References of "Debuigne, Antoine"
     in
Bookmark and Share    
Full Text
See detailKey role of metal-coordination in cobalt-mediated radical polymerization of vinyl acetate
Debuigne, Antoine ULg; Poli, Rinaldo; Jérôme, Robert ULg et al

in Matyjaszewski, Krzysztof (Ed.) Controlled/living radical polymerization: progress in RAFT, DT, NMP & OMRP (2009)

Cobalt mediated radical polymerization (CMRP) of vinyl acetate (VAc) follows a reversible termination mechanism when initiated from a preformed alkyl-cobalt(III) complex. In these particular conditions ... [more ▼]

Cobalt mediated radical polymerization (CMRP) of vinyl acetate (VAc) follows a reversible termination mechanism when initiated from a preformed alkyl-cobalt(III) complex. In these particular conditions, CMRP functions as a stable free radical process and fine tuning of the Co-C bond strength becomes crucial. Increase of temperature and addition of molecules, such as water, dimethylformamide and dimethylsulfoxide, able to coordinate the cobalt complex appeared as efficient strategies to weaken the Co-C bond and thus to speed up the polymerization while maintaining a very good control of the VAc polymerization. The key role of metal-coordination was investigated by kinetic measurements combined with DFT calculations. [less ▲]

Detailed reference viewed: 45 (11 ULg)
Full Text
Peer Reviewed
See detailGold-loaded carbon nanoparticles from poly(vinyl alcohol)-b-poly(acrylonitrile) non-shell-cross-linked micelles
Bryaskova, Rayna; Willet, Nicolas ULg; Duwez, Anne-Sophie ULg et al

in Chemistry : An Asian Journal (2009), 4(8), 1338-1345

Herein we show that a new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) block copolymer dispersed in water can be easily loaded with gold nanoparticles by addition of chlorauric acid followed by ... [more ▼]

Herein we show that a new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) block copolymer dispersed in water can be easily loaded with gold nanoparticles by addition of chlorauric acid followed by reduction by sodium borohydride. After deposition of the so-loaded micelles onto a silicon wafer, followed by an appropriate thermal treatment, the poly(acrylonitrile) core of the micelles is carbonized, while the poly(vinyl alcohol) shell is completely decomposed and volatilized, leading to gold encapsulated in carbon nanoparticles. The morphology of the micelles is maintained during thermal treatment without requiring shell-cross-linking of the micelles prior to pyrolysis. [less ▲]

Detailed reference viewed: 111 (36 ULg)
Full Text
See detailUnusual quantitative (co)polymer chain coupling reaction based on isoprene and cobalt complexes
Debuigne, Antoine ULg; Jérôme, Christine ULg; Detrembleur, Christophe ULg

Conference (2009, July 15)

Nowadays, progresses in medicine, biotechnology, microelectronic and many other fields are more and more sustained by the development of novel polymer materials with constantly improved properties and ... [more ▼]

Nowadays, progresses in medicine, biotechnology, microelectronic and many other fields are more and more sustained by the development of novel polymer materials with constantly improved properties and well-defined molecular parameters. In this context, we designed an innovative and very promising tool for macromolecular engineering. This technique, called Isoprene-Assisted Radical Coupling (I-ARC), allows to couple quantitatively polymer chains preformed by Cobalt-Mediated Radical Polymerization (CMRP), an efficient controlled radical polymerization system for vinyl acetate (VAc) and acrylonitrile (AN). Typically, addition of isoprene to well-defined polymers prepared by CMRP invariably leads to the quantitative coupling reaction of the chains, as assessed by the perfect doubling of the molar mass of the polymer. Importantly, the I-ARC reaction is not limited to macromolecules with low molar masses and homopolymers, contrary to the previously reported radical chains coupling methods. Indeed, when applied to diblock copolymers, I-ARC constitutes a straightforward approach for the synthesis of telechelic symmetrical ABA triblock copolymers, as illustrated by the preparation of poly(vinyl acetate)-b-poly(acrylonitrile)-bpoly(vinyl acetate) triblock copolymers and their derivatives. [less ▲]

Detailed reference viewed: 29 (5 ULg)
Full Text
See detailEnzymatic modifications of sugar in supercritical carbon dioxide
Favrelle, Audrey ULg; Brognaux, Alison ULg; Debuigne, Antoine ULg et al

