References of "Defise, Jean-Marc"
     in
Bookmark and Share    
Full Text
See detailSWAP: a novel EUV telescope for space weather
Defise, Jean-Marc ULg; Halain, Jean-Philippe ULg; Berghmans, David et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2007, September 01)

The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is being developed to be part of the PROBA2 payload, an ESA technological mission to be launched in early 2008 ... [more ▼]

The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is being developed to be part of the PROBA2 payload, an ESA technological mission to be launched in early 2008. SWAP is directly derived from the concept of the EIT telescope that we developed in the '90s for the SOHO mission. Several major innovations have been introduced in the design of the instrument in order to be compliant with the requirements of the PROBA2 mini-satellite: compactness with a new of-axis optical design, radiation resistance with a new CMOS-APS detector, a very low power electronics, an athermal opto-mechanical system, optimized onboard compression schemes combined with prioritization of collected data, autonomy with automatic triggering of observation and off-pointing procedures in case of Solar event occurrence, ... All these new features result from the low resource requirements (power, mass, telemetry) of the mini-satellite, but also take advantage of the specificities of a modern technological platform, such as quick pointing agility, new powerful on-board processor, Packetwire interface and autonomous operations. These new enhancements will greatly improve the operations of SWAP as a space weather sentinel from a low Earth orbit while the downlink capabilities are limited. This paper summarizes the conceptual design, the development and the qualification of the instrument, the autonomous operations and the expected performances for science exploitation. [less ▲]

Detailed reference viewed: 60 (7 ULg)
Full Text
See detailSTEREO: Heliospheric Imager design, pre-flight, and in-flight response comparison
Halain, Jean-Philippe ULg; Mazy, Emmanuel ULg; Defise, Jean-Marc ULg et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2007, September 01)

The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO observatories launched in October 2006. The two HI instruments provide stereographic image pairs of solar ... [more ▼]

The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO observatories launched in October 2006. The two HI instruments provide stereographic image pairs of solar coronal plasma and coronal mass ejections (CME) over a field of view ranging from 13 to 330 R[SUB]0[/SUB]. The HI instrument is a combination of two refractive optical systems with a two stage multi-vane baffle system. The key challenge of the instrument design is the rejection of the solar disk light by the front baffle, with total straylight attenuation at the detector level of the order of 10[SUP]-13[/SUP] to 10[SUP]-15[/SUP]. Optical systems and baffles were designed and tested to reach the required rejection. This paper presents the pre-flight optical tests performed under vacuum on the two HI flight models in flight temperature conditions. These tests included an end-to-end straylight verification of the front baffle efficiency, a co-alignment and an optical calibration of the optical systems. A comparison of the theoretical predictions of the instrument response and performance with the calibration results is presented. The instrument in-flight photometric and stray light performance are also presented and compared with the expected results. [less ▲]

Detailed reference viewed: 28 (2 ULg)
See detailIn-orbit verification, calibration, and performance of the Heliospheric Imager on the STEREO mission
Eyles, Chris; Davis, Chris; Harrison, Richard et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2007)

The Heliospheric Imager (HI) forms part of the SECCHI suite of instruments aboard the two NASA STEREO spacecraft which were launched successfully from Cape Canaveral AFB on 25 Oct 2006 (26 Oct UTC ... [more ▼]

