References of "Debuigne, Antoine"
     in
Bookmark and Share    
Full Text
See detailFacing the problem of the bis(acetylacetonato)cobalt(II)-mediated radical polymerization of acrylates
Hurtgen, Marie ULg; Debuigne, Antoine ULg; Jérôme, Christine ULg et al

Poster (2010, July 13)

Cobalt-Mediated Radical Polymerization (CMRP) is an efficient tool for polymerizing acrylates and vinyl esters. However, a challenge in CMRP remains in controlling the polymerization of both types of ... [more ▼]

Cobalt-Mediated Radical Polymerization (CMRP) is an efficient tool for polymerizing acrylates and vinyl esters. However, a challenge in CMRP remains in controlling the polymerization of both types of monomers with the same cobalt complex. Here, we show how Co(acac)2, efficient for unconjugated vinyl monomers, can also cope with acrylates. [less ▲]

Detailed reference viewed: 37 (3 ULg)
Full Text
Peer Reviewed
See detailDesign of mesoporous carbon fibers from a poly(acrylonitrile) based block copolymer by a simple templating compression moulding process
Thomassin, Jean-Michel ULg; Debuigne, Antoine ULg; Jérôme, Christine ULg et al

in Polymer (2010), 51(14), 2965-2971

Mesoporous carbon fibers were prepared by controlled pyrolysis of poly(vinyl acetate)-b-poly(acrylonitrile) (PVAc-b-PAN) copolymer located inside a cylindrical nanoporous template. A melt-compression ... [more ▼]

Mesoporous carbon fibers were prepared by controlled pyrolysis of poly(vinyl acetate)-b-poly(acrylonitrile) (PVAc-b-PAN) copolymer located inside a cylindrical nanoporous template. A melt-compression method was developed to help the penetration of the infusible copolymer inside the template without the use of any solvent that ensures the formation of completely filled fibers instead of nanotubes. The influence of the composition of the PVAc-b-PAN copolymer and the heating rate during pyrolysis on the porous morphology of the fibers was studied by transmission electron microscopy (TEM). [less ▲]

Detailed reference viewed: 28 (4 ULg)
Full Text
Peer Reviewed
See detailCadmium and copper absorption mediated by a poly(vinyl alcohol)-b-polyacrylonitrile based micelle/Trichosporon cutaneum cell system
Georgieva, Nelly; Bryaskova, Rayna; Debuigne, Antoine ULg et al

in Journal of Applied Polymer Science (2010), 116(5), 2970-2975

The micelles of a recently synthesized copolymer of poly(vinyl alcohol)-b-polyacrylonitrile added to the growth solution of the filamentous yeast Trichosporon cutaneum strain R57 led to the formation of a ... [more ▼]

The micelles of a recently synthesized copolymer of poly(vinyl alcohol)-b-polyacrylonitrile added to the growth solution of the filamentous yeast Trichosporon cutaneum strain R57 led to the formation of a binary system consisting of micelles and cells. The resulting micelle/cell system was studied as a model for the removal of toxic concentrations of heavy-metal ions (cadmium and copper) from aqueous solutions. The ion-removal efficiency mediated by this system was higher than for free-floating cells. The copper-removal efficiency from the solution reached a level of 65% after 24 h of cultivation, whereas the cadmium-removal efficiency reached 62% after 6 h of growth. For comparison, the free-floating cells removed 42% of copper and only 38% of cadmium from the solutions. The effects of surface interactions between the cells and polymer micelles on the biosorption capacity of the cells are discussed in the article. [less ▲]

Detailed reference viewed: 15 (2 ULg)
Full Text
See detailTailor-made polymers by cobalt-mediated radical polymerization
Debuigne, Antoine ULg; Hurtgen, Marie ULg; De Winter, Julien et al

Poster (2010, May 25)

Detailed reference viewed: 47 (9 ULg)
Full Text
See detailPolymérisation radicalaire contrôlée par des complexes de cobalt (CMRP) : Mécanismes et ingénierie macromoléculaire.
Debuigne, Antoine ULg

Scientific conference (2010, May 12)

De nos jours, les avancées dans de nombreux domaines technologiques sont conditionnées par le développement de matériaux polymères possédant des structures et propriétés bien définies. Dans ce contexte ... [more ▼]

De nos jours, les avancées dans de nombreux domaines technologiques sont conditionnées par le développement de matériaux polymères possédant des structures et propriétés bien définies. Dans ce contexte, nous développons une méthode de polymérisation radicalaire contrôlée assistée par des complexes de cobalt(II) (CMRP) et basée sur la désactivation temporaire des chaînes radicalaires par le métal. Outre le mécanisme de la CMRP, nous aborderons son potentiel en ingénierie macromoléculaire, notamment pour la synthèse de copolymères séquencés et la fonctionnalisation des polymères en tirant profit de la réactivité spécifique des composés organométalliques qui coiffent les chaînes. Les résultats obtenus à l’aide de complexes de cobalt seront mis en perspective avec des études mettant en jeu d’autres métaux (Ti, V, Cr). [less ▲]

