References of "Colige, Alain"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPlatelet-rich plasma and tendons healing: rat model
Kaux, Jean-François ULg; Drion, Pierre ULg; Colige, Alain ULg et al

in Biomedica Life Science Summit (2011, April 07)

Detailed reference viewed: 31 (12 ULg)
Full Text
Peer Reviewed
See detailInfluence sur le tissu tendino(-musculaire) du mode de contraction en entraînement : modèle animal
Kaux, Jean-François ULg; Drion, Pierre ULg; Croisier, Jean-Louis ULg et al

in Julia, Marc; Hirt, Daniel; Croisier, Jean-Louis (Eds.) et al Tendon et jonction tendino-musculaire - De la biomécanique aux applications thérapeutiques (2011)

Detailed reference viewed: 104 (27 ULg)
Peer Reviewed
See detailmicroRNA-21 Exhibits Anti-Angiogenic Function by Targeting RhoB Expression in Endothelial Cells
Sabatel, Céline; Malvaux, Ludovic; Bovy, Nicolas ULg et al

Poster (2011, February)

Detailed reference viewed: 10 (3 ULg)
Full Text
Peer Reviewed
See detailPlatelet-rich plasma (PRP) and tendon healing: animal model
Kaux, Jean-François ULg; Drion, Pierre ULg; Renouf, Julien et al

in British Journal of Sports Medicine (2011, February), 45(2), 1

Introduction: The tendon is a tissue which does not heal easily. Recently, several studies have demonstrated the positive effects of platelets on the healing process of tendons. A local injection of ... [more ▼]

Introduction: The tendon is a tissue which does not heal easily. Recently, several studies have demonstrated the positive effects of platelets on the healing process of tendons. A local injection of platelet–rich plasma (PRP), which releases in situ many growth factors, has the potentiality to enhance the tendon healing process. The aim of our experiment was to ascertain by an original mechanical measure whether the use of PRP was of interest for accelerating the healing process of rats’ Achilles tendons after surgical induced lesion. Methods: A 5mm defect was surgically induced in 90 rats’ Achilles tendon. Rats were divided into 2 groups of 45: (A) control (no treatment) and (B) PRP treatment. Rats of group B received a PRP injection in situ after the surgery. Afterwards, rats of both groups were placed in their cages without immobilization. After 5, 15 and 30 days, 10 traumatized Achilles tendons of each group were dissected and removed. Immediately after sampling, tendons were submitted to a biomechanical tensile test up to rupture, using a “Cryo-jaw”. After that, transcriptomic analyses were made on the tendon samples, to study the expression of type III collagen, matrix metalloproteases and tenomodulin. A hydroxyproline dosage was done to quantify the collagen in the tendon during its healing process. Tendons of the 15 remaining rats of each group were subjected to a histological study, respectively at day 5, 15 and 30 (5 rats for each time). Results: We demonstrated that the force necessary to induce tendon rupture during biomechanical tensile test study was greater for tendons which had been submitted to an injection of PRP compared to the control group: +19% (day 5), +30% (day 15) and +43% (day 30). Histological study showed that PRP could enhance cells proliferation, angiogenesis and collagen organisation. Our biochemical analyses did not explain beneficial effects of PRP. Indeed, there was no significant difference neither between the expression of different studied genes, nor in the quantity of hydroxyproline between both groups. Conclusion: This experimentation has shown that a PRP injection could accelerate the tendons healing process and improve its quality. [less ▲]

Detailed reference viewed: 127 (23 ULg)
Full Text
Peer Reviewed
See detailRhoGDI alpha-dependent balance between RhoA and RhoC is a key regulator of cancer cell tumorigenesis
Ho, Thi Thanh Giang ULg; Stultiens, Audrey; Dubail, Johanne ULg et al

in Molecular Biology of the Cell (2011), 22(17), 3263-75

RhoGTPases are key signaling molecules regulating main cellular functions such as migration, proliferation, survival, and gene expression through interactions with various effectors. Within the RhoA ... [more ▼]

RhoGTPases are key signaling molecules regulating main cellular functions such as migration, proliferation, survival, and gene expression through interactions with various effectors. Within the RhoA-related subclass, RhoA and RhoC contribute to several steps of tumor growth, and the regulation of their expression affects cancer progression. Our aim is to investigate their respective contributions to the acquisition of an invasive phenotype by using models of reduced or forced expression. The silencing of RhoC, but not of RhoA, increased the expression of genes encoding tumor suppressors, such as nonsteroidal anti-inflammatory drug-activated gene 1 (NAG-1), and decreased migration and the anchorage-independent growth in vitro. In vivo, RhoC small interfering RNA (siRhoC) impaired tumor growth. Of interest, the simultaneous knockdown of RhoC and NAG-1 repressed most of the siRhoC-related effects, demonstrating the central role of NAG-1. In addition of being induced by RhoC silencing, NAG-1 was also largely up-regulated in cells overexpressing RhoA. The silencing of RhoGDP dissociation inhibitor alpha (RhoGDIalpha) and the overexpression of a RhoA mutant unable to bind RhoGDIalpha suggested that the effect of RhoC silencing is indirect and results from the up-regulation of the RhoA level through competition for RhoGDIalpha. This study demonstrates the dynamic balance inside the RhoGTPase network and illustrates its biological relevance in cancer progression. [less ▲]