Poster (2009, July 07)

Carbohydrates esters are non-ionic surfactants that have a wide range of commercial applications in cosmetic, food and pharmaceutical industry. They are produced from renewable and inexpensive raw ... [more ▼]

Carbohydrates esters are non-ionic surfactants that have a wide range of commercial applications in cosmetic, food and pharmaceutical industry. They are produced from renewable and inexpensive raw materials, are bio-degradable and non-toxic. Chemical synthesis of sugar esters is generally performed at a high temperature in the presence of an alkaline catalyst lead-ing to a mixture of products. In this respect, the corresponding enzyme-catalyzed processes in non-conventional media are more selective. For this purpose, lipases are the most useful enzymes. Moreover, supercritical carbon dioxide (SC-CO2) constitutes an interesting alternative to the organic solvents used in the domain as it is considered to be environmentally frien-dlier and safer. For example, its use reduces the contamination of the final products with residual solvents. This property is particularly valued in food, cosmetic and pharmaceutical industry. Our work consists to carry out lipase catalyzed sugar modifications in SC-CO2 and to compare the results with those obtained in organic solvents. The effect of these two different media on the enzyme stability and the yield will be described here. Moreover, the impact of various factors such as pressure, temperature, enzyme form (free or immobilized), use of co-solvent, on the course of the sugar esterification will be discussed. [less ▲]

Detailed reference viewed: 117 (36 ULg)
Full Text
See detailNovel (co)polymers by cobalt-mediated radical polymerization
Debuigne, Antoine ULg; Piette, Yasmine ULg; Poli, Rinaldo et al

Poster (2009, April 24)

Detailed reference viewed: 16 (8 ULg)
Full Text
See detailThe influence of cobalt-coordination on cobalt-mediated radical polymerization of vinyl monomers
Debuigne, Antoine ULg; Piette, Yasmine ULg; Poli, Rinaldo et al

Poster (2009, March 19)

Nowadays, polymers are a part of everyday life. Researchers encouraged by growing need in high performance polymers develop new synthesis tools to manage the molecular architecture and thus the polymer ... [more ▼]

Nowadays, polymers are a part of everyday life. Researchers encouraged by growing need in high performance polymers develop new synthesis tools to manage the molecular architecture and thus the polymer properties. In this context, CRP (Controlled Radical Polymerization) techniques have been developed to obtain well-defined architectures and to control polymer parameters. Among these systems is Cobalt-Mediated Radical Polymerization (CMRP), which is based on the reversible deactivation of the growing radical chains with a cobalt complex, the cobalt (II) bis-acetylacetonate. The interest of this system is not only due to its ability to control the polymerization of very reactive monomers such as vinyl acetate (VAc) and N-vinylpyrrolidone (NVP), but also its peculiar mechanism which exhibits two pathways depending on the polymerization conditions; a reversible termination process and a degenerative chain transfer mechanism. Furthermore, it has been showed that the Co-C strength and thus the polymerization are strongly influenced by the use of some additives, such as water, dimethylformamide, dimethylsulfoxide and pyridine, which coordinate the cobalt free site. In this presentation we report the use of a preformed alkyl-cobalt(III) adduct as initiator for the polymerization of acrylonitrile (AN) and the use of these ligands in the CMRP system to synthesize well-defined poly(vinyl acetate)-b-poly(acrylonitrile) block copolymers. As a conclusion, cobalt-coordination appears today as a unique opportunity to adjust the Co-C bond strength and to push back the bounds of possibilities in terms of macromolecular engineering assisted by CMRP. [less ▲]

Detailed reference viewed: 16 (6 ULg)
Full Text
See detailHow can cobalt complexes help synthetic polymer chemists?
Debuigne, Antoine ULg; Jérôme, Robert ULg; Jérôme, Christine ULg et al

Conference (2009, March 19)

Nowadays, progresses in medicine, biotechnology, microelectronic and many other fields are more and more sustained by the development of novel polymer materials with constantly improved properties and ... [more ▼]