The Heliospheric Imager (HI) forms part of the SECCHI suite of instruments aboard the two NASA STEREO spacecraft which were launched successfully from Cape Canaveral AFB on 25 Oct 2006 (26 Oct UTC). Following lunar swingby's on 15 Dec and 21 Jan respectively, the two spacecraft were placed in heliocentric orbits at approximately 1 AU - one leading and one lagging the Earth, with each spacecraft separating from the Earth by 22.5° per year. Each HI instrument comprises two wide-angle optical cameras - HI-1 and HI-2 have 20° and 70° fields-of-view which are off-pointed from the Sun direction by 14.0° and 53.7° respectively, with the optical axes pointed towards the ecliptic plane. In this way the cameras will for the first time provide stereographic images of the solar corona, and in particular of Coronal Mass Ejections (CMEs) as they propagate outwards through interplanetary space towards the Earth and beyond. The wide-field coverage of HI enables imaging of solar ejecta from 15 to about 330 solar radii whilst the other SECCHI instruments (2 coronagraphs and an EUV imager) provide coverage from the lower corona out to 15 solar radii. This paper briefly reviews the design and performance requirements for the instrument. The various activation, checkout and calibration activities before and after opening the instrument's protective cover or door (instrument 'first-light') are then described and it is shown that the instrument has met the design requirements, including CCD and camera imaging performance, correction for shutterless operation of the cameras, straylight rejection and thermal requirements. It is demonstrated from observations of a CME event on 24-25 Jan 2007 that the instrument is capable of detecting CMEs at an intensity of 1% of the coronal background. Lessons learnt during the design, development and in-orbit operation of the instrument are discussed. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailFirst Imaging of Coronal Mass Ejections in the Heliosphere Viewed from Outside the Sun Earth Line
Harrison, Richard A; Davis, Christopher J; Eyles, Christopher J et al

in Solar Physics (2007), 247

We show for the first time images of solar coronal mass ejections (CMEs) viewed using the Heliospheric Imager (HI) instrument aboard the NASA STEREO spacecraft. The HI instruments are wide-angle imaging ... [more ▼]

We show for the first time images of solar coronal mass ejections (CMEs) viewed using the Heliospheric Imager (HI) instrument aboard the NASA STEREO spacecraft. The HI instruments are wide-angle imaging systems designed to detect CMEs in the heliosphere, in particular, for the first time, observing the propagation of such events along the Sun Earth line, that is, those directed towards Earth. At the time of writing the STEREO spacecraft are still close to the Earth and the full advantage of the HI dual-imaging has yet to be realised. However, even these early results show that despite severe technical challenges in their design and implementation, the HI instruments can successfully detect CMEs in the heliosphere, and this is an extremely important milestone for CME research. For the principal event being analysed here we demonstrate an ability to track a CME from the corona to over 40 degrees. The time altitude history shows a constant speed of ascent over at least the first 50 solar radii and some evidence for deceleration at distances of over 20 degrees. Comparisons of associated coronagraph data and the HI images show that the basic structure of the CME remains clearly intact as it propagates from the corona into the heliosphere. Extracting the CME signal requires a consideration of the F-coronal intensity distribution, which can be identified from the HI data. Thus we present the preliminary results on this measured F-coronal intensity and compare these to the modelled F-corona of Koutchmy and Lamy ( IAU Colloq. 85, 63, 1985). This analysis demonstrates that CME material some two orders of magnitude weaker than the F-corona can be detected; a specific example at 40 solar radii revealed CME intensities as low as 1.7×10[SUP]-14[/SUP] of the solar brightness. These observations herald a new era in CME research as we extend our capability for tracking, in particular, Earth-directed CMEs into the heliosphere. [less ▲]

Detailed reference viewed: 22 (2 ULg)
Full Text
See detailInnovative designs for the imaging suite on Solar Orbiter
Auchere, Frederic; Song, Xueyen; Rouesnel, Frederic et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2005, August 01)

Orbiting around the Sun on an inclined orbit with a 0.2 UA perihelion, the Solar Orbiter probe will provide high resolution views of the Sun from various angles unattainable from Earth. Together with a ... [more ▼]

Orbiting around the Sun on an inclined orbit with a 0.2 UA perihelion, the Solar Orbiter probe will provide high resolution views of the Sun from various angles unattainable from Earth. Together with a set of high resolution imagers, the Full Sun Imager is part of the EUV Imaging suite of the Solar Orbiter mission. The mission's ambitious characteristics draw severe constraints on the design of these instruments. We present a photometrically efficient, compact, and lightweight design for the Full Sun Imager. With a 5 degrees field of view, this telescope will be able to see the global solar coronal structure from high viewing angles. Thermal solutions reducing the maximum power trapped in the High Resolution Imagers are also proposed. [less ▲]

Detailed reference viewed: 41 (3 ULg)
Full Text
See detailSolar Concentrator
Habraken, Serge ULg; Defise, Jean-Marc ULg; Collette, Jean-Paul ULg

Patent (2005)

A concentrator based on a combination of Fresnel lens and mirror to incresa the efficiency and uniformity

Detailed reference viewed: 34 (2 ULg)
Full Text
See detailSolar Concentration
Collette, Jean-Paul ULg; Defise, Jean-Marc ULg; Habraken, Serge ULg

Patent (2004)

We propose a solar concentrator based on a combination of Fresnel lens and reflectors. This architecture allows for a better light distribution and a thinner lighweight concentrator.

