References of "Debois, Delphine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMolecular imaging through in combinaison with quantitative proteomic approaches unraveling the molecular players of breast cancer adaptation to anti-angiogenic therapy.
Cimino, Jonathan ULg; Sounni, Nor Eddine ULg; Calligaris, David ULg et al

Poster (2012, June 22)

Breast carcinoma is the most common and second leading cause of cancer mortality in women. The recognition of the “angiogenic switch” as a rate-limiting secondary step in tumorigenesis led to extensive ... [more ▼]

Breast carcinoma is the most common and second leading cause of cancer mortality in women. The recognition of the “angiogenic switch” as a rate-limiting secondary step in tumorigenesis led to extensive pre-clinical researches on angiogenesis and finally the approval of VEGF-neutralizing antibodies (bevacizumab) and VEGF receptor tyrosine kinase inhibitors (RTKs:Sunitinib). The Sunitinib has been used clinically in patients with breast cancer refractory to other therapeutic agents. Unfortunately, like the cytotoxic therapies, these drugs do not produce lasting effects and resistance to treatment appeared clinically. Questions have emerged about the failure of anti-angiogenic therapy in clinic and the limitations of predictive preclinical models, and also about the molecular assessment of all stages of tumor adaptation and metastatic disease. To this end, we applied quantitative proteomics and imaging mass spectrometry tools to visualize and study the profiles of proteins and small molecules associated with tumor treated or not with Sunitinib using a novel preclinical model of breast carcinoma cells. In this project, we first developed a reproducible model of resistance to Sunitinib of human triple negative breast cancer MDA-MB-231 cells expressing luciferase gene. Cells were subcutaneously injected into mice RAG1-/- and divided into four experimental groups including, control mice treated with vehicle or Sunitinib for 30 days and sacrificed 1 days after treatment withdrawal or when tumor reached a volume of 300 mm3. In the second step. Tumors were analyzed using a nanoAcquity UPLC Synapt TM HDMS TM G1 (Waters, Manchester,UK) and Mass Spectrometry Imaging. For quantitative proteomic analyses of tumors, a bioinformatics analysis was used with the Protein lynx global server 2.2.5 software. Imaging mass spectrometry was performed on tissue sections of tumors and organs subsequently colonized by metastases. Matrix sublimation was used to coat tumor sections (14 µm-tick) with 1.5 Diaminonaphthalene for lipids analysis and Sinapinic acid for entire proteins analysis. Ion cartographies were recorded with a Solarix 9.4T FTMS instrument for lipids and with an Ultraflex II TOF-TOF instrument for entire proteins (Bruker Daltonics, Germany) with a spatial resolution of 100 µm. Global protemic revealed different protein profiles between tumor treated or not with Sunitinib. The Mass Spectrometry Imaging detected differences in intensity and location of some proteins and lipids are also associated with some histological features including inflammatory, necrotic and angiogenic areas. Bioinformatics analysis will be applied to ensure the integration of all data in order to provide the basis for identifying molecular pathways activated during the acquisition of refractoriness to drug treatments. [less ▲]

Detailed reference viewed: 86 (7 ULg)
Full Text
Peer Reviewed
See detailA Promising Perspective for Pathologies Diagnosis by MALDI In-Source Decay Imaging with a FTMS System.
Calligaris, David ULg; Debois, Delphine ULg; Turtoi, Andrei ULg et al

Poster (2012, May 23)

Introduction MALDI imaging mass spectrometry has proven to be effective for the discovery and the monitoring of disease-related proteins. With this technique a molecular diagnosis could be done directly ... [more ▼]

