture of four PAHs. The study used Rhodococcus erythropolis as an exogenous bacterial strain in order to assess the biodegradation of the PAH mixture by natural attenuation, biostimulation, bioaugmentation, and a combination of biostimulation and bioaugmentation. The results showed that the last three treatments were more efficient than natural attenuation. The biostimulation/bioaugmentation combination proved to be the most effective PAH degradation treatment. © 2016, Springer International Publishing Switzerland. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailDeciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica.
Sassi, Hosni; Delvigne, Frank ULg; Nicaud, Jean-Marc et al

in Microbial Cell Factories (2016), 15(1), 159

Detailed reference viewed: 26 (7 ULg)
Full Text
Peer Reviewed
See detailInfluence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate.
Carly, F.; Niu, H.; Delvigne, Frank ULg et al

in Journal of industrial microbiology & biotechnology (2016), 43(4), 517-23

High Pichia pastoris biomass density could be obtained using high co-feeding rate of methanol and sorbitol in a fed-batch or continuous culture, while further higher feeding rate finally leads to oxygen ... [more ▼]

High Pichia pastoris biomass density could be obtained using high co-feeding rate of methanol and sorbitol in a fed-batch or continuous culture, while further higher feeding rate finally leads to oxygen limitation in bioreactor. In the literature, there is lack of report about AOX1 promoter regulation with regard to dissolved oxygen level (DO). Therefore, in this work, chemostat cultures were performed to investigate the cell growth, metabolism and regulation of the AOX1 promoter (pAOX1) regarding co-feeding rate of optimized methanol/sorbitol mixture (methanol fraction 0.60 C-mol/C-mol) using a P. pastoris Mut+/pAOX1-lacZ strain. The oxygen transfer rates (OTR) in bioreactor were kept in the range of typical values of large bioreactor, i.e., 4-8 g/(L h) if DO equals 30 % saturation or 5-10 g/(L h) if DO nears zero. For DO >0, an increase of the carbon fed led to an increase of pAOX1 induction. By contrast, when dissolved oxygen was completely depleted, methanol accumulated, causing a 30 % decrease of pAOX1 induction. However, this decrease is more likely to be lined to methanol accumulation than to low level of dissolved oxygen (<4 % DO). Methanol/sorbitol co-feeding allowed cells to adapt to oxygen transient limitations that often occur at industrial scale with reduced effect on pAOX1 induction. The optimal feeding rate tested here was 6.6 mmol C (DCW h)(-1) at an OTR of 8.28 g O2(L h)(-1) with over fivefold pAOX1 induction (probably directly associated with target protein productivity) compared with previous work. [less ▲]

Detailed reference viewed: 70 (7 ULg)
Full Text
See detailTechniques for nutrient recovery from manure and slurry
Camargo-Valero, Miller; De Clercq, Lies; Delvigne, Frank ULg et al

Report (2015)

Detailed reference viewed: 39 (1 ULg)
Full Text
See detailTechniques for nutrient recovery from digestate derivatives
Bamelis, Lies; Blancke, Stieven; Camargo-Valero, Miller et al

Report (2015)

Detailed reference viewed: 17 (0 ULg)
Full Text
See detailTechniques for nutrient recovery from household and industrial wastes
Camargo-Valero, Miller; Bamelis, Lies; De Clercq, Lies et al

Report (2015)

Detailed reference viewed: 18 (4 ULg)
Full Text
Peer Reviewed
See detailFungal biofilm reactor improves the quality of a fusion protein GLA::GFP produced by Aspergillus oryzae
Zune, Quentin ULg; Delepierre, Anissa ULg; Bauwens, Julien ULg et al

Poster (2015, October)

Fungal biofilm is known to promote the excretion of secondary metabolites, in accordance with solid-state related physiological mechanisms. In this work, the potentialities of fungal biofilm will be ... [more ▼]

Fungal biofilm is known to promote the excretion of secondary metabolites, in accordance with solid-state related physiological mechanisms. In this work, the potentialities of fungal biofilm will be investigated in the context of the production of a Gla::GFP fusion protein by Aspergillus oryzae. Since the production of this protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, biofilm mode of culture is expected to enhance the global productivity. However, we found that the glaB promoter is also activated in submerged bioreactor and the fusion protein production is higher in this mode of culture. This result is related to the high shear stress leading to biomass autolysis and leakage of intracellular fusion protein into the extracellular medium. Moreover, 2D-gel electrophoresis highlights preservation of the fusion protein integrity produced in biofilm conditions whereas proteolysis strongly affects fusion protein recovery in the submerged cultures performed at high stirring rate. Fungal biofilm reactor design was then further investigated and the scale-up potentialities were evaluated. Indeed, the specific design investigated in this work involves the use of metal structured packing exhibiting a high specific area and that can be easily expanded to large-scale bioprocessing conditions. [less ▲]

Detailed reference viewed: 102 (24 ULg)