References of "Collier Cameron, A."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThermal emission at 3.6-8 micron from WASP-19b: a hot Jupiter without a stratosphere orbiting an active star
Anderson, D. R.; Smith, A. M. S.; Madhusudhan, N. et al

in Monthly Notices of the Royal Astronomical Society (2013), 430(4), 3422-3431

We report detection of thermal emission from the exoplanet WASP-19b at 3.6, 4.5, 5.8 and 8.0 μm. We used the InfraRed Array Camera on the Spitzer Space Telescope to observe two occultations of WASP-19b by ... [more ▼]

We report detection of thermal emission from the exoplanet WASP-19b at 3.6, 4.5, 5.8 and 8.0 μm. We used the InfraRed Array Camera on the Spitzer Space Telescope to observe two occultations of WASP-19b by its host star. We combine our new detections with previous measurements of WASP-19b's emission at 1.6 and 2.09 μm to construct a spectral energy distribution of the planet's dayside atmosphere. By comparing this with model-atmosphere spectra, we find that the dayside atmosphere of WASP-19b lacks a strong temperature inversion. As WASP-19 is an active star (log R'HK = -4.50 ± 0.03), this finding supports the hypothesis of Knutson, Howard and Isaacson that inversions are suppressed in hot Jupiters orbiting active stars. The available data are unable to differentiate between a carbon-rich and an oxygen-rich atmosphere. [less ▲]

Detailed reference viewed: 27 (5 ULg)
Full Text
Peer Reviewed
See detailWASP-54b, WASP-56b and WASP-57b: Three new sub-Jupiter mass planets from SuperWASP
Faedi, F.; Pollacco, D.; Barros, S. C. C. et al

in Astronomy and Astrophysics (2013), 551

We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636+0.025-0.024RJ. It orbits a F9 star, evolving off the main sequence ... [more ▼]

We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636+0.025-0.024RJ. It orbits a F9 star, evolving off the main sequence, every 3.69 days. Our MCMC fit of the system yields a slightly eccentric orbit (e = 0.067+0.033-0.025) for WASP-54b. We investigated further the veracity of our detection of the eccentric orbit for WASP-54b, and we find that it could be real. However, given the brightness of WASP-54 V = 10.42 mag, we encourage observations of a secondary eclipse to draw robust conclusions on both the orbital eccentricity and the thermal structure of the planet. WASP-56b and WASP-57b have masses of 0.571+0.034-0.035MJ and 0.672+0.049-0.046MJ, respectively; and radii of 1.092+0.035-0.033RJ for WASP-56b and 0.916+0.017-0.014RJ for WASP-57b. They orbit main sequence stars of spectral type G6 every 4.67 and 2.84 days, respectively. WASP-56b and WASP-57b show no radius anomaly and a high density possibly implying a large core of heavy elements; possibly as high as ~50 M⊕ in the case of WASP-57b. However,the composition of the deep interior of exoplanets remains still undetermined. Thus, more exoplanet discoveries such as the ones presented in this paper, are needed to understand and constrain giant planets' physical properties. [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-80b: a gas giant transiting a cool dwarf
Triaud, A. H. M. J.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2013), 551

We report the discovery of a planet transiting the star <ASTROBJ>WASP-80</ASTROBJ> (<ASTROBJ>1SWASP J201240.26-020838.2</ASTROBJ>; <ASTROBJ>2MASS J20124017-0208391</ASTROBJ>; <ASTROBJ>TYC 5165-481-1 ... [more ▼]

We report the discovery of a planet transiting the star <ASTROBJ>WASP-80</ASTROBJ> (<ASTROBJ>1SWASP J201240.26-020838.2</ASTROBJ>; <ASTROBJ>2MASS J20124017-0208391</ASTROBJ>; <ASTROBJ>TYC 5165-481-1</ASTROBJ>; <ASTROBJ>BPM 80815</ASTROBJ>; V = 11.9, K = 8.4). Our analysis shows this is a 0.55 ± 0.04 M[SUB]jup[/SUB], 0.95 ± 0.03 R[SUB]jup[/SUB] gas giant on a circular 3.07 day orbit around a star with a spectral type between K7V and M0V. This system produces one of the largest transit depths so far reported, making it a worthwhile target for transmission spectroscopy. We find a large discrepancy between the vsini[SUB]⋆[/SUB] inferred from stellar line broadening and the observed amplitude of the Rossiter-McLaughlin effect. This can be understood either by an orbital plane nearly perpendicular to the stellar spin or by an additional, unaccounted for source of broadening. Using WASP-South photometric observations, from Sutherland (South Africa), confirmed with the 60 cm TRAPPIST robotic telescope, EulerCam, and the CORALIE spectrograph on the Swiss 1.2 m Euler Telescope, and HARPS on the ESO 3.6 m (Prog ID 089.C-0151), all three located at La Silla Observatory, Chile.Radial velocity and photometric data are available in electronic form at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>(<A href="http://130.79.128.5">130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A80">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A80</A> [less ▲]