Introduction MALDI imaging mass spectrometry has proven to be effective for the discovery and the monitoring of disease-related proteins. With this technique a molecular diagnosis could be done directly on tissue sections in the environment of the diseased area. The use of in-source decay (ISD), that does allow fast and reliable sequences assignments of proteins termini, is a crucial tool for the identification of known biomarkers during MALDI imaging experiments. Combined with ultra-high mass resolution and high mass measurement accuracy of Fourier transform ion-cyclotron (FTICR) mass spectrometry, it is possible to unambiguously assign sequences of proteins present in tissue slices. In this study, we have shown that FTICR mass spectrometry could be a powerful tool to diagnose pathologies by MALDI-ISD imaging. Methods All measurements were carried out on a SolariX FTMS (9.4 tesla) equipped with a Dual Source including smartbeamTMII laser which includes a robust solid state 1 kHz laser with advanced optics for molecular imaging (Bruker Daltonics). Lysozyme (14.3-kDa) or Human Serum Albumin (66.3-kDa) solution (1 mg/ml in 0.1 % TFA) was mixed with 1,5-diaminonaphthalene (DAN) and analyzed by MALDI-ISD and MALDI-ISD imaging. Mouse brain and rabbit eye tissue slices were washed (fixed) to obtain optimal sensitivity and high-quality ion. Before DAN application with an ImagePrep (Bruker Daltonics) and MALDI-ISD imaging analyzes, spots of myelin and crystalline were deposited near mouse brain or rabbit eye tissues, respectively. Results were interpreted using BioToolsTM 3.2 in combination with MascotTM (Matrix Science) for ISD spectra and FlexImagingTM 2.1 for MALDI-ISD imaging experiments. α Preliminary data The studies were carried out by MALDI-ISD and MALDI-ISD imaging analyses to evidence the interest on FTICR mass spectrometer for proteins identification in the field of biomarkers characterization. It is demonstrated that protein ISD leads to the same pattern of fragmentation observed during MALDI-TOF analyzes. Fragmentation generates cn- and zn-series ions of lysozyme and HSA in presence of DAN. Supplementary an-, bn-, xn- and yn-series ions can also be observed. The internal calibration of all the data provides a mass accuracy neighboring 2.5 ppm over the m/z range of interest (300-2500 Da) and a mass resolution of 70000 at m/z 400 Da. It allows the assignment of ISD fragments of proteins, in the low mass range (m/z between 300 and 900), whether from pure solutions or included in tissue slices. Moreover, spots of pure proteins solution (myelin or crystalline) near tissue slices allows to unambiguously validate the proteins identification during MALDI ISD imaging experiments. Novel aspect This study evidences the main input of FTICR mass spectrometer for pathologies diagnosis based on biomarkers localization and identification by MALDI-ISD imaging. [less ▲]

Detailed reference viewed: 53 (9 ULg)
Full Text
See detailImaging Guided Proteomics Unveils Heterogeniety in Colorectal Carcinoma Liver Metastases – Implications for Targeted Therapies.
blomme, Arnaud; Turtoi, Andrei ULg; Delvaux, David ULg et al

in Proceedings Giga Day 2012 (2012, May 04)

Detailed reference viewed: 43 (21 ULg)
See detailIn situ protein identification in imaging mass spectrometry
Calligaris, David ULg; Debois, Delphine ULg; De Pauw, Edwin ULg

Scientific conference (2012, May 04)

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is an emerging tool for clinical research. MALDI MSI can be used to elucidate the relative abundance and spatial ... [more ▼]

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is an emerging tool for clinical research. MALDI MSI can be used to elucidate the relative abundance and spatial localization of peptides and proteins throughout a tissue section. For this, a matrix is applied on the tissue in either a spotted array or a homogenous coating. Acquisition of mass spectra is then carried out by performing a raster with a laser across the tissue section in a defined pattern. The spectra acquired from each position on the tissue section contain molecular weight and intensity information representative of the biomolecules at that position. One can plot the intensity of any measured ion as a function of individual pixel locations to generate m/z specific images. But, if protein desorption/ionization and subsequent MS analyses provides a measurement of molecular weight, no protein identification is performed. To achieve this, several methods have been developed. In this talk, I will first present the methods inspired by classical proteomics techniques that are regularly used to identify proteins. Bottom-up and top-down approaches have been used directly from a tissue slice, leading to the identification of some of the most abundant proteins present within the tissue slice. Then, I will present the new developments led in our lab for imaging and especially for in situ protein identification. The first example will deal with the exceptional features of FT-ICR mass spectrometry for in-source decay (ISD)-based protein identification. The benefit of mass accuracy and high mass resolution allow unequivocal assignment of ISD fragments of proteins, in the low mass range (m/z between 400 and 900), whether from pure solutions or from tissue slices. The next example is the use of a matrix “cleaning” software that reduce/remove matrix peaks thus facilitating ISD spectra analyses. Finally, proteins identification by localization and MALDI-ISD profile matching will also be a really simplistic and interesting method that will complement the immunohistological techniques commonly used to validate expression of known biomarkers within diseased tissues. [less ▲]

