References of "Cornil, Charlotte"
     in
Bookmark and Share    
See detailCellular mechanisms controlling rapid changes in brain aromatase activity
Charlier, Thierry; Cornil, Charlotte ULg; Ball, Gregory et al

in Balthazart, Jacques; Ball, Gregory (Eds.) Brain aromatase, estrogens and behavior (2012)

Detailed reference viewed: 9 (0 ULg)
See detailRapid modulation of aromatase activity by social and environmental stimuli in quail
Cornil, Charlotte ULg; Dickens, Molly; BAll, Gregory et al

in Balthazart, Jacques; Ball, Gregory (Eds.) Brain aromatase, estrogens and behavior (2012)

Detailed reference viewed: 10 (0 ULg)
Full Text
Peer Reviewed
See detailRapid control of male typical behaviors by brain-derived estrogens
Cornil, Charlotte ULg; Ball, Gregory F; Balthazart, Jacques ULg

in Frontiers in Neuroendocrinology (2012)

Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance ... [more ▼]

Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanism that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators. [less ▲]

Detailed reference viewed: 46 (7 ULg)
Full Text
Peer Reviewed
See detailAcute and Specific Modulation of Presynaptic Aromatization in the Vertebrate Brain
Cornil, Charlotte ULg; Leung, Cary H.; Pletcher, Eric R. et al

in Endocrinology (2012), 153(6), 2562-7

Estrogens affect a diversity of peripheral and central physiological endpoints. Traditionally, estrogens were thought to be peripherally derived transcription regulators (i.e. slow acting). More recently ... [more ▼]

Estrogens affect a diversity of peripheral and central physiological endpoints. Traditionally, estrogens were thought to be peripherally derived transcription regulators (i.e. slow acting). More recently, we have learned that estrogens are also synthesized in neuronal cell bodies and synaptic terminals and have potent membrane effects, which modulate brain function. However, the mechanisms that control local steroid concentrations in a temporal and spatial resolution compatible with their acute actions are poorly understood. Here, using differential centrifugation followed by enzymatic assay, we provide evidence that estrogen synthesis within synaptosomes can be modulated more dramatically by phosphorylating conditions, relative to microsomes. This is the first demonstration of a rapid mechanism that may alter steroid concentrations within the synapse and may represent a potential mechanism for the acute control of neurophysiology and behavior. [less ▲]

Detailed reference viewed: 7 (3 ULg)
Full Text
Peer Reviewed
See detailBrain aromatase and circulating corticosterone are rapidly regulated by combined acute stress and sexual interaction in a sex specific manner.
Dickens, Molly J.; Balthazart, Jacques ULg; Cornil, Charlotte ULg

in Journal of Neuroendocrinology (2012), 24(10), 1322-34

Neural production of 17β-oestradiol via aromatisation of testosterone may play a critical role in rapid, non-genomic regulation of physiological and behavioural processes. In brain nuclei implicated in ... [more ▼]

Neural production of 17β-oestradiol via aromatisation of testosterone may play a critical role in rapid, non-genomic regulation of physiological and behavioural processes. In brain nuclei implicated in the control of sexual behaviour, sexual or stressfull stimuli induce respectively a rapid inhibition or increase in preoptic aromatase activity (AA). Here, we tested quail that were either non-stressed or acutely stressed (15 min restraint) immediately prior to sexual interaction (5 min) with stressed or non-stressed partners. We measured nuclei-specific AA changes, corresponding behavioural output, fertilisation rates and corticosterone (CORT) concentrations. In males, sexual interaction rapidly reversed stress-induced increases of AA in the medial preoptic nucleus (POM). This time scale (<5min) highlights the dynamic potential of the aromatase system to integrate input from stimuli that drive AA in opposing directions. Moreover, acute stress had minimal effects on male behaviour suggesting that the input from the sexual stimuli on POM AA may actively preserve sexual behaviour despite stress exposure. We also found distinct sex differences in contextual physiological responses: while males did not show any effect of partner status, females responded to both their stress exposure and the male partner's stress exposure at the level of circulating CORT and AA. In addition, fertilisation rates and female CORT correlated with the male partner's exhibition of sexually aggressive behaviour suggesting that female perception of the male can affect their physiology as much as direct stress. Overall, male reproduction appears relatively simple - sexual stimuli, irrespective of stress, drives major neural changes including rapid reversal of stress-induced changes of AA. In contrast, female reproduction appears more nuanced and context specific, with subjects responding physiologically and behaviourally to stress, the male partner's stress exposure, and female-directed male behaviour. [less ▲]