Detailed reference viewed: 15 (1 ULg)
Full Text
Peer Reviewed
See detailAccurate spectroscopic parameters of WASP planet host stars
Doyle, Amanda P.; Smalley, B.; Maxted, P. F. L. et al

in Monthly Notices of the Royal Astronomical Society (2013), 428(4), 3164-3172

We have made a detailed spectral analysis of eleven Wide Angle Search for Planets (WASP) planet host stars using high signal-to-noise (S/N) HARPS spectra. Our line list was carefully selected from the ... [more ▼]

We have made a detailed spectral analysis of eleven Wide Angle Search for Planets (WASP) planet host stars using high signal-to-noise (S/N) HARPS spectra. Our line list was carefully selected from the spectra of the Sun and Procyon, and we made a critical evaluation of the atomic data. The spectral lines were measured using equivalent widths. The procedures were tested on the Sun and Procyon prior to be being used on the WASP stars. The effective temperature, surface gravity, microturbulent velocity and metallicity were determined for all the stars. We show that abundances derived from high S/N spectra are likely to be higher than those obtained from low S/N spectra, as noise can cause the equivalent width to be underestimated. We also show that there is a limit to the accuracy of stellar parameters that can be achieved, despite using high S/N spectra, and the average uncertainty in effective temperature, surface gravity, microturbulent velocity and metallicity is 83 K, 0.11 dex, 0.11 km/s and 0.10 dex respectively. [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-77 Ab: A Transiting Hot Jupiter Planet in a Wide Binary System
Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A. et al

in Publications of the Astronomical Society of the Pacific (2013), 125

We report the discovery of a transiting planet with an orbital period of 1.36 days orbiting the brighter component of the visual binary star BD 07 436. The host star, WASP-77 A, is a moderately bright G8 ... [more ▼]

We report the discovery of a transiting planet with an orbital period of 1.36 days orbiting the brighter component of the visual binary star BD 07 436. The host star, WASP-77 A, is a moderately bright G8 V star (V=10.3) with a metallicity close to solar ([Fe/H] = 0.0 ± 0.1). The companion star, WASP-77 B, is a K-dwarf approximately 2 mag fainter at a separation of approximately 3″. The spectrum of WASP-77 A shows emission in the cores of the Caii H and K lines, indicative of moderate chromospheric activity. The Wide Angle Search for Planets (WASP) light curves show photometric variability with a period of 15.3 days and an amplitude of about 0.3% that is probably due to the magnetic activity of the host star. We use an analysis of the combined photometric and spectroscopic data to derive the mass and radius of the planet (1.76 ± 0.06 M[SUB]Jup[/SUB], 1.21 ± 0.02 R[SUB]Jup[/SUB]). The age of WASP-77 A estimated from its rotation rate (˜1 Gyr) agrees with the age estimated in a similar way for WASP-77 B (˜0.6 Gyr) but is in poor agreement with the age inferred by comparing its effective temperature and density to stellar models (˜8 Gyr). Follow-up observations of WASP-77 Ab will make a useful contribution to our understanding of the influence of binarity and host star activity on the properties of hot Jupiters. [less ▲]

Detailed reference viewed: 25 (1 ULg)
Full Text
Peer Reviewed
See detailAnalysis of Spin-Orbit Alignment in the WASP-32, WASP-38, and HAT-P-27/WASP-40 Systems
Brown, D. J. A.; Collier Cameron, A.; Díaz, R. F. et al

in Astrophysical Journal (2012), 760

We present measurements of the spin-orbit alignment angle, λ, for the hot Jupiter systems WASP-32, WASP-38, and HAT-P-27/WASP-40, based on data obtained using the HARPS spectrograph. We analyze the ... [more ▼]