Detailed reference viewed: 46 (5 ULg)
Full Text
Peer Reviewed
See detailApplication of molecular imaging in combination with quantitative proteomic approaches to determine the molecular players of adaptation to anti-angiogenic therapy in breast cancer.
Cimino, Jonathan ULg; Sounni, Nor Eddine ULg; Calligaris, David ULg et al

Poster (2012, May 04)

The recognition of the “angiogenic switch” as a rate-limiting secondary step in tumorigenesis led to extensive pre-clinical researches on angiogenesis and finally the approval of VEGF-neutralizing ... [more ▼]

The recognition of the “angiogenic switch” as a rate-limiting secondary step in tumorigenesis led to extensive pre-clinical researches on angiogenesis and finally the approval of VEGF-neutralizing antibodies (bevacizumab) and VEGF receptor tyrosine kinase inhibitors (RTKs:Sunitinib). The Sunitinib has been used clinically in patients with breast cancer refractory to other therapeutic agents. Unfortunately, like the cytotoxic therapies, these drugs do not produce lasting effects and resistance to treatment appeared clinically. Questions have emerged about the failure of anti-angiogenic therapy in clinic and the limitations of predictive preclinical models, and also about the molecular assessment of all stages of tumor adaptation and metastatic disease. To this end, we applied a quantitative proteomics and imaging mass spectrometry tools to visualize and study the profiles of proteins and small molecules associated with tumor treated or not with Sunitinib using a novel preclinical model of breast carcinoma cells. [less ▲]

Detailed reference viewed: 67 (13 ULg)
Full Text
Peer Reviewed
See detailINTRA-TUMORAL HETEROGENEITY AND RATIONAL SELECTION OF ANTIGENS FOR TARGETED THERAPY OF LIVER METASTASES
Turtoi, Andrei ULg; Blomme, Arnaud ULg; Delvaux, David ULg et al

in Acta Chirurgica Belgica (2012, May), 112(3), 8953

Objectives: Targeted therapies of liver metastases are gaining a major stake in current and future treatment options. However, the malignant lesions are heterogeneous in nature offering niches for cancer ... [more ▼]

Objectives: Targeted therapies of liver metastases are gaining a major stake in current and future treatment options. However, the malignant lesions are heterogeneous in nature offering niches for cancer cells causing treatment resistance and relapse. Therefore, a rational strategy is needed to select targetable antigens that would overcome this intra-tumoral heterogeneity. Methods: After ethical committee approval, 48 fresh liver metastases of colorectal origin were prospectively collected from patients undergoing liver resection. Here we macroscopically divided the lesion in different zones and generated a unique quantitative picture of the proteome heterogeneity in colorectal carcinoma liver metastases. Particular focus was laid on accessible proteins, a protein subclass comprising cell membrane associated and extracellular proteins. Accordingly, the tissues were ex-vivo biotinylated, affinity purified and analyzed for each zone separately using nano-UPLC-MSe proteomics technique. In total over 1500 unique proteins were statistically divided into different patterns of expression. Results: We have generated a quantitative picture of the proteome heterogeneity in colorectal carcinoma liver metastases. The study offers insight into novel targets but also antigens against which the antibodies are already involved in clinical trials or treatment of liver metastases. Extensive clustering and validation experiments highlight novel markers that offer the potential to homogeneously cover the metastatic lesion and become better targets. Conclusions: Two such antigens, LTBP2 and TGFBI were selected for functional analysis in colorectal carcinoma cells. In vitro and in vivo experiments showed that in particular TGFBI is relevant for migration and proliferation capacity of colorectal cancer cells. The suppression of this protein led to significant inhibition of tumor growth, crystalizing it as bona fide target for the development of anti-metastases therapies. [less ▲]

Detailed reference viewed: 61 (21 ULg)
Peer Reviewed
See detailNew Advances for In Situ Protein Identification by MALDI In-Source Decay FTMS Imaging
Calligaris, David ULg; Zimmerman, Tyler ULg; Debois, Delphine ULg et al

Poster (2012, April 18)

MALDI imaging mass spectrometry has proven to be effective for the discovery and the monitoring of disease-related proteins. With this technique a molecular analysis could be performed directly from ... [more ▼]