Detailed reference viewed: 25 (3 ULg)
Full Text
Peer Reviewed
See detailSex differences in brain aromatase activity: genomic and non-genomic controls
Balthazart, Jacques ULg; Charlier, Thierry ULg; Cornil, Charlotte ULg et al

in Frontiers in Endocrinology (2011), 2

Aromatization of testosterone into estradiol in the preoptic area plays a critical role in the activation of male copulation in quail and in many other vertebrate species. Aromatase expression in quail ... [more ▼]

Aromatization of testosterone into estradiol in the preoptic area plays a critical role in the activation of male copulation in quail and in many other vertebrate species. Aromatase expression in quail and in other birds is higher than in rodents and other mammals, which has facilitated the study of the controls and functions of this enzyme. Over relatively long time periods (days to months), brain aromatase activity (AA), and transcription are markedly (four- to sixfold) increased by genomic actions of sex steroids. Initial work indicated that the preoptic AA is higher in males than in females and it was hypothesized that this differential production of estrogen could be a critical factor responsible for the lack of behavioral activation in females. Subsequent studies revealed, however, that this enzymatic sex difference might contribute but is not sufficient to explain the sex difference in behavior. Studies of AA, immunoreactivity, and mRNA concentrations revealed that sex differences observed when measuring enzymatic activity are not necessarily observed when one measures mRNA concentrations. Discrepancies potentially reflect post-translational controls of the enzymatic activity. AA in quail brain homogenates is rapidly inhibited by phosphorylation processes. Similar rapid inhibitions occur in hypothalamic explants maintained in vitro and exposed to agents affecting intracellular calcium concentrations or to glutamate agonists. Rapid changes in AA have also been observed in vivo following sexual interactions or exposure to short-term restraint stress and these rapid changes in estrogen production modulate expression of male sexual behaviors. These data suggest that brain estrogens display most if not all characteristics of neuromodulators if not neurotransmitters. Many questions remain however concerning the mechanisms controlling these rapid changes in estrogen production and their behavioral significance. [less ▲]

Detailed reference viewed: 167 (27 ULg)
Full Text
Peer Reviewed
See detailOrganizing effects of sex steroids on brain aromatase activity in quail
Cornil, Charlotte ULg; Ball, Gregory F; Balthazart, Jacques ULg et al

in PLoS ONE (2011), 6(4), 19196

Detailed reference viewed: 29 (10 ULg)
Full Text
Peer Reviewed
See detailHuman and Quail Aromatase Activity Is Rapidly and Reversibly Inhibited by Phosphorylating Conditions
Charlier, Thierry ULg; Harada, Nobuhiro; Balthazart, Jacques ULg et al

in Endocrinology (2011), 152(11), 4199-210

Besides their slow genomic actions, estrogens also induce rapid physiological responses. To be functionally relevant, these effects must be associated with rapid changes in local concentrations of ... [more ▼]

Besides their slow genomic actions, estrogens also induce rapid physiological responses. To be functionally relevant, these effects must be associated with rapid changes in local concentrations of estrogens. Rapid changes in aromatase activity (AA) controlled by calcium-dependent phosphorylations of the enzyme can alter in a rapid manner local estrogen concentrations, but so far this mechanism was identified only in the avian (quail) brain. We show here that AA is also rapidly down-regulated by phosphorylating conditions in quail ovary homogenates and in various cell lines transfected with human aromatase (HEK 293, Neuro2A, and C6). Enzymatic activity was also rapidly inhibited after depolarization of aromatase-expressing HEK 293 cells with 100 mm KCl, and activity was fully restored when cells returned to control conditions. Western blot analysis demonstrated that the reduction of enzymatic activity is not due to protein degradation. We next investigated by site-directed mutagenesis the potential implication in the control of AA of specific aromatase residues identified by bioinformatic analysis. Mutation of the amino acids S118, S247, S267, T462, T493, or S497 to alanine, alone or in combination, did not block the rapid inhibition of enzymatic activity induced by phosphorylating conditions, but basal AA was markedly decreased in the S118A mutant. Altogether, these results demonstrate that the rapid inhibition of AA is a widespread and fully reversible process and that phosphorylation of specific residues modulate AA. These processes provide a new general mechanism by which local estrogen concentration can be rapidly altered in the brain and other tissues. [less ▲]