Detailed reference viewed: 31 (3 ULg)
Full Text
See detailSWAP: Sun watcher with a new EUV telescope on a technology demonstration platform
Defise, Jean-Marc ULg; Lecat, Jean-Hervé ULg; Mazy, Emmanuel ULg et al

in 5th International Conference on Space Optics (2004, June 01)

SWAP (SWAP (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument that has been selected to fly on the PROBA-2 technology demonstration platform, a program of the European ... [more ▼]

SWAP (SWAP (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument that has been selected to fly on the PROBA-2 technology demonstration platform, a program of the European Space Agency (ESA) to be launched in 2006. SWAP is based on an off-axis degraded Ritchey Chretien telescope that will image the EUV solar corona at 19.5 nm on a specifically fabricated extreme ultraviolet (EUV) sensitivity enhanced CMOS APS detector. The optical design and the optical coatings are derived from the Extreme Ultraviolet Imaging Telescope (EIT) operating on-board SOHO since 1995. It has been adapted for a single wavelength telescope with off-axis optics. It allows to use smaller optics and filters, with simple internal baffles avoiding external protruding parts. The superpolished optics will receive a multilayer coating that provides spectral selection centred on 19.5 nm and EUV reflectivity in normal incidence. This compact design is specifically adapted for accommodation on PROBA-2, where mass and envelope requirements are very stringent The SWAP PROBA-2 program will be an opportunity to demonstrate this new optical concept, while it will also validate space remote sensing with APS detectors, as well as on-board image processing capabilities. On the science outcomes, SWAP will provide solar corona images in the Fe XII line on a baselined 2-min cadence. Observations with this specific wavelength allow detecting phenomena, such as solar flares or 'EIT-waves', associated with the early phase of coronal mass ejections. The SWAP data will complement the observations provided by SOHO-EIT, and STEREO-SECCHI. [less ▲]

Detailed reference viewed: 59 (8 ULg)
Full Text
See detailSolar Concentrator
Collette, Jean-Paul ULg; Defise, Jean-Marc ULg; Habraken, Serge ULg

Patent (2004)

A solar concentrator based on multi V shape reflectors is proposed to reduce the PV cell area (and cost). The optimisation is for space concentration purpose but extendable to terrestrial system.

Detailed reference viewed: 48 (6 ULg)
Full Text
See detailMAGRITTE: an instrument suite for the solar atmospheric imaging assembly (AIA) aboard the Solar Dynamics Observatory
Rochus, Pierre ULg; Defise, Jean-Marc ULg; Halain, Jean-Philippe ULg et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2004, February 01)

The Solar Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory will characterize the dynamical evolution of the solar plasma from the chromosphere to the corona, and will follow the ... [more ▼]

The Solar Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory will characterize the dynamical evolution of the solar plasma from the chromosphere to the corona, and will follow the connection of plasma dynamics with magnetic activity throughout the solar atmosphere. The AIA consists of 7 high-resolution imaging telescopes in the following spectral bandpasses: 1215Å. Ly-a, 304 Å He II, 629 Å OV, 465 Å Ne VII, 195 Å Fe XII (includes Fe XXIV), 284 Å Fe XV, and 335 Å Fe XVI. The telescopes are grouped by instrumental approach: the MAGRITTE Filtergraphs (R. MAGRITTE, famous 20th Century Belgian Surrealistic Artist), five multilayer EUV channels with bandpasses ranging from 195 to 1216 Å, and the SPECTRE Spectroheliograph with one soft-EUV channel at OV 629 Å. They will be simultaneously operated with a 10-second imaging cadence. These two instruments, the electronic boxes and two redundant Guide Telescopes (GT) constitute the AIA suite. They will be mounted and coaligned on a dedicated common optical bench. The GTs will provide pointing jitter information to the whole SHARPP assembly. This paper presents the selected technologies, the different challenges, the trade-offs to be made in phase A, and the model philosophy. From a scientific viewpoint, the unique combination high temporal and spatial resolutions with the simultaneous multi-channel capability will allow MAGRITTE / SPECTRE to explore new domains in the dynamics of the solar atmosphere, in particular the fast small-scale phenomena. We show how the spectral channels of the different instruments were derived to fulfill the AIA scientific objectives, and we outline how this imager array will address key science issues, like the transition region and coronal waves or flare precursors, in coordination with other SDO experiments. We finally describe the real-time solar monitoring products that will be made available for space-weather forecasting applications. [less ▲]