MALDI imaging mass spectrometry has proven to be effective for the discovery and the monitoring of disease-related proteins. With this technique a molecular analysis could be performed directly from tissue sections in the region of the diseased area. The use of in-source decay (ISD), allowing fast and reliable sequences assignments of proteins termini, has proven to be a crucial tool for proteins identification in solution and tissue slices. However, it is necessary to develop additional tools that allow unambiguous assignment of proteins sequences in complex tissue slices. The development of bioinformatic tools and the use of ultra-high mass resolution and high mass accuracy of Fourier transform ion-cyclotron (FTICR) mass spectrometry are ideal for this purpose. In this study, we show that FTICR mass spectrometry combined with data filtering with a software that subtracts matrix peaks aid protein identification. All measurements were carried out on a SolariX FTMS (9.4 Tesla) equipped with a Dual Source with a smartbeamTMII laser (Bruker Daltonics). Mouse brain tissue slices of 14 µm thickness were rinsed to obtain optimal sensitivity and high-quality ions. Before matrix application, a spot of myelin was deposited near mouse brain. 1,5-Diaminionaphtalene was sprayed using an ImagePrep (Bruker Daltonics). Results were interpreted using BioToolsTM 3.2 in combination with MascotTM (Matrix Science) for ISD spectra and FlexImagingTM 3.0 for MALDI-ISD imaging experiments. Matrix peaks were subtracted using an in-house written Java code that sequentially scans all peak lists from acquired spectra against the DAN mass list. Then, another Java code allows to create 2D ion images at selected m/z ratios. The studies were carried out by MALDI-ISD imaging to create interest on FTICR mass spectrometer for proteins identification in the field of biomarkers characterization. It is demonstrated that protein ISD leads to the same pattern of fragmentation observed during MALDI-TOF analyzes. Fragmentation generates cn- and zn-series ions of myelin in presence of DAN. The internal calibration of all the data provides a mass accuracy neighboring 2.5 ppm over the m/z range of interest (300-2500 Da) and a mass resolution of 70000 at m/z 400 Da. It allows the assignment of ISD fragments of proteins in the low mass range (m/z between 300 and 900) that is unambiguously validated by the “ISD signal” recorded from the spots of pure protein solution (myelin) near tissue slice. Moreover, the use of our software “cleans” MS imaging data by reducing/eliminating MALDI matrix peaks that are isobaric to an analyte peak. Novel aspect This study evidences the main input of FTICR mass spectrometer for pathologies diagnosis based on biomarkers localization and identification by MALDI-ISD imaging. [less ▲]

Detailed reference viewed: 41 (1 ULg)
Full Text
Peer Reviewed
See detailContribution of high mass resolution and accuracy of FTMS to molecular imaging
Debois, Delphine ULg; Calligaris, David ULg; Cimino, Jonathan ULg et al

Conference (2012, April 04)

Since its first implementation in 1997, MALDI Mass Spectrometry Imaging (MALDI MSI) has become an important tool in the proteomic arsenal, especially for biomarker hunting. First dedicated to high ... [more ▼]

Since its first implementation in 1997, MALDI Mass Spectrometry Imaging (MALDI MSI) has become an important tool in the proteomic arsenal, especially for biomarker hunting. First dedicated to high molecular weight, MALDI MSI is more and more used to map the distribution of small molecules too (lipids, drugs and metabolites,…). Last developments tend to improve the sample treatments to obtain the best spatial resolution as possible. From this perspective, great efforts have been made on the MALDI matrix deposition methods. Now, one of the remaining challenges for MALDI-MSI users consists of identification of detected molecules. For high molecular weight, methods inspired by classical proteomics techniques, are regularly used. Bottom-Up (PMF obtained after in situ trypsin digestion) and Top-Down (in situ In-Source Decay) approaches have been used directly from a tissue slice, leading to the identification of some of the most abundant proteins present at the surface of the tissue. When small molecules are analyzed, the identification is more straightforward. Indeed, tandem mass spectrometry can easily be used, leading to the fragmentation of the detected compounds which allows their unambiguous identification. This identification is even more reliable when high resolution exact mass measurements can be performed. In this talk, I will present how in our lab, we profit of the exceptional features of FT-ICR mass spectrometry for imaging and especially for identification purposes. The first example will deal with the benefit of high mass accuracy and high mass resolution for ISD-based protein identification. The mass accuracy and high mass resolution coupled with the use of a “cleaning” software allow unequivocal assignment of ISD fragments of proteins, in the low mass range (m/z between 300 and 900), whether from pure solutions or from tissue slices. The next examples will deal with the imaging of small molecules. The identification of drugs and their metabolites is facilitated with high mass accuracy. In our lab, we work on the localization of methadone and its first metabolite, EDDP in necrophagous fly larvae. In the mass range of these compounds (278-310 m/z), many matrix ion peaks are detected and the unique features of FT-ICR allows for unambiguous identification thanks to exact mass measurements. We also use MALDI Imaging to map the messenger molecules between plant roots and beneficial bacteria. The comparison of spectra recorded with a TOF/TOF instrument and with a FT-ICR demonstrates that high resolution allows for detecting molecules which could have been missed otherwise. It also allows to distinguish unknown compounds from alkali adducts of known molecules. [less ▲]