Detailed reference viewed: 32 (3 ULg)
Full Text
Peer Reviewed
See detailAntibacterial activity of poly(vinyl alcohol)-b-poly(acrylonitrile) based micelles loaded with silver nanoparticles
Bryaskova, Rayna; Pencheva, Daniela; Kyulavska, Mariya et al

in Journal of Colloid & Interface Science (2010), 344(2), 424-448

A new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) (PVOH-b-PAN) copolymer obtained by selective hydrolysis of well-defined poly(vinyl acetate)-b-poly(acrylonitrile) copolymer synthesized by ... [more ▼]

A new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) (PVOH-b-PAN) copolymer obtained by selective hydrolysis of well-defined poly(vinyl acetate)-b-poly(acrylonitrile) copolymer synthesized by cobalt mediated radical polymerization was used for the preparation of PVOH-b-PAN based micelles with embedded silver nanoparticles. The successful formation of silver loaded micelles has been confirmed by UV–vis, DLS and TEM analysis and their antibacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and spore solution of Bacillus subtilis (B. subtilis) has been studied. PVOH-b-PAN based micelles with embedded silver nanoparticles showed a strong bactericidal effect against E. coli, S. aureus and P. aeruginosa and the minimum bactericidal concentration for each system (MBC) has been determined. [less ▲]

Detailed reference viewed: 61 (7 ULg)
Full Text
Peer Reviewed
See detailLocating carbon nanotubes (CNTs) at the surface of polymer microspheres using poly(vinyl alcohol) grafted CNTs as dispersion co-stabilizers
Thomassin, Jean-Michel ULg; Molenberg, Isabel; Huynen, Isabelle et al

in Chemical Communications (2010), 46(3330), 3332

In this communication, we prepared carbon nanotubes (CNTs) modified by poly(vinyl alcohol) that are used as co-stabilizers for the dispersion polymerization of methyl methacrylate. Poly(methyl ... [more ▼]

In this communication, we prepared carbon nanotubes (CNTs) modified by poly(vinyl alcohol) that are used as co-stabilizers for the dispersion polymerization of methyl methacrylate. Poly(methyl methacrylate) microspheres with CNTs selectively located at their surface are formed. This specific localization is a way to enhance the electrical conductivity of the nanocomposite. [less ▲]

Detailed reference viewed: 51 (8 ULg)
Full Text
Peer Reviewed
See detailSynthesis of poly(vinyl alcohol)/C60 and poly(N-vinylpyrrolidone)/C60 nanohybrids as potential photodynamic cancer therapy agents
Hurtgen, Marie ULg; Debuigne, Antoine ULg; Mouithys-Mickalad, Ange ULg et al

in Chemistry : An Asian Journal (2010), 5(4), 859-868

Well-defined poly(vinyl acetate) (PVAc) and poly(N-vinylpyrrolidone)-co-poly(vinyl acetate) (PNVPco-PVAc) chains end-capped by Co-(acac)2 (acac=acetylacetonate) and prepared by cobalt-mediated radical ... [more ▼]

Well-defined poly(vinyl acetate) (PVAc) and poly(N-vinylpyrrolidone)-co-poly(vinyl acetate) (PNVPco-PVAc) chains end-capped by Co-(acac)2 (acac=acetylacetonate) and prepared by cobalt-mediated radical polymerization (CMRP) are grafted onto a fullerene. Homolytic Co-C bond cleavage of the polymer chain ends at 30°C releases the polymeric radicals that add onto C60, thereby leading to the corresponding PVAc/C60 and PNVP-co-PVAc/C60 nanohybrids. The [polymer–Co(acac)2]/[C60] molar ratio was varied to adjust the structure of the nanohybrids, and more particularly the number of grafted arms. Finally, the potential of the hydrosoluble PVOH/C60 nanohybrids, which result from the methanolysis of the ester groups of PVAc/C60, and of the PNVP-co-PVAc/C60 nanohybrids as photosensitizers for photodynamic therapy (PDT), was approached. First, photobleaching tests demonstrated the ability of these nanohybrids to produce singlet oxygen upon irradiation, which can play a role in cell damage. Second, cell viability assays demonstrated that both types of nanohybrids are deprived of intrinsic cytotoxicity in the dark, whereas they promoted significant cell mortality when subjected to light treatment. The selective response of these materials to irradiation makes them promising compounds for PDT. [less ▲]