We present measurements of the spin-orbit alignment angle, λ, for the hot Jupiter systems WASP-32, WASP-38, and HAT-P-27/WASP-40, based on data obtained using the HARPS spectrograph. We analyze the Rossiter-McLaughlin effect for all three systems and also carry out Doppler tomography for WASP-32 and WASP-38. We find that WASP-32 (T [SUB]eff[/SUB] = 6140[SUP]+90[/SUP] [SUB]- 100[/SUB] K) is aligned, with an alignment angle of λ = 10fdg5[SUP] + 6.4[/SUP] [SUB] - 6.5[/SUB] obtained through tomography, and that WASP-38 (T [SUB]eff[/SUB] = 6180[SUP]+40[/SUP] [SUB]- 60[/SUB] K) is also aligned, with tomographic analysis yielding λ = 7fdg5[SUP] + 4.7[/SUP] [SUB] - 6.1[/SUB]. The latter result provides an order-of-magnitude improvement in the uncertainty in λ compared to the previous analysis of Simpson et al. We are only able to loosely constrain the angle for HAT-P-27/WASP-40 (T [SUB]eff[/SUB] = 5190[SUP]+160[/SUP] [SUB]- 170[/SUB] K) to λ = 24fdg2[SUP] + 76.0[/SUP] [SUB] - 44.5[/SUB], owing to the poor signal-to-noise ratio of our data. We consider this result a non-detection under a slightly updated version of the alignment test of Brown et al. We place our results in the context of the full sample of spin-orbit alignment measurements, finding that they provide further support for previously established trends. Based on observations (under proposal 087.C-0649) made using the HARPS High Resolution Échelle Spectrograph mounted on the ESO 3.6 m at the ESO La Silla observatory. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailSeven transiting hot-Jupiters from WASP-South, Euler and TRAPPIST: WASP-47b, WASP-55b, WASP-61b, WASP-62b, WASP-63b, WASP-66b & WASP-67b
Hellier, Coel; Anderson, D R; Collier Cameron, A et al

in Monthly Notices of the Royal Astronomical Society (2012), 426

We present seven new transiting hot Jupiters from the WASP-South survey. The planets are all typical hot Jupiters orbiting stars from F4 to K0 with magnitudes of V = 10.3 to 12.5. The orbital periods are ... [more ▼]

We present seven new transiting hot Jupiters from the WASP-South survey. The planets are all typical hot Jupiters orbiting stars from F4 to K0 with magnitudes of V = 10.3 to 12.5. The orbital periods are all in the range 3.9--4.6 d, the planetary masses range from 0.4--2.3 Mjup and the radii from 1.1--1.4 Mjup. In line with known hot Jupiters, the planetary densities range from Jupiter-like to inflated (rho = 0.13--1.07 rho_jup). We use the increasing numbers of known hot Jupiters to investigate the distribution of their orbital periods and the 3--4-d "pile-up". [less ▲]

Detailed reference viewed: 43 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-36b: A new transiting planet around a metal-poor G-dwarf, and an analysis of correlated noise in transit light curves
Smith, A. M. S.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomical Journal (The) (2012), 143(4), 10

We report the discovery, from WASP and CORALIE, of a transiting exoplanet in a 1.54-d orbit. The host star, WASP-36, is a magnitude 12.7, metal-poor G2 dwarf (Teff = 5881 +/- 137 K), with [Fe/H] = -0.31 ... [more ▼]

We report the discovery, from WASP and CORALIE, of a transiting exoplanet in a 1.54-d orbit. The host star, WASP-36, is a magnitude 12.7, metal-poor G2 dwarf (Teff = 5881 +/- 137 K), with [Fe/H] = -0.31 +/- 0.12. We determine the planet to have mass and radius respectively 2.27 +/- 0.07 and 1.27 +/- 0.03 times that of Jupiter. We have eight partial or complete transit light curves, from four different observatories, which allows us to investigate the extent to which red noise in follow-up light curves affects the fitted system parameters. We find that the solutions obtained by analysing each of these light curves independently are consistent with our global fit to all the data, despite the apparent presence of correlated noise in at least two of the light curves. [less ▲]

Detailed reference viewed: 41 (1 ULg)
Full Text
Peer Reviewed
See detailThe TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b
Gillon, Michaël ULg; Triaud, A H M J; Fortney, J. J. et al

in Astronomy and Astrophysics (2012), 542

We present twenty-three transit light curves and seven occultation light curves for the ultra-short period planet WASP-43 b, in addition to eight new measurements of the radial velocity of the star ... [more ▼]