Detailed reference viewed: 41 (10 ULg)
Full Text
Peer Reviewed
See detailDevelopment of a Chitosan Nanofibrillar Scaffold for Skin Repair and Regeneration.
Tchemtchoua Tateu, Victor ULg; Atanasova, G.; Aqil, Abdelhafid ULg et al

in Biomacromolecules (2011), 12

The final goal of the present study was the development of a 3-D chitosan dressing that would shorten the healing time of skin wounds by stimulating migration, invasion, and proliferation of the relevant ... [more ▼]

The final goal of the present study was the development of a 3-D chitosan dressing that would shorten the healing time of skin wounds by stimulating migration, invasion, and proliferation of the relevant cutaneous resident cells. Three-dimensional chitosan nanofibrillar scaffolds produced by electrospinning were compared with evaporated films and freeze-dried sponges for their biological properties. The nanofibrillar structure strongly improved cell adhesion and proliferation in vitro. When implanted in mice, the nanofibrillar scaffold was colonized by mesenchymal cells and blood vessels. Accumulation of collagen fibrils was also observed. In contrast, sponges induced a foreign body granuloma. When used as a dressing covering full-thickness skin wounds in mice, chitosan nanofibrils induced a faster regeneration of both the epidermis and dermis compartments. Altogether our data illustrate the critical importance of the nanofibrillar structure of chitosan devices for their full biocompatibility and demonstrate the significant beneficial effect of chitosan as a wound-healing biomaterial. [less ▲]

Detailed reference viewed: 67 (26 ULg)
Full Text
Peer Reviewed
See detailMicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells.
Sabatel, Céline; Malvaux, Ludovic ULg; Bovy, Nicolas ULg et al

in PLoS ONE (2011), 6(2), 16979

BACKGROUND: MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the ... [more ▼]

BACKGROUND: MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated. METHODOLOGY/PRINCIPAL FINDINGS: We first observed in endothelial cells a negative regulation of miR-21 expression by serum and bFGF, two pro-angiogenic factors. Then using in vitro angiogenic assays, we observed that miR-21 acts as a negative modulator of angiogenesis. miR-21 overexpression reduced endothelial cell proliferation, migration and the ability of these cells to form tubes whereas miR-21 inhibition using a LNA-anti-miR led to opposite effects. Expression of miR-21 in endothelial cells also led to a reduction in the organization of actin into stress fibers, which may explain the decrease in cell migration. Further mechanistic studies showed that miR-21 targets RhoB, as revealed by a decrease in RhoB expression and activity in miR-21 overexpressing cells. RhoB silencing impairs endothelial cell migration and tubulogenesis, thus providing a possible mechanism for miR-21 to inhibit angiogenesis. Finally, the therapeutic potential of miR-21 as an angiogenesis inhibitor was demonstrated in vivo in a mouse model of choroidal neovascularization. CONCLUSIONS/SIGNIFICANCE: Our results identify miR-21 as a new angiogenesis inhibitor and suggest that inhibition of cell migration and tubulogenesis is mediated through repression of RhoB. [less ▲]

Detailed reference viewed: 73 (20 ULg)
Full Text
Peer Reviewed
See detailTendon lesion and platelet-rich plasma (PRP) injection: rat model
Kaux, Jean-François ULg; Drion, Pierre ULg; Renouf, Julien et al

in Annual Congress of the RBSPRM (2010, December 03)

Introduction: For a few years, the positive effect of platelets on the healing process of different tissues (skin, bones...) was demonstrated. In fact platelets contain lots of growth factors which can be ... [more ▼]

Introduction: For a few years, the positive effect of platelets on the healing process of different tissues (skin, bones...) was demonstrated. In fact platelets contain lots of growth factors which can be release locally and enhance the healing process. Thus the aim of our experiment was to ascertain by an original mechanical measure whether the use of PRP was of interest for accelerating the healing process of rats’ Achilles tendons after surgical induced lesion. Methods: Ninety rats’ Achilles tendons were sectioned. Forty-two rats beneficed of a PRP injection in situ. After 5, 15 and 30 days, 15 rats of both groups were euthanized after tendon sampling which were immediately submitted to a biomechanical tensile test until tendon rupture, using an original method of measurement (“cryo-jaw”). Histological and biochemical analyses were made as well as a quantification of collagen with an original procedure (quantification of the “greys” on histological cross-sections). Results: Tendons in the PRP group were more resistant to rupture than those in the control group. Histological findings showed in this group an increase of collagen proliferation and better collagen fibres reorganization. However, we did not find any biochemical difference neither in term of encoding gene expression for type III collagen, matrix metalloprotease 9 and tenomodulin. Conclusion: Our animal study demonstrated that an injection of PRP could accelerate the tendons healing process and improve its quality. [less ▲]

Detailed reference viewed: 75 (13 ULg)
See detailChitosan nanofiber membranes for tissue engineering - synthesis, characterization and properties
Toncheva, Natalia ULg; Aqil, Abdelhafid ULg; Croisier, Florence ULg et al

Poster (2010, November 29)

This poster was presented by Natalia Toncheva

Detailed reference viewed: 48 (3 ULg)