Detailed reference viewed: 94 (7 ULg)
Full Text
See detailOptical and mechanical design of a straylight rejection baffle for CoRoT
Plesseria, Jean-Yves ULg; Mazy, Emmanuel ULg; Defise, Jean-Marc ULg et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2003, November 01)

The COROT mission is part of the program "Petites Missions" of CNES (French space agency). It implies international cooperation between France, Belgium, Germany, Austria, Spain and the European Space ... [more ▼]

The COROT mission is part of the program "Petites Missions" of CNES (French space agency). It implies international cooperation between France, Belgium, Germany, Austria, Spain and the European Space Agency (ESA). COROT aims to perform astroseismology measurements and to detect exoplanets. Long duration observations of stars will be used to detect periodic variations with an afocal telescope followed by a dioptric objective and 4 CCDs. Due to the orbit of the spacecraft (low altitude polar orbit) and even if the observation are performed in a direction perpendicular to orbit plane, the measurements can be disturbed by the straylight reflected on the earth (albedo) that can generate periodic perturbation. CSL is in charge of the design and procurement, with the help of Belgian industries, of a baffle and its protective cover that will be mounted on top of the afocal entrance telescope. The requirements are very stringent from the optical point of view as well as from the mechanical point of view. The rejection of the baffle must be of the order of 10[SUP]13[/SUP] for field angles above 20 degrees while the allocated mass is 19 kilograms. [less ▲]

Detailed reference viewed: 61 (2 ULg)
Full Text
Peer Reviewed
See detailOMC: An Optical Monitoring Camera for INTEGRAL - Instrument description and performance
Mas-Hesse, J. M.; Gimenez, A.; Culhane, J. L. et al

in Astronomy and Astrophysics (2003), 411(1), 261-268

The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gammaray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X ... [more ▼]

The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gammaray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X-ray domain. This capability will provide invaluable diagnostic information on the nature and the physics of the sources over a broad wavelength range. Its main scientific objectives are: ( 1) to monitor the optical emission from the sources observed by the gamma- and X-ray instruments, measuring the time and intensity structure of the optical emission for comparison with variability at high energies, and ( 2) to provide the brightness and position of the optical counterpart of any gamma- or X-ray transient taking place within its field of view. The OMC is based on a refractive optics with an aperture of 50 mm focused onto a large format CCD (1024 x 2048 pixels) working in frame transfer mode (1024 x 1024 pixels imaging area). With a field of view of 5degrees x 5degrees it will be able to monitor sources down to magnitude V = 18. Typical observations will perform a sequence of different integration times, allowing for photometric uncertainties below 0.1 mag for objects with V less than or equal to 16. [less ▲]

Detailed reference viewed: 81 (8 ULg)
Full Text
See detailSolar Concentrator
Collette, Jean-Paul ULg; Defise, Jean-Marc ULg; Habraken, Serge ULg

Patent (2003)

A space solar concentrator based on light weight reflectors

Detailed reference viewed: 18 (3 ULg)
Full Text
See detailDesign and tests for the heliospheric imager of the STEREO mission
Defise, Jean-Marc ULg; Halain, Jean-Philippe ULg; Mazy, Emmanuel ULg et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2003, February 01)

The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO spacecrafts to be launched in 2005. The two HI instruments will provide stereographic image pairs of solar ... [more ▼]