Detailed reference viewed: 26 (4 ULg)
Full Text
Peer Reviewed
See detailAcute Stress Differentially Affects Aromatase Activity in Specific Brain Nuclei of Adult Male and Female Quail
Dickens, Molly J; Cornil, Charlotte ULg; Balthazart, Jacques ULg

in Endocrinology (2011), 52(11), 4242-51

The rapid and temporary suppression of reproductive behavior is often assumed to be an important feature of the adaptive acute stress response. However, how this suppression operates at the mechanistic ... [more ▼]

The rapid and temporary suppression of reproductive behavior is often assumed to be an important feature of the adaptive acute stress response. However, how this suppression operates at the mechanistic level is poorly understood.The enzyme aromatase converts testosterone to estradiol in the brain to activate reproductive behavior in male Japanese quail (Coturnix japonica). The discovery of rapid and reversible modification of aromatase activity (AA) provides a potential mechanism for fast, stress induced changes in behavior. We investigated the effects of acute stress on AA in both sexes by measuring enzyme activity in all aromatase-expressing brain nuclei before, during, and after 30 min of acute restraint stress. We show here that acute stress rapidly alters AA in the male and female brain and that these changes are specific to the brain nuclei and sex of the individual. Specifically, acute stress rapidly (5 min) increased AA in the male medial preoptic nucleus, a region controlling male reproductive behavior; in females, a similar increase was also observed, but it appeared delayed (15min) and had smaller amplitude. In the ventromedial and tuberal hypothalamus, regions associated with female reproductive behavior, stress induced a quick and sustained decrease in AA in females, but in males, only a slight increase (ventromedial) or no change (tuberal) in AA was observed. Effects of acute stress on brain estrogen production, therefore, represent one potential way through which stress affects reproduction. [less ▲]

Detailed reference viewed: 22 (1 ULg)
Full Text
Peer Reviewed
See detailSEASONAL AND INDIVIDUAL VARIATION IN SINGING BEHAVIOR CORRELATES WITH ALPHA 2-NORADRENERGIC RECEPTOR DENSITY IN BRAIN REGIONS IMPLICATED IN SONG, SEXUAL, AND SOCIAL BEHAVIOR
Heimovics, Sarah A.; Cornil, Charlotte ULg; Hellis, J. M. S. et al

in Neuroscience (2011), 182

In seasonally breeding male songbirds, both the function of song and the stimuli that elicit singing behavior change seasonally. The catecholamine norepinephrine (NE) modulates attention and arousal ... [more ▼]

In seasonally breeding male songbirds, both the function of song and the stimuli that elicit singing behavior change seasonally. The catecholamine norepinephrine (NE) modulates attention and arousal across behavioral states, yet the role of NE in seasonally-appropriate vocal communication has not been well-studied. The present study explored the possibility that seasonal changes in alpha 2-noradrenergic receptors (alpha2-R) within song control regions and brain regions implicated in sexual arousal and social behavior contribute to seasonal changes in song behavior in male European starlings (Sturnus vulgaris). We quantified singing behavior in aviary housed males under spring breeding season conditions and fall conditions. alpha2-R were identified with the selective ligand [3H]RX821002 using autoradiographic methods. The densities of alpha2-R in song control regions (HVC and the robust nucleus of the arcopallium [RA]) and the lateral septum (LS) were lower in Spring Condition males. alpha2-R densities in the caudal portion of the medial preoptic nucleus (POM) related negatively to singing behavior. Testosterone concentrations were highest in Spring Condition males and correlated with alpha2-R in LS and POM. Results link persistent seasonal alterations in the structure or function of male song to seasonal changes in NE alpha2-Rs in HVC, RA, and LS. Individual differences in alpha2-R in the POM may in part explain individual differences in song production irrespective of the context in which a male is singing, perhaps through NE modification of male sexual arousal. [less ▲]

Detailed reference viewed: 23 (8 ULg)
Full Text
Peer Reviewed
See detailRapid changes of aromatase activity in discrete brain regions following social interactions
de Bournonville, Catherine ULg; Ball, Gregory, F.; Balthazart, Jacques ULg et al

in Trabajos del Instituto Cajal (2011), LXXXIII

Detailed reference viewed: 37 (18 ULg)
Full Text
Peer Reviewed
See detailEffects of social experience on subsequent sexual performance in naïve male Japanese quail (Coturnix japonica)
Cornil, Charlotte ULg; Ball, Gregory

in Hormones & Behavior (2010), 57

On their first sexual encounter, naïve male Japanese quail will attend to and approach a female; they sometimes mount but they do not always copulate. During the second encounter, most males successfully ... [more ▼]

On their first sexual encounter, naïve male Japanese quail will attend to and approach a female; they sometimes mount but they do not always copulate. During the second encounter, most males successfully copulate. Although sexual experience facilitates subsequent sexual interactions, sensory cues provided by females, independent of any sexual encounter, may also enhance sexual performance. To investigate whether previous exposure to a conspecific affects subsequent sexual behavior, we allowed inexperienced males to observe an empty box, or a conspecific consisting of either an experienced female or male for 2.5 min/day on 7 days. Measures of appetitive sexual behavior were recorded during these tests. On day 8, subjects were allowed to copulate with a novel female for 5 min. On the following days, all subjects were repeatedly provided with visual access to a female and allowed to mate. In the pre-copulatory trials males initially exhibited a high frequency of appetitive responses that dissipated with repetition. Pre-copulatory experience also significantly affected motivation to mate with subjects exposed to females copulating more quickly than other subjects. Post-copulatory appetitive behavior also differed between groups: control subjects showed the highest behavioral frequency followed by males exposed to females and finally males exposed to males. These data indicate that pre-copulatory social experience profoundly influences subsequent sexual behavior and probably reproductive success. This experience effect is independent of any hormonal effect (such as one resulting from changes in secretion following different social interactions) given that the subjects were castrates chronically treated with testosterone. [less ▲]

Detailed reference viewed: 29 (4 ULg)
Full Text
Peer Reviewed
See detailDiversity of mechanisms involved in aromatase regulation and estrogen action in the brain
Charlier, Thierry ULg; Cornil, Charlotte ULg; Ball, Gregory et al

in Biochimica et Biophysica Acta - General Subjects (2010)

Background In recent years, the mechanisms through which estrogens modulate neuronal physiology, brain morphology, and behavior have proven to be far more complex than previously thought. For example, a ... [more ▼]

Background In recent years, the mechanisms through which estrogens modulate neuronal physiology, brain morphology, and behavior have proven to be far more complex than previously thought. For example, a second nuclear estrogen receptor has been identified, a new family of coregulatory proteins regulating steroid-dependent gene transcriptions was discovered and, finally, it has become clear that estrogens have surprisingly rapid effects based on their actions on cell membranes, which in turn result in the modulation of intracellular signaling cascades. Scope of review This paper presents a selective review of new findings in this area related to work in our laboratories, focusing on the role of estrogens in the activation of male sexual behavior. Two separate topics are considered. We first discuss functions of the steroid receptor coactivator-1 (SRC-1) that has emerged as a key limiting factor for behavioral effects of estradiol. Knocking-down its expression by antisense oligonucleotides drastically inhibits male-typical sexual behaviors. Secondly, we describe rapid regulations of brain estradiol production by calcium-dependent phosphorylations of the aromatase enzyme, themselves under the control of neurotransmitter activity. These rapid changes in estrogen bioavailability have clear behavioral consequences. Increases or decreases in estradiol concentrations respectively obtained by an acute injection of estradiol itself or of an aromatase inhibitor lead within 15–30 min to parallel changes in sexual behavior frequencies. These new controls of estrogen action offer a vast array of possibilities for discrete local controls of estrogen action. They also represent a formidable challenge for neuroendocrinologists trying to obtain an integrated view of brain function in relation to behavior. [less ▲]

Detailed reference viewed: 49 (5 ULg)
Full Text
Peer Reviewed
See detailBrain aromatase activity and male sexual behavior
Balthazart, Jacques ULg; Cornil, Charlotte ULg; Charlier, Thierry ULg et al

in Annales d'Endocrinologie (2010), 71

Detailed reference viewed: 9 (2 ULg)
See detailRapid regulation of aromatase activity and the role of stress
Dickens, Molly; Charlier, Thierry ULg; Cornil, Charlotte ULg et al

Poster (2010)

Detailed reference viewed: 16 (2 ULg)
Full Text
Peer Reviewed
See detailIs sexual motivational state linked to dopamine release in the medial preoptic area?
Kleitz-Nelson, Hayley; Dominguez, Juan; Cornil, Charlotte ULg et al

in Behavioral Neuroscience (2010)

The medial preoptic area (mPOA) is a key site for the dopaminergic enhancement of male sexual behavior. Dopamine release increases in the rat mPOA with mating, supporting the critical stimulatory role ... [more ▼]

The medial preoptic area (mPOA) is a key site for the dopaminergic enhancement of male sexual behavior. Dopamine release increases in the rat mPOA with mating, supporting the critical stimulatory role played by preoptic dopamine on male sexual behavior. However, it has been questioned whether dopamine is specifically related to the occurrence of male sexual behavior and not simply involved in general arousal. To address this question, we ask whether dopamine release in the mPOA is linked to the production of male sexual behavior in Japanese quail, a species that exhibits a much shorter temporal pattern of copulation than rats and does not have an intromittent organ, resulting in a very different topography of their sexual response. Extracellular samples from the mPOA of adult sexually experienced male quail were collected every six minutes before, during, and after exposure to a female using in vivo microdialysis and analyzed using HPLC-EC. Extracellular dopamine significantly increased in the presence of a female and returned to baseline after removal of the female. However, subjects who failed to copulate did not display this increased release. These findings indicate that it is not solely the presence of a female that drives dopamine release in males, but how a male responds to her. Further, in subjects that copulated, dopamine release did not change in samples collected during periods of no copulation. Together, these findings support the hypothesis that dopamine action in the mPOA is specifically linked to sexual motivation and not only copulatory behavior or physical arousal. [less ▲]

Detailed reference viewed: 61 (4 ULg)
Full Text
Peer Reviewed
See detailTestosterone recruits new aromatase-imunoreactive cells in neonatal quail brain.
Bardet, Sylvia M; Cornil, Charlotte ULg; Balthazart, Jacques ULg

in Neuroreport (2010), 21(5), 376-80

It was shown earlier that, in Japanese quail the mechanism controlling the induction by testosterone of aromatase activity develops between embryonic days 10 and 14. The cellular processes underlying this ... [more ▼]

It was shown earlier that, in Japanese quail the mechanism controlling the induction by testosterone of aromatase activity develops between embryonic days 10 and 14. The cellular processes underlying this activation have, however, not been investigated in detail. Here, we demonstrate that the increase in aromatase activity observed in neonates treated with testosterone propionate between postnatal days 1 and 3 results from the recruitment of additional populations of aromatase-immunoreactive cells that were not expressing the enzyme at detectable levels before. This recruitment concerns all brain nuclei normally expressing the enzyme even if it is more prominent in the ventromedial hypothalamus than in other nuclei. [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailBehavioral effects of brain-derived estrogens in birds.
Balthazart, Jacques ULg; Taziaux, Mélanie ULg; Holloway, Kevin et al

in Annals of the New York Academy of Sciences (2009), 1163

In birds as in other vertebrates, estrogens produced in the brain by aromatization of testosterone have widespread effects on behavior. Research conducted with male Japanese quail demonstrates that ... [more ▼]

In birds as in other vertebrates, estrogens produced in the brain by aromatization of testosterone have widespread effects on behavior. Research conducted with male Japanese quail demonstrates that effects of brain estrogens on all aspects of sexual behavior, including appetitive and consummatory components as well as learned aspects, can be divided into two main classes based on their time course. First, estrogens via binding to estrogen receptors regulate the transcription of a variety of genes involved primarily in neurotransmission. These neurochemical effects ultimately result in the activation of male copulatory behavior after a latency of a few days. Correlatively, testosterone and its aromatized metabolites increase the transcription of the aromatase mRNA, resulting in an increased concentration and activity of the enzyme that actually precedes behavioral activation. Second, recent studies with quail demonstrate that brain aromatase activity can also be modulated within minutes by phosphorylation processes regulated by changes in intracellular calcium concentration, such as those associated with glutamatergic neurotransmission. The rapid upregulations or downregulations of brain estrogen concentration (presumably resulting from these changes in aromatase activity) affect, by nongenomic mechanisms with relatively short latencies (frequency increases or decreases respectively within 10-15 min), the expression of male sexual behavior in quail and also in rodents. Brain estrogens thus affect behavior on different time scales by genomic and nongenomic mechanisms similar to those of a hormone or a neurotransmitter. [less ▲]

Detailed reference viewed: 25 (3 ULg)