References of "Colige, Alain"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNew prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation.
Delcombel, Romain ULg; Janssen, Lauriane ULg; Vassy, Roger et al

in Angiogenesis (2013), 16(2), 353-71

VEGF-A is a crucial growth factor for blood vessel homeostasis and pathological angiogenesis. Due to alternative splicing of its pre-mRNA, VEGF-A is produced under several isoforms characterized by the ... [more ▼]

VEGF-A is a crucial growth factor for blood vessel homeostasis and pathological angiogenesis. Due to alternative splicing of its pre-mRNA, VEGF-A is produced under several isoforms characterized by the combination of their C-terminal domains, which determines their respective structure, availability and affinity for co-receptors. As controversies still exist about the specific roles of these exon-encoded domains, we systematically compared the properties of eight natural and artificial variants containing the domains encoded by exons 1-4 and various combinations of the domains encoded by exons 5, 7 and 8a or 8b. All the variants (VEGF(111)a, VEGF(111)b, VEGF(121)a, VEGF(121)b, VEGF(155)a, VEGF(155)b, VEGF(165)a, VEGF(165)b) have a similar affinity for VEGF-R2, as determined by Surface plasmon resonance analyses. They strongly differ however in terms of binding to neuropilin-1 and heparin/heparan sulfate proteoglycans. Data indicate that the 6 amino acids encoded by exon 8a must be present and cooperate with those of exons 5 or 7 for efficient binding, which was confirmed in cell culture models. We further showed that VEGF(165)b has inhibitory effects in vitro, as previously reported, but that the shortest VEGF variant possessing also the 6 amino acids encoded by exon 8b (VEGF(111)b) is remarkably proangiogenