References of "Deleu, Magali"
     in
Bookmark and Share    
Peer Reviewed
See detailExperimental and in silico approaches to study the interaction of Remorin with plant plasma membrane : specific interaction of the C-term domain with lipids
Deleu, Magali ULg; Nasir, Mehmet Nail ULg; Gronnier, Julien et al

Conference (2015, September 29)

The function of Remorins, a diverse family of plant-specific proteins (1) is far to be fully elucidated. One of them, StREM1.3 (for Solanum tuberosum Remorin from group 1, homolog 3) has been reported to ... [more ▼]

The function of Remorins, a diverse family of plant-specific proteins (1) is far to be fully elucidated. One of them, StREM1.3 (for Solanum tuberosum Remorin from group 1, homolog 3) has been reported to regulate cell-to-cell propagation of the potato virus X (2). It was also shown to be localized to the inner leaflet of plasma membranes (PMs) and along plasmodesmata, bridges connecting neighbor cells essential for cell-to-cell communication in plants (3). The mechanisms driving StREM1.3 association with PM is still an open question. It was shown recently that a domain of 28 residues at the C-terminus of the potato (RemCA) is required and sufficient for anchoring to the PM (4). Here we combined experimental and in silico biophysics to unravel the molecular bases of RemCA membrane binding. Biomimetic membrane models of plant PM such as monolayers and liposomes were used with various biophysical techniques (Langmuir monolayer technique, Fourier-transformed infrared spectroscopy, circular dichroïsm) and modeling tools (home-made methods and molecular dynamics) (5) to answer to three questions: (i) What is the conformation adopted by RemCA within a membrane?, (ii) Is there any membrane lipid specificity in the RemCA-membrane binding? (iii) What is the role of the two different RemCA domains in the interaction? Results show that RemCA displays a preference for plant phosphoinositide and sitosterol-enriched inner leaflet plasma membrane rafts. Within the membrane, the C-terminal and the N-terminal domains adopt a random coil and a -helical conformation respectively. The C-terminal domain acts as a driver to bind RemCA to the membrane while the N-terminal domain stabilizes the peptide at the membrane. Lysine residues have a crucial importance in this interaction. References (1) Raffaele et al., Plant Physiol., 2007, 145: 593–600 (2) Raffaela et al., Plant Cell, 2009, 21: 1541–1555. (3) Maule, Curr. Opin. Plant Biol., 2008, 11: 680–686. (4) Perraki et al., Plant Physiology, 2012, 160 : 624-637. (5) Deleu et al., Biochim. Biophys. Acta – Biomembranes, 2014, 1838 : 3171-3190. [less ▲]

Detailed reference viewed: 69 (6 ULg)
Full Text
See detailElicitor screening to protect wheat against Zymoseptoria tritici
Le Mire, Géraldine ULg; SIAH, ALI; Deleu, Magali ULg et al

Conference (2015, August 27)

Plants face an array of biotic and abiotic stresses in their environment, making it necessary to use various chemical inputs to maintain satisfactory yield. Today, conventional agriculture is evolving ... [more ▼]

Plants face an array of biotic and abiotic stresses in their environment, making it necessary to use various chemical inputs to maintain satisfactory yield. Today, conventional agriculture is evolving towards more sustainable practices, out of respect for human health and the environment. Elicitors are considered as promising biological control tools and draw major interest in IPM strategies. These plant-immunity triggering compounds, also called “stimulators of plant natural defenses”, induce a general and systemic resistance in the plant to various diseases. Although numerous elicitors have already been identified and some of them reached the market since the late 1970s, further investigations are still required to better understand the mode of action of these molecules in the plant and ensure a consistent efficiency under various field conditions. Few elicitors have yet been successfully tested and formulated to protect monocotyledonous crop plants such as wheat, which is cultivated over large areas in Europe. This study focuses on the screening of ten potential elicitor products of various origins and structures to protect winter wheat against the fungal pathogen Zymoseptoria tritici. Greenhouse trials were carried out to measure the ability of the different products to reduce disease foliar symptoms (necrosis, chlorosis and pycnidia). Topical spraying treatments with 3 different concentrations of each product were carried out 5 days before pathogen inoculation. Disease severity (% of symptoms on the total surface of the third leaf) was then scored every 2 days up to 28 days post-inoculation. In addition, phytotoxicity and biocide activity of these products was evaluated under greenhouse and laboratory conditions, respectively. The corresponding results will be presented and discussed with the perspective to choose the best elicitor candidates and to undertake investigations on the signaling pathway and the influence of environmental parameters on the elicitation capacity. [less ▲]