Detailed reference viewed: 73 (28 ULg)
Full Text
Peer Reviewed
See detailEffective cobalt-mediated radical coupling (CMRC) of poly(vinylacetate) and poly(N-vinylpyrrolidone) (co)polymer precursors
Debuigne, Antoine ULg; Poli, Rinaldo; De Winter, Julien et al

in Macromolecules (2010), 43(6), 2801-2813

Cobalt-mediated radical coupling (CMRC) is successfully applied to poly(vinyl acetate) (PVAc) and poly(N-vinylpyrrolidone) (PNVP) precursors for the first time. The coupling process is based on addition ... [more ▼]

Cobalt-mediated radical coupling (CMRC) is successfully applied to poly(vinyl acetate) (PVAc) and poly(N-vinylpyrrolidone) (PNVP) precursors for the first time. The coupling process is based on addition of isoprene onto polymer chains preformed by controlled radical polymerization with cobalt complexes (CMRP). The extents of coupling were high (>90%) to moderate (75-80%) for PVAc and PNVP precursors, respectively. Effects of the length of the polymer precursors and conditions used in the polymerization step on the coupling efficiency are discussed. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) analyses conducted on the coupling products demonstrate the preferential insertion of two isoprene units in the final polymers. The CMRC mechanistic proposal, supported by DFT calculations, is based on this microstructure feature. Finally, illustration of the macromolecular engineering potential of this technique is given by the preparation of symmetrical PVAc-b-PNVP-b-PVAc triblock copolymers starting from the corresponding PVAc-b-PNVP-[Co] diblock copolymer. [less ▲]

Detailed reference viewed: 49 (18 ULg)
Full Text
Peer Reviewed
See detailCobalt mediated radical coupling (CMRC) : an unusual route to midchain-functionalized symmetrical macromolecules
Debuigne, Antoine ULg; Poli, Rinaldo; De Winter, Julien et al

in Chemistry : A European Journal (2010), 16(5), 1799-1811

Cobalt-mediated radical coupling (CMRC) is a straightforward approach to the synthesis of symmetrical macromolecules that relies on the addition of 1,3-diene compounds onto polymer precursors preformed by ... [more ▼]

Cobalt-mediated radical coupling (CMRC) is a straightforward approach to the synthesis of symmetrical macromolecules that relies on the addition of 1,3-diene compounds onto polymer precursors preformed by cobalt-mediated radical polymerization (CMRP). Mechanistic features that make this process so efficient for radical polymer coupling are reported here. The mechanism was established on the basis of NMR spectroscopy and MALDI-MS analyses of the coupling product and corroborated by DFT calculations. A key feature of CMRC is the preferential insertion of two diene units in the middle of the chain of the coupling product mainly according to a trans-1,4-addition pathway. The large tolerance of CMRC towards the diene structure is demonstrated and the impact of this new coupling method on macromolecular engineering is discussed, especially for midchain functionalization of polymers. It is worth noting that the interest in CMRC goes beyond the field of polymer chemistry, since it constitutes a novel carbon-carbon bond formation method that could be applied to small organic molecules. [less ▲]

Detailed reference viewed: 74 (14 ULg)
Full Text
Peer Reviewed
See detailSolving the problem of bis(acetylacetonato)cobalt(II)-mediated radical polymerization (CMRP) of acrylic esters
Hurtgen, Marie ULg; Debuigne, Antoine ULg; Jérôme, Christine ULg et al

in Macromolecules (2010), 43(2), 886-894

Recent developments in cobalt-mediated radical polymerization (CMRP) and progress in the mechanistic understanding enabled to optimize the copolymerization of n-butyl acrylate (nBA) with vinyl acetate ... [more ▼]

Recent developments in cobalt-mediated radical polymerization (CMRP) and progress in the mechanistic understanding enabled to optimize the copolymerization of n-butyl acrylate (nBA) with vinyl acetate (VAc), as well as to control the homopolymerization of nBA by means of bis(acetylacetonato)cobalt-(II) (Co(acac)2). Critical experimental parameters such as the initiating system, the temperature, and the presence of additives were varied and discussed. Under optimized conditions, an alkylcobalt(III) adduct R0-(CH2-CHOAc)<4-Co(acac)2 (R0=primary radical from the V-70 decomposition) allowed a better control of the nBA/VAc copolymerization than the previously studied V-70/Co(acac)2 pair regarding the molecular weight control and the polydispersities. Importantly, the homopolymerization of nBA was controlled by Co(acac)2 for the first time using the alkylcobalt(III) adduct or the lauroyl peroxide (LPO)/ Co(acac)2 redox pair as initiating system. Typically, poly(n-butyl acrylate) with polydispersity around 1.2 and molar mass as high as 200 000 g/mol was achieved with this cobalt complex. [less ▲]

Detailed reference viewed: 67 (27 ULg)
See detailCobalt-mediated radical polymerization (CMRP) and coupling reaction (CMRC): mechanistic advances ans synthetic opportunities
Debuigne, Antoine ULg; Poli, Rinaldo; De Winter, Julien et al

Poster (2009, December 14)

Detailed reference viewed: 34 (10 ULg)