Nowadays, progresses in medicine, biotechnology, microelectronic and many other fields are more and more sustained by the development of novel polymer materials with constantly improved properties and well-defined molecular parameters. In this context, we designed a controlled radical polymerization (CRP) technique based on cobalt complexes which is able to efficiently control the radical polymerization of challenging monomers such as vinyl acetate (VAc), N-vinyl pyrrolidone (NVP) and acrylonitrile (AN). This so-called Cobalt-Mediated Radical Polymerization (CMRP) also gave access to unique diblock copolymers by sequential polymerization of the above mentioned monomers. However, addition of isoprene to polymer chains preformed by CMRP did not lead to the expected poly(isoprene) containing copolymers. Instead, the quantitative coupling reaction of the polymer chains was observed, as assessed by the perfect doubling of the molar mass of the initial macromolecules. This result is very exciting because this so-called Isoprene-Assisted Radical Coupling (I-ARC) reaction is not limited to polymers with low molar masses and homopolymers, contrary to the existing radical chains coupling methods. Indeed, when applied to diblock copolymers, IARC constitutes a straightforward approach for the synthesis of telechelic symmetrical ABA triblock copolymers and is thus a very promising tool for macromolecular engineering. [less ▲]

Detailed reference viewed: 42 (5 ULg)
Full Text
Peer Reviewed
See detailOverview of cobalt-mediated radical polymerization: roots, state of the art and future prospects
Debuigne, Antoine ULg; Poli, Rinaldo; Jérôme, Christine ULg et al

in Progress in Polymer Science (2009), 34(3), 211-239

Controlled radical polymerization (CRP) techniques offer the opportunity to properly design polymer chains and adjust their chemical and physical properties. Among these techniques, cobalt-mediated ... [more ▼]

Controlled radical polymerization (CRP) techniques offer the opportunity to properly design polymer chains and adjust their chemical and physical properties. Among these techniques, cobalt-mediated radical polymerization (CMRP) distinguished itself by the high level of control imparted to the polymerization of acrylic and vinyl ester monomers, even for high molar masses. This article summarizes for the first time the advances in understanding and synthetic scope of CMRP since its discovery. Notably, the cobalt–carbon bond formation by dual contribution of reversible termination and degenerative chain transfer is discussed, as well as the impact of additives able to coordinate the metal. The potential of computational chemistry in the field of CMRP as a rationalization and predicting tool is also presented. These mechanistic considerations and achievements in macromolecular engineering will be discussed along with challenges and future prospects in order to assess the CMRP system as a whole. [less ▲]

Detailed reference viewed: 53 (11 ULg)
Full Text
Peer Reviewed
See detailIsoprene-assisted radical coupling of (co)polymers prepared by cobalt-mediated radical polymerization
Debuigne, Antoine ULg; Jérôme, Christine ULg; Detrembleur, Christophe ULg

in Angewandte Chemie (International ed. in English) (2009), 48(8), 1422-1424

The isoprene-assisted radical coupling (I-ARC) of polymers prepared by cobalt-mediated radical polymerization (see picture) is the first efficient radical coupling method that is not restricted to short ... [more ▼]

The isoprene-assisted radical coupling (I-ARC) of polymers prepared by cobalt-mediated radical polymerization (see picture) is the first efficient radical coupling method that is not restricted to short chains. When applied to AB diblock copolymers, I-ARC constitutes a straightforward approach to the preparation of novel symmetrical ABA triblock copolymers [less ▲]

Detailed reference viewed: 48 (16 ULg)
See detailCobalt-assisted synthesis of novel block copolymers
Debuigne, Antoine ULg

Scientific conference (2009, February 05)

Detailed reference viewed: 3 (2 ULg)
Full Text
Peer Reviewed
See detailCobalt-mediated radical polymerization of acrylonitrile: Kinetics investigations and DFT calculations
Debuigne, Antoine ULg; Michaux, Catherine; Jérôme, Christine ULg et al

in Chemistry : A European Journal (2008), 14(25), 7623-7637

The successful controlled homopolymerization of acrylonitrile (AN) by cobalt-mediated radical polymerization (CMRP) is reported for the first time. As a rule, initiation of the polymerization was carried ... [more ▼]