Detailed reference viewed: 57 (10 ULg)
Full Text
Peer Reviewed
See detailSpectrofluorimetric and Zeta potential studies of alkylbetainate chloreide surfactants interaction with model membranes
Nsimba Zakanda, Francis; Lins, Laurence ULg; Razafindralambo, Hary et al

in Journal of Colloid Science and Biotechnology (2015), 4

Detailed reference viewed: 61 (16 ULg)
Full Text
See detailScreening for interesting elicitors to protect wheat against Zymoseptoria tritici
Le Mire, Géraldine ULg; Siah, Ali; Fauconnier, Marie-Laure ULg et al

Conference (2015, May 19)

Plants face an array of biotic and abiotic stresses in their environment, making it necessary to use various chemical inputs to maintain satisfactory yield. Today, conventional agriculture is evolving ... [more ▼]

Plants face an array of biotic and abiotic stresses in their environment, making it necessary to use various chemical inputs to maintain satisfactory yield. Today, conventional agriculture is evolving towards more sustainable practices, out of respect for human health and the environment. Elicitors are considered as promising biological control tools and draw major interest in IPM strategies. These plant-immunity triggering compounds, also called “stimulators of plant natural defenses”, induce a general and systemic resistance in the plant to various diseases. Although numerous elicitors have already been identified and some of them reached the market since the late 1970s, further investigations are still required to better understand the mode of action of these molecules in the plant and ensure a consistent efficiency under various field conditions. Few elicitors have yet been successfully tested and formulated to protect crop plants such as wheat, which is cultivated over large areas in Europe. This study focuses on the screening of ten potential elicitor products of various origins and structures to protect winter wheat against the fungal pathogen Zymoseptoria tritici. Greenhouse trials were carried out to measure the ability of the different products to reduce disease foliar symptoms (necrosis, chlorosis and pycnidia). In addition, the phytotoxicity and biocide activities of these products were evaluated under greenhouse and laboratory conditions, respectively. The corresponding results will be presented and discussed with the perspective to choose the best elicitor candidates and to undertake investigations on the signaling pathway and the influence of environmental parameters on the elicitation capacity. [less ▲]

Detailed reference viewed: 99 (26 ULg)
Peer Reviewed
See detailSurfactin: a receptor-independent bacterial elicitor of plant immunity?
Luzuriaga Loaiza, Walter ULg; Legras, Aurelien; Crowet, Jean-Marc ULg et al

Poster (2015, May 13)

Detailed reference viewed: 46 (3 ULg)
Peer Reviewed
See detailD-Xylose and L-Rhamnose Based Surfactants with Original Properties
Firmin, Obounou Akong; De Gaetano, Yannick; Nasir, Mehmet Nail ULg et al

Conference (2015, April 04)

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailInteractions of natural rhamnolpids produced by Pseudomonas aeruginosa with plant model membranes
Polo Lozano, Damien ULg; Nasir, Mehmet Nail ULg; Deleu, Magali ULg et al

Poster (2015, January 30)

It is well known that chemical pesticides have harmful effects on human health and environment. In this context, the interest for alternative products such as biopesticides is increasing. Among them ... [more ▼]