Detailed reference viewed: 33 (12 ULg)
Full Text
Peer Reviewed
See detailRaman spectroscopy and laser desorption mass spectrometry for minimal destructive forensic analysis of black and color inkjet printed documents
Heudt, Laetitia ULg; Debois, Delphine ULg; Zimmerman, Tyler ULg et al

in Forensic Science International (2012), 219

Inkjet ink analysis is the best way to discriminate between printed documents, or even though more difficult, to connect an inkjet printed document with a brand or model of printers. Raman spectroscopy ... [more ▼]

Inkjet ink analysis is the best way to discriminate between printed documents, or even though more difficult, to connect an inkjet printed document with a brand or model of printers. Raman spectroscopy and laser desorption mass spectrometry (LDMS) have been demonstrated as powerful tools for dyes and pigments analysis, which are ink components. The aim of this work is to evaluate the aforementioned techniques for inkjet inks analysis in terms of discriminating power, information quality, and nondestructive capability. So, we investigated 10 different inkjet ink cartridges (primary colors and black), 7 from the HP manufacturer and one each from Epson, Canon and Lexmark. This paper demonstrates the capabilities of three methods: Raman spectroscopy, LDMS and MALDI-MS. Raman spectroscopy, as it is preferable to try the nondestructive approach first, is successfully adapted to the analysis of color printed documents in most cases. For analysis of color inkjet inks by LDMS, we show that a MALDI matrix (9- aminoacridine, 9AA) is needed to desorb and to ionize dyes from most inkjet inks (except Epson inks). Therefore, a method was developed to apply the 9AA MALDI matrix directly onto the piece of paper while avoiding analyte spreading. The obtained mass spectra are very discriminating and lead to information about ink additives and paper compositions. Discrimination of black inkjet printed documents is more difficult because of the common use of carbon black as the principal pigment. We show for the first time the possibility to discriminate between two black-printed documents coming from different, as well as from the same, manufacturers. Mass spectra recorded from black inks in positive ion mode LDMS detect polyethylene glycol polymers which have characteristic mass distributions and end groups. Moreover, software has been developed for rapid and objective comparison of the low mass range of these positive mode LDMS spectra which have characteristic unknown peaks. [less ▲]

Detailed reference viewed: 71 (23 ULg)
Full Text
Peer Reviewed
See detailAn analytical pipeline for MALDI in-source decay mass spectrometry imaging
Zimmerman, Tyler ULg; Debois, Delphine ULg; Mazzucchelli, Gabriel ULg et al

in Analytical Chemistry (2011), 83(15), 6090-6097

In-source decay (ISD) fragmentation as combined with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry allows protein sequencing directly from mass spectra. Acquisition of MALDI-ISD ... [more ▼]

In-source decay (ISD) fragmentation as combined with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry allows protein sequencing directly from mass spectra. Acquisition of MALDI-ISD mass spectra from tissue samples is achieved using an appropriate MALDI matrix, such as 1,5-diaminonaphthalene (DAN). Recent efforts have focused on combining MALDI-ISD with mass spectrometry imaging (MSI) to provide simultaneous sequencing and localization of proteins over a thin tissue surface. Successfully coupling these approaches requires the development of new data analysis tools, but first, investigating the properties of MALDI-ISD as applied to mixtures of protein standards reveals a high sensitivity to the relative protein ionization efficiency. This finding translates to the protein mixtures found in tissues and is used to inform the development of an analytical pipeline for data analysis in MALDI-ISD MS imaging, including software to identify the most pertinent spectra, to sequence protein mixtures, and to generate ion images for comparison with tissue morphology. The ability to simultaneously identify and localize proteins is demonstrated by using the analytical pipeline on three tissue sections from porcine eye lens, resulting in localizations for crystallins and cytochrome c. The variety of protein identifications provided by MALDI-ISD-MSI between tissue sections creates a discovery tool, and the analytical pipeline makes this process more efficient. [less ▲]