The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO spacecrafts to be launched in 2005. The two HI instruments will provide stereographic image pairs of solar coronal plasma and coronal mass ejections (CME) over a wide field of view (~90°), ranging from 13 to 330 R[SUB]0[/SUB]. These observations compliment the 15 R[SUB]0[/SUB] field of view of the solar corona obtained by the other SECCHI instruments (2 coronagraphs and an EUV imager). The key challenge of the instrument design is the rejection of the solar disk light, with total straylight attenuation of the order of 10[SUP]-13 [/SUP]to 10[SUP]-15[/SUP]. A multi-vane diffractive baffle system has been theoretically optimized to achieve the lower requirement (10[SUP]-13[/SUP] for HI-1) and is combined with a secondary baffling system to reach the 10[SUP]-15[/SUP] rejection performance in the second camera system (HI-2). This paper presents the last updates of the SECCHI/HI design concept, with the expected performance. A verification program is currently in progress. The on-going stray-light verification tests are discussed. A set of tests has been conducted in air, and under vacuum. The results are presented and compared with the expected theoretical data. [less ▲]

Detailed reference viewed: 11 (4 ULg)
Full Text
See detailSWAP: Sun watcher using APS detector on-board PROBA-2, a new EUV off-axis telescope on a technology demonstration platform
Defise, Jean-Marc ULg; Berghmans, David; Hochedez, Jean-Francois E et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2003)

SWAP (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument that has been selected to fly on the PROBA-II technology demonstration platform, a program of the European Space ... [more ▼]

SWAP (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument that has been selected to fly on the PROBA-II technology demonstration platform, a program of the European Space Agency (ESA) to be launched in 2006. This paper presents the instrument concept and its scientific goals. SWAP uses an off-axis Ritchey Chretien telescope that will image the EUV solar corona at 19.5 nm on a specifically fabricated extreme ultraviolet (EUV) sensitivity enhanced CMOS APS detector. This type of detector has advantages that promise to be very profitable for solar EUV imaging. The SWAP design is built on a similar concept as the MAGRITTE instrument suite for the NASA Solar Dynamics Observatory (SDO) mission to be launched in 2007. The optics have been adapted to the detector size. The SWAP PROBA-2 program will be an opportunity to demonstrate and validate the optical concept of MAGRITTE, while it will also validate space remote sensing with APS detectors. On the science outcomes, SWAP will provide solar corona images in the Fe XII line on a baselined 1-min cadence. Observations with this specific wavelength allow detecting phenomena, such as solar flares or 'EIT-waves", associated with the early phase of coronal mass ejections. Image recognition software will be developed that automatically detects these phenomena and sends out space weather warnings. Different modules of this software will run both on the ground system as well as on the onboard computer of PROBA II. The SWAP data will complement the observations provided by SOHO-EIT, and STEREO-SECCHI. [less ▲]

Detailed reference viewed: 118 (8 ULg)
Full Text
See detailDesign and tests for the heliospheric imager of the STEREO mission
Defise, Jean-Marc ULg; Halain, Jean-Philippe ULg; Mazy, Emmanuel ULg et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2002)

The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO spacecrafts to be launched in 2005. The two HI instruments will provide stereographic image pairs of solar ... [more ▼]

The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO spacecrafts to be launched in 2005. The two HI instruments will provide stereographic image pairs of solar coronal plasma and coronal mass ejections (CME) over a wide field of view (~90°), ranging from 13 to 330 R[SUB]0[/SUB]. These observations compliment the 15 R[SUB]0[/SUB] field of view of the solar corona obtained by the other SECCHI instruments (2 coronagraphs and an EUV imager). The key challenge of the instrument design is the rejection of the solar disk light, with total straylight attenuation of the order of 10[SUP]-13 [/SUP]to 10[SUP]-15[/SUP]. A multi-vane diffractive baffle system has been theoretically optimized to achieve the lower requirement (10[SUP]-13[/SUP] for HI-1) and is combined with a secondary baffling system to reach the 10[SUP]-15[/SUP] rejection performance in the second camera system (HI-2). This paper presents the last updates of the SECCHI/HI design concept, with the expected performance. A verification program is currently in progress. The on-going stray-light verification tests are discussed. A set of tests has been conducted in air, and under vacuum. The results are presented and compared with the expected theoretical data. [less ▲]