We present twenty-three transit light curves and seven occultation light curves for the ultra-short period planet WASP-43 b, in addition to eight new measurements of the radial velocity of the star. Thanks to this extensive data set, we improve significantly the parameters of the system. Notably, the largely improved precision on the stellar density (2.41 ± 0.08 ρsun) combined with constraining the age to be younger than a Hubble time allows us to break the degeneracy of the stellar solution mentioned in the discovery paper. The resulting stellar mass and size are 0.717 ± 0.025 Msun and 0.667 ± 0.011 Rsun. Our deduced physical parameters for the planet are 2.034 ± 0.052 MJup and 1.036 ± 0.019 RJup. Taking into account its level of irradiation, the high density of the planet favors an old age and a massive core. Our deduced orbital eccentricity, 0.0035-0.0025+0.0060, is consistent with a fully circularized orbit. We detect the emission of the planet at 2.09 μm at better than 11-σ, the deduced occultation depth being 1560 ± 140 ppm. Our detection of the occultation at 1.19 μm is marginal (790 ± 320 ppm) and more observations are needed to confirm it. We place a 3-σ upper limit of 850 ppm on the depth of the occultation at ~0.9 μm. Together, these results strongly favor a poor redistribution of the heat to the night-side of the planet, and marginally favor a model with no day-side temperature inversion. [less ▲]

Detailed reference viewed: 33 (13 ULg)
Full Text
Peer Reviewed
See detailWASP-44b, WASP-45b and WASP-46b: three short-period, transiting extrasolar planets
Anderson, D. R.; Collier Cameron, A.; Gillon, Michaël ULg et al

in Monthly Notices of the Royal Astronomical Society (2012), 422(3), 1988

We report the discovery of three extrasolar planets that transit their moderately bright (Vmag = 12-13) host stars. WASP-44b is a 0.89-MJup planet in a 2.42-day orbit around a G8V star. WASP-45b is a 1.03 ... [more ▼]

We report the discovery of three extrasolar planets that transit their moderately bright (Vmag = 12-13) host stars. WASP-44b is a 0.89-MJup planet in a 2.42-day orbit around a G8V star. WASP-45b is a 1.03-MJup planet which passes in front of the limb of its K2V host star every 3.13 days. Weak Ca H+K emission seen in the spectra of WASP-45 suggests the star is chromospherically active. WASP-46b is a 2.10-MJup planet in a 1.43-day orbit around a G6V star. Rotational modulation of the light curves of WASP-46 and weak Ca H+K emission in its spectra show the star to be photospherically and chromospherically active. We imposed circular orbits in our analyses as the radial velocity data are consistent with (near-)circular orbits, as could be expected from both empirical and tidal-theory perspectives for such short-period, Jupiter-mass planets. We discuss the impact of fitting for eccentric orbits for these type of planets when not supported by the data. The derived planetary and stellar radii depend on the fitted eccentricity and further studies use these quantities in attempts to understand planet structure, the interdependence of parameters and the relevant physics for extrasolar planets. As such, we recommend exercising caution in fitting the orbits of short period, Jupiter-mass planets with an eccentric orbital model when there is no evidence of non-circularity. [less ▲]

Detailed reference viewed: 23 (3 ULg)
Full Text
Peer Reviewed
See detailWASP-43b: The closest-orbiting hot Jupiter
Hellier, Coel; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2011), 535

We report the discovery of WASP-43b, a hot Jupiter transiting a K7V star every 0.81 d. At 0.6-Msun the host star has the lowest mass of any star hosting a hot Jupiter. It also shows a 15.6-d rotation ... [more ▼]

We report the discovery of WASP-43b, a hot Jupiter transiting a K7V star every 0.81 d. At 0.6-Msun the host star has the lowest mass of any star hosting a hot Jupiter. It also shows a 15.6-d rotation period. The planet has a mass of 1.8 Mjup, a radius of 0.9 Rjup, and with a semi-major axis of only 0.014 AU has the smallest orbital distance of any known hot Jupiter. The discovery of such a planet around a K7V star shows that planets with apparently short remaining lifetimes owing to tidal decay of the orbit are also found around stars with deep convection zones. [less ▲]

Detailed reference viewed: 20 (2 ULg)
Full Text
Peer Reviewed
See detailThermal emission at 4.5 and 8 micron of WASP-17b, an extremely large planet in a slightly eccentric orbit
Anderson, D. R.; Smith, A. M. S.; Lanotte, Audrey ULg et al

in Monthly Notices of the Royal Astronomical Society (2011), 416(3), 2108-2122

We report the detection of thermal emission at 4.5 and 8 micron from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its ... [more ▼]