Detailed reference viewed: 68 (29 ULg)
Full Text
Peer Reviewed
See detailMALDI mass spectrometry imaging of secreted lipopeptides in a bacterial biofilm colonizing plant roots
Debois, Delphine ULg; Jourdan, Emmanuel ULg; Ongena, Marc ULg et al

Conference (2011, June 06)

During the aggression of a plant by a pathogen, different immune reactions may occur. "Induced Systemic Resistance” (ISR) is triggered by the specific interaction between plant and non-pathogenic ... [more ▼]

During the aggression of a plant by a pathogen, different immune reactions may occur. "Induced Systemic Resistance” (ISR) is triggered by the specific interaction between plant and non-pathogenic microorganism. The first step (of three) consists in the perception by plant cells of elicitors produced by the inducing agents that initiates the phenomenon. One class of known elicitors is antibiotics including surfactin- and fengycin-type lipopeptides. Recent studies in biology, genetics or biochemistry allowed a better understanding of the interactions between plants and microorganism but few has been done at the molecular level. MALDI MS imaging has been used to study the nature of the secreted lipopeptides, their relative quantity and their distribution in the root’s environment. Disinfected tomato seeds were first incubated at 28°C in sterile conditions for germination. Germinated seeds were then treated with freshly-grown cells of Bacillus amyloliquefaciens S499 and placed in Petri dish on ITO glass slide recovered with a thin layer of plant nutritive solution (Hoagland) containing 1,75% of agar. Petri dishes were finally incubated vertically in phytotron during 10 days (28°C, photoperiod 16h). For MALDI imaging experiments, the ITO slide was removed from the agar and dried in a dessiccator under vacuum. The matrix solution (9-aminoacridine) was applied with an ImagePrep automated sprayer (Bruker Daltonics). An UltraFlex II TOF/TOF mass spectrometer was used to record molecular cartographies. The average mass spectra recorded around the tomato root (2-3 mm on both sides of the root) showed that lipopeptides were major compounds detected on the agar. Only the surfactins have been detected when working with the S499 strain. The most abundant surfactins were those with longer fatty acyl chain lengths, such as C14- and C15-homologues. Such a surfactin signature is interesting since homologues with the longest acyl chains are also the more active biologically. The distribution of surfactins showed a gradient representing the diffusion of the molecules during the root growth. The more the fatty acyl chain is long, the more the surfactin is detected near the root. Other compounds detected during the analysis showed a clear anti-colocalization with the surfactins. Future work will be focused on the influence of the plant species (tobacco, salad, Arabidopsis thaliana) on the secretion of lipopeptides (type, concentration…) and the influence of the strain of Bacillus amyloliquefaciens regarding its ability to selectively produce specific lipopeptide families (overproducing or repressed mutants). This MS imaging technique thus appears to be a very powerful method to study in situ production of bioactive lipopeptides by bacteria developing on roots. This is crucial for a better understanding of the molecular dialogue governing perception of beneficial Bacillus strains by the host plant. This study provides a first analysis over a long root section of lipopeptides secreted by a bacterial biofilm colonizing plant. [less ▲]

Detailed reference viewed: 89 (3 ULg)
Full Text
Peer Reviewed
See detailMultiple changes in peptide and lipid expression associated with regeneration in the nervous system of the medicinal leech
Mériaux, Céline; Arafah, Karim; Tasiemski, Aurélie et al

in PLoS ONE (2011), 6(4), 18359

Detailed reference viewed: 12 (2 ULg)
Full Text
Peer Reviewed
See detailMALDI-In Source Decay Applied to Mass Spectrometry Imaging: A New Tool for Protein Identification.
Debois, Delphine ULg; Bertrand, Virginie ULg; Quinton, Loïc ULg et al

in Analytical Chemistry (2010), 82(10), 3969-4304

Matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) imaging is a powerful technique giving access to the distribution of a large range of biomolecules directly from a tissue section ... [more ▼]

Matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) imaging is a powerful technique giving access to the distribution of a large range of biomolecules directly from a tissue section, allowing, for example, the discovery of new pathological biomarkers. Nevertheless, one main difficulty lies in the identification of the detected species, especially proteins. MALDI-in source decay (ISD) is used to fragment ions directly in the mass spectrometer ion source. This technique does not require any special sample treatment but only the use of a specific MALDI matrix such as 2,5-dihydroxybenzoic acid or 1,5-diaminonaphthalene. MALDI-ISD is generally employed on classical, purified samples, but here we demonstrate that ISD can also be performed directly on mixtures and on a tissue slice leading to fragment ions, allowing the identification of major proteins without any further treatment. On a porcine eye lens slice, de novo sequencing was even performed. Crystallins not yet referenced in databases were identified by sequence homology with other mammalian species. On a mouse brain slice, we demonstrate that results obtained with ISD are comparable and even better than those obtained with a classical in situ digestion. [less ▲]

Detailed reference viewed: 147 (36 ULg)
Full Text
Peer Reviewed
See detailMALDI MS Tissue Imaging of Crystallins using an original metyhod to direct protein identification on lens slices
Bertrand, Virginie ULg; Debois, Delphine ULg; Quinton, Loïc ULg et al

Poster (2010, April 16)

The lens is a transparent, biconvex structure in the eye that, along with the cornea, helps to refract light to be focused on the retina. Crystallins, α, β and γ, are the predominant structural proteins ... [more ▼]

The lens is a transparent, biconvex structure in the eye that, along with the cornea, helps to refract light to be focused on the retina. Crystallins, α, β and γ, are the predominant structural proteins in lens. They constitute 90% of water soluble proteins and contribute to its transparency and refractive properties by a uniform concentration gradient in the lens. Nevertheless, if these crystallins undergo post translational modifications, they become less soluble and the opacity of eye lens increases. This phenomenon defines cataract. Yet, the nature and the mechanism of occurring of these modifications and how they happen are not fully understood. MALDI mass spectrometry imaging is a recent technique allowing examining proteins in their native location without the need for traditional processing methods such as extraction, homogenization, and separation. Nevertheless, one main difficulty lies in the identification of the detected species, especially proteins. MALDI-In Source Decay (MALDI-ISD) is a fragmentation process occurring in the mass spectrometer ion source. When the analyzed sample is a protein, ISD fragmentation leads to b-, c- and z-ions series, which allows for some sequencing of the protein. One great advantage of ISD is its fastness and easiness to be implemented since there is no need for a special treatment of the sample. The only requirement is the use of “ISD-favourable MALDI matrix” such as 2,5-dihydroxybenzoic acid or 1,5-diaminonaphtalene. 18 µm-thick equatorial sections of frozen porcine eye lenses were realized with a cryostat. 1,5-DAN matrix was either manually deposited or sprayed with an ImagePrep automated device (Bruker Daltonics). Data were acquired with an UltraFlex II MALDI-TOF/TOF mass spectrometer (BD) in positive reflector mode. For imaging experiments, the surface of the sample was divided into 100-µm-wide pixels and 500 shots were averaged on each. Based on calculated mass differences between consecutive ISD fragments peaks, tags of amino acids were established and submitted to a search in protein databases using a BLAST algorithm (search by sequence homology). Imaging experiments showed that the localization information may be very useful to associate fragments which exhibit close distributions, suggesting they are originating from the same protein. It is thus possible to arrange fragments in groups of probable origin and to extract the mass spectrum of a high-intensity pixel. This allows to work with a “purified” ISD mass spectrum where fragments of only one protein are present and potentially exhibiting a higher number of peaks, leading to a longer tag and to an easier identification. With this imaging strategy, we were able to identify (by homology) the Beta-Crystallins S and B2, the Gamma-Crystallin B, the Alpha-Crystallin A. [less ▲]

Detailed reference viewed: 30 (2 ULg)
Full Text
Peer Reviewed
See detailChemical Imaging on Liver Steatosis Using Synchrotron Infrared and ToF-SIMS Microspectroscopies
Le Naour, François; Bralet, Marie-Pierre; Debois, Delphine ULg et al

in PLoS ONE (2009), 4(10), 7408

Detailed reference viewed: 52 (10 ULg)