Detailed reference viewed: 37 (2 ULg)
Full Text
See detailDesign of the Heliospheric Imager for the STEREO mission
Defise, Jean-Marc ULg; Halain, Jean-Philippe ULg; Mazy, Emmanuel ULg et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2001, December 01)

The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO spacecrafts to be launched in 2005. The two HI instruments will provide stereographic image pairs of solar ... [more ▼]

The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO spacecrafts to be launched in 2005. The two HI instruments will provide stereographic image pairs of solar coronal plasma and address the observational problem of very faint coronal mass ejections (CME) over a wide field of view (~90 degree(s)) ranging from 13 to 330 R[SUB]0[/SUB]. The key element of the instrument design is to reject the solar disk light, with straylight attenuation of the order of 10[SUP]-13[/SUP] to 10[SUP]-15[/SUP] in the camera systems. This attenuation is accomplished by a specific design of straylight baffling system, and two separate observing cameras with complimentary FOV's cover the wide FOV. A multi-vane diffractive system has been theoretically optimized to achieve the lower requirement (10[SUP]-13[/SUP] for HI-1) and is combined with a secondary baffling system to reach the 10[SUP]-15[/SUP] rejection performance in the second camera system (HI-2). This paper presents the design concept of the HI optics and baffles, and the preparation of verification tests that will demonstrate the instrument straylight performances. The baffle design has been optimized according to accommodation constrains on the spacecraft, and the optics were studied to provide adequate light gathering power and image quality. Straylight has been studied in the complete configuration, including the lens barrels and the focal plane assemblies. A specific testing facility is currently being studied to characterize the effective straylight rejection of the HI baffling. An overview of the developments for those tests is presented. [less ▲]

Detailed reference viewed: 28 (2 ULg)
Full Text
Peer Reviewed
See detailSM98-146/413 Effective Modal Parameters to Evaluate Structural Stresses
Rochus, Pierre ULg; Defise, Jean-Marc ULg; Plesseria, Jean-Yves ULg et al

in Spacecraft Structures, Materials and Mechanical Testing (1999)

Detailed reference viewed: 27 (9 ULg)
Full Text
See detailAnalyse des performances instrumentales du télescope spatial EIT
Defise, Jean-Marc ULg

Doctoral thesis (1999)

Not Available

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailObservations of Coronal Structures Above an Active Region by EIT and Implications for Coronal Energy Deposition
Neupert, W. M.; Newmark, J.; Delaboudinière, J.-P. et al

in Solar Physics (1998), 183

Solar EUV images recorded by the EUV Imaging Telescope (EIT) on SOHO have been used to evaluate temperature and density as a function of position in two largescale features in the corona observed in the ... [more ▼]

Solar EUV images recorded by the EUV Imaging Telescope (EIT) on SOHO have been used to evaluate temperature and density as a function of position in two largescale features in the corona observed in the temperature range of 1.0-2.0MK. Such observations permit estimates of longitudinal temperature gradients (if present) in the corona and, consequently, estimates of thermal conduction and radiative losses as a function of position in the features. We examine two relatively cool features as recorded in EIT's Feix/x (171Å) and Fexii (195Å) bands in a decaying active region. The first is a long-lived loop-like feature with one leg, ending in the active region, much more prominent than one or more distant footpoints assumed to be rooted in regions of weakly enhanced field. The other is a near-radial feature, observed at the West limb, which may be either the base of a very high loop or the base of a helmet streamer. We evaluate energy requirements to support a steady-state energy balance in these features and find in both instances that downward thermal conductive losses (at heights above the transition region) are inadequate to support local radiative losses, which are the predominant loss mechanism. The requirement that a coronal energy deposition rate proportional to the square of the ambient electron density (or pressure) is present in these cool coronal features provides an additional constraint on coronal heating mechanisms. [less ▲]

Detailed reference viewed: 33 (8 ULg)