We report the detection of thermal emission at 4.5 and 8 micron from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its host star. By combining the resulting light curves with existing transit light curves and radial velocity measurements in a simultaneous analysis, we find the radius of WASP-17b to be 2.0 Rjup, which is 0.2 Rjup larger than any other known planet and 0.7 Rjup larger than predicted by the standard cooling theory of irradiated gas giant planets. We find the retrograde orbit of WASP-17b to be slightly eccentric, with 0.0012 < e < 0.070 (3 sigma). Such a low eccentricity suggests that, under current models, tidal heating alone could not have bloated the planet to its current size, so the radius of WASP-17b is currently unexplained. From the measured planet-star flux-density ratios we infer 4.5 and 8 micron brightness temperatures of 1881 +/- 50 K and 1580 +/- 150 K, respectively, consistent with a low-albedo planet that efficiently redistributes heat from its day side to its night side. [less ▲]

Detailed reference viewed: 26 (7 ULg)
Full Text
Peer Reviewed
See detailWASP-35b, WASP-48b and WASP-51b: Two new planets and an independent discovery of HAT-P-30b
Enoch, B.; Anderson, D. R.; Barros, S. C. C. et al

in Astronomical Journal (The) (2011), 142(3), 86

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star ... [more ▼]

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star of 1.75 R_sun in the Northern hemisphere, and the independent discovery of HAT-P-30b / WASP-51b, a new planet in the Northern hemisphere. Using WASP, RISE, FTS and TRAPPIST photometry, with CORALIE, SOPHIE and NOT spectroscopy, we determine that WASP-35b has a mass of 0.72 +/- 0.06 M_J and radius of 1.32 +/- 0.03 R_J, and orbits with a period of 3.16 days, WASP-48b has a mass of 0.98 +/- 0.09 M_J, radius of 1.67 +/- 0.08 R_J and orbits in 2.14 days, while WASP-51b, with an orbital period of 2.81 days, is found to have a mass of 0.76 +/- 0.05 M_J and radius of 1.42 +/- 0.04 R_J, agreeing with values of 0.71 +/- 0.03 M_J and 1.34 +/- 0.07 R_J reported for HAT-P-30b. [less ▲]

Detailed reference viewed: 28 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-31b: a low-density planet transiting a metal-poor, late-F-type dwarf star
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

in Astronomy and Astrophysics (2011), 531

We report the discovery of the low-density, transiting giant planet WASP-31b. The planet is 0.47 Jupiter masses and 1.56 Jupiter radii. It is in a 3.4-day orbit around a 1-Gyr-old, late-F-type, V = 11.7 ... [more ▼]

We report the discovery of the low-density, transiting giant planet WASP-31b. The planet is 0.47 Jupiter masses and 1.56 Jupiter radii. It is in a 3.4-day orbit around a 1-Gyr-old, late-F-type, V = 11.7 star, which is a member of a common proper motion pair. In terms of its low density, WASP-31b is second only to WASP-17b, which is a more highly irradiated planet of similar mass. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-23b: a transiting hot Jupiter around a K dwarf and its Rossiter-McLaughlin effect
Triaud, A H M J; Queloz, D.; Hellier, C. et al

in Astronomy and Astrophysics (2011), 531

We report the discovery of a new transiting planet in the southern hemisphere. It was found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2 m Swiss Euler ... [more ▼]

We report the discovery of a new transiting planet in the southern hemisphere. It was found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2 m Swiss Euler telescope, LCOGT 2m Faulkes South Telescope, the 60 cm TRAPPIST telescope, and the ESO 3.6 m telescope. The orbital period of the planet is 2.94 days. We find that it is a gas giant with a mass of 0.88 ± 0.10 M[SUB]J[/SUB] and an estimated radius of 0.96 ± 0.05 R[SUB]J[/SUB]. We obtained spectra during transit with the HARPS spectrograph and detect the Rossiter-McLaughlin effect despite its small amplitude. Because of the low signal-to-noise ratio of the effect and a small impact parameter, we cannot place a strong constraint on the projected spin-orbit angle. We find two conflicting values for the stellar rotation. We find, via spectral line broadening, that v sin I = 2.2 ± 0.3 km s[SUP]-1[/SUP], while applying another method, based on the activity level using the index log R'_HK, gives an equatorial rotation velocity of only v = 1.35 ± 0.20 km s[SUP]-1[/SUP]. Using these as priors in our analysis, the planet might be either misaligned or aligned. This result raises doubts about the use of such priors. There is evidence of neither eccentricity nor any radial velocity drift with time. Using WASP-South photometric observations confirmed with LCOGT Faulkes South Telescope, the 60 cm TRAPPIST telescope, the CORALIE spectrograph and the camera from the Swiss 1.2 m Euler Telescope placed at La Silla, Chile, as well as with the HARPS spectrograph, mounted on the ESO 3.6 m, also at La Silla, under proposal 084.C-0185. The data is publicly available at the CDS Strasbourg and on demand to the main author.RV data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A24">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A24</A>Appendix is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 15 (2 ULg)
Full Text
Peer Reviewed
See detailThe spin-orbit angles of the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b from Rossiter-McLaughlin observations
Simpson, E. K.; Pollacco, D.; Collier Cameron, A. et al

in Monthly Notices of the Royal Astronomical Society (2011), 414

We present observations of the Rossiter-McLaughlin effect for the transiting exoplanet systems WASP-1, WASP-24, WASP-38 and HAT-P-8, and deduce the orientations of the planetary orbits with respect to the ... [more ▼]

We present observations of the Rossiter-McLaughlin effect for the transiting exoplanet systems WASP-1, WASP-24, WASP-38 and HAT-P-8, and deduce the orientations of the planetary orbits with respect to the host stars' rotation axes. The planets WASP-24b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin orbit angles consistent with zero: {\lambda} = -4.7 \pm 4.0{\deg}, {\lambda} = 15 + 33{\deg}/-43{\deg} and {\lambda} = -9.7 +9.0{\deg}/-7.7{\deg}, respectively. The host stars have Teff < 6250 K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spin-orbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, {\lambda} = -79 +4.5{\deg}/-4.3{\deg}. It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems. [less ▲]

Detailed reference viewed: 16 (0 ULg)
Full Text
Peer Reviewed
See detailSpin-orbit measurements and refined parameters for the exoplanet systems WASP-22 and WASP-26
Anderson, D. R.; Collier Cameron, A.; Gillon, Michaël ULg et al

in Astronomy and Astrophysics (2011), 534

We report on spectroscopic and photometric observations through transits of the exoplanets WASP-22b and WASP-26b, intended to determine the systems' spin-orbit angles. We combine these data with existing ... [more ▼]

We report on spectroscopic and photometric observations through transits of the exoplanets WASP-22b and WASP-26b, intended to determine the systems' spin-orbit angles. We combine these data with existing data to refine the system parameters. We measure a sky-projected spin-orbit angle of 22 ± 16° for WASP-22b, showing the planet's orbit to be prograde and, perhaps, slightly misaligned. We do not detect the Rossiter-McLaughlin effect of WASP-26b due to its low amplitude and observation noise. We place 3-σ upper limits on orbital eccentricity of 0.063 for WASP-22b and 0.050 for WASP-26b. After refining the drift in the systemic velocity of WASP-22 found by Maxted et al. (2010, AJ, 140, 2007), we find the third body in the system to have a minimum-mass of 5.3 ± 0.3 MJup (a3 / 5 AU)2, where a3 is the orbital distance of the third body. [less ▲]

Detailed reference viewed: 16 (5 ULg)
Full Text
Peer Reviewed
See detailWASP-40b: Independent Discovery of the 0.6 M Transiting Exoplanet HAT-P-27b
Anderson, D. R.; Barros, S. C. C.; Boisse, I. et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2011), 123

From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G ... [more ▼]

From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G-type or early K-type and likely has a metallicity greater than solar ([Fe/H]=0.14±0.11). The planet's mass and radius are typical of the known hot Jupiters, thus adding another system to the apparent pileup of transiting planets with periods near 3-4 days. Our parameters match those of the recent HATnet announcement of the same planet, thus giving confidence in the techniques used. We report a possible indication of stellar activity in the host star. [less ▲]

Detailed reference viewed: 27 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-41b: A transiting hot Jupiter planet orbiting a magnetically-active G8V star
Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A. et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2011), 123

We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to ... [more ▼]

We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to solar ([Fe/H]=-0.08+-0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the CaII H and K lines and photometric variability with a period of 18.3d and an amplitude of about 1%. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.93+-0.06M_Jup, 1.21+-0.06R_Jup). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and the level of chromospheric activity in their host stars. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
See detailThe WASP-South search for transiting exoplanets
Hellier, C.; Anderson, D. R.; Collier Cameron, A. et al

in EPJ Web of Conferences (2011, February 01), 11

Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively ... [more ▼]

Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9-13. We present a status report for this ongoing survey. [less ▲]

Detailed reference viewed: 15 (0 ULg)