It is well known that chemical pesticides have harmful effects on human health and environment. In this context, the interest for alternative products such as biopesticides is increasing. Among them, elicitors act on the plants by inducing systemic resistance against diseases caused by fungal, viral, bacterial agents and insects. Rhamnolipids are surface active molecules produced mainly by various strains of the bacterium Pseudomonas aeruginosa. These secondary metabolites are composed of one to three fatty acids with various chain lengths linked through a glycosidic bond to one or two rhamnose moieties. The fatty acids are linked together through an ester bond. These molecules have shown several biological activities including plant defense stimulation. It has been suggested that this elicitor activity could be related to an interaction of rhamnolipids with the lipid bilayer of the plant plasma membrane (PPM) and lead to its destabilization, which can activate the plant defense signaling pathways. In this context, interactions of two rhamnolipids (Rha-C10-C10 and Rha-Rha-C10-C10) with biomimetic membranes of PPM such as Langmuir monolayers and multilayers were investigated using biophysical and in silico approaches. [less ▲]

Detailed reference viewed: 100 (12 ULg)
Full Text
See detailBiochemical methane potential of residues of three banana varieties from Cameroon : fresh and dry peduncles
Awedem wobiwo, Florent; Happi Emaga, Thomas; Fokou, Elie et al

Poster (2015, January 30)

In Cameroon , the ratio of energy cost to standard of living for both electric and fuel energy is higher than in USA and EU. The local energy needs could be met by valorizing local wastes in an ... [more ▼]

In Cameroon , the ratio of energy cost to standard of living for both electric and fuel energy is higher than in USA and EU. The local energy needs could be met by valorizing local wastes in an environmentally and economically sustainable way. Banana and plantain plants produce significant quantities of post-harvest biomass wastes such as bulbs, pseudo stems, leaf sheaths, petioles–midribs, leaf blades, peduncles, rachis and blossoms which can be converted to methane-rich biogas by anaerobic digestion (AD). AD is a natural process of degradation of organic materials. [less ▲]

Detailed reference viewed: 112 (5 ULg)
Full Text
Peer Reviewed
See detailGenotype contribution to the chemical composition of banana rachis and implications for thermo/biochemical conversion
Tiappi Deumaga, Mathias Florian; Happi Emaga, Thomas; Tchokouassom, Raphael et al

in Biomass Conversion and Biorefinery (2015), 5(4), 409-416

Chemical composition of banana rachis from three varieties (Grande naine, Pelipita, and CRBP969) was ana- lyzed, and the genotype contribution to composition variabil- ity was investigated. Wet chemistry ... [more ▼]

Chemical composition of banana rachis from three varieties (Grande naine, Pelipita, and CRBP969) was ana- lyzed, and the genotype contribution to composition variabil- ity was investigated. Wet chemistry and instrumental analysis procedures (X-ray diffraction, 31P NMR spectroscopy, and thermogravimetry) were used. Some significant differences were found among the three genotypes: GN-AAA genotype was found to be significantly the highest in ash fraction (30.16 %) and the lowest in acid insoluble lignin (6.58 %) at 95 % confidence level. It showed also the highest content in potassium (43.5 % in ash). Implication of compositional dif- ferences on valorization efficiency by biochemical or thermo- chemical pathways was investigated. For this purpose, corre- lation coefficients between compositional characteristics and yields in volatile compounds from pyrolysis and glucose yields from enzymatic saccharification were analyzed. Ash content was revealed to be the main drawback parameter for volatile yields from pyrolysis (r = −0.93), while for glucose yields during saccharification were limited mainly by the con- tent in guaiacyl units of the lignin fraction (r = −0.98). How- ever, a strong and positive correlation was established be- tween the volatiles yield and the acid insoluble lignin content (r = 0.98) Thus, according to these observations and based on their compositional significant differences, GN-AAA was the better candidate for bioconversion pathway while PPT-ABB and CRBP969-AAAB samples were shown to be better can- didates for thermochemical conversion pathway. This work gives important preliminary information for considering ba- nana rachis as an interesting feedstock candidate for biorefinery. [less ▲]

Detailed reference viewed: 107 (40 ULg)
Full Text
Peer Reviewed
See detailA Stereocontrolled Synthesis of the Hydrophobic Moiety of Rhamnolipids
Menhour, Boudjema; Mayon, Patrick; Plé, Karen et al

in Tetrahedron Letters (2015), 56

Detailed reference viewed: 71 (4 ULg)