The successful controlled homopolymerization of acrylonitrile (AN) by cobalt-mediated radical polymerization (CMRP) is reported for the first time. As a rule, initiation of the polymerization was carried out starting from a conventional azo-initiator (V-70) in the presence of bis(acetylacetonato)cobalt(II) ([Co(acac)2]) but also by using organocobalt(III) adducts. Molar concentration ratios of the reactants, the temperature, and the solvent were tuned, and the effect of these parameters on the course of the polymerization is discussed in detail. The best level of control was observed when the AN polymerization was initiated by an organocobalt(III) adduct at 0 °C in dimethyl sulfoxide. Under these conditions, poly(acrylonitrile) with a predictable molar mass and molar mass distribution as low as 1.1 was prepared. A combination of kinetic data, X-ray analyses, and DFT calculations were used to rationalize the results and to draw conclusions on the key role played by the solvent molecules in the process. These important mechanistic insights also permit an explanation of the unexpected solvent effect that allows the preparation of well-defined poly(vinyl acetate)-b-poly(acrylonitrile) by CMRP. [less ▲]

Detailed reference viewed: 42 (5 ULg)
See detailKey role of metal-coordination in cobalt mediated radical polymerization
Debuigne, Antoine ULg; Poli, Rinaldo; Jérôme, Christine ULg et al

Poster (2008, May 22)

Detailed reference viewed: 7 (1 ULg)
Full Text
Peer Reviewed
See detailSynthesis of novel well-defined poly(vinyl acetate)-b-poly(acrylonitrile) and derivatized water-soluble poly(vinyl alcohol)-b-poly(acrylic acid) block copolymers by cobalt-mediated radical polymerization
Debuigne, Antoine ULg; Warnant, Jérôme; Jérôme, Robert ULg et al

in Macromolecules (2008), 41(7), 2353-2360

Poly(vinyl acetate)−Co(acac)2 macroinitiators, prepared by cobalt-mediated radical polymerization of vinyl acetate (VAc), were used to synthesize well-defined poly(vinyl acetate)-b-poly(acrylonitrile ... [more ▼]

Poly(vinyl acetate)−Co(acac)2 macroinitiators, prepared by cobalt-mediated radical polymerization of vinyl acetate (VAc), were used to synthesize well-defined poly(vinyl acetate)-b-poly(acrylonitrile) (PVAc-b-PAN) block copolymers. Different solvents and temperatures were tested for the polymerization of the acrylonitrile segment by cobalt-mediated radical polymerization (CMRP), and copolymers with low polydispersity were obtained provided that dimethylformamide was used as solvent at 0 °C. The mechanism of control was assumed to change from a degenerative chain transfer mechanism for the VAc polymerization to a reversible-termination process for the AN polymerization. The hydrolysis of the ester groups of the PVAc block and the nitrile groups of the PAN sequence of the copolymer by potassium hydroxide in an ethanol/water mixture provided the double hydrophilic and pH-responsive poly(vinyl alcohol)-b-poly(acrylic acid) block copolymer. Finally, the pH responsiveness of these copolymers was demonstrated by DLS pH titration with formation of aggregates at pH < 3. [less ▲]

Detailed reference viewed: 37 (7 ULg)
Full Text
Peer Reviewed
See detailMechanistic Insights into the Cobalt-Mediated Radical Polymerization (CMRP) of Vinyl Acetate with Cobalt(Iii) Adducts as Initiators
Debuigne, Antoine ULg; Champouret, Yohan; Jérôme, Robert ULg et al

in Chemistry : A European Journal (2008), 14(13), 4046-4059

Over the past few years, cobalt-mediated radical polymerization (CMRP) has proved efficient in controlling the radical polymerization of very reactive monomers, such as vinyl acetate (VAc). However, the ... [more ▼]

Over the past few years, cobalt-mediated radical polymerization (CMRP) has proved efficient in controlling the radical polymerization of very reactive monomers, such as vinyl acetate (VAc). However, the reason for this success and the intimate mechanism remained basically speculative. Herein, two mechanisms are shown to coexist: the reversible termination of the growing poly(vinyl acetate) chains by the Co(acac)(2) complex (acac: acetylacetonato), and a degenerative chain-transfer process. The importance of one contribution over the other strongly depends on the polymerization conditions, including complexation of cobalt by ligands, such as water and pyridine. This significant progress in the CMRP mechanism relies on the isolation and characterization of the very first cobalt adducts formed in the polymerization medium and their use as CMRP initiators. The structure proposed for these adducts was supported by DFT calculations. Beyond the control of the VAc polymerization, which is the best ever achieved by CMRP, extension to other monomers and substantial progress in macromolecular engineering are now realistic forecasts. [less ▲]

Detailed reference viewed: 31 (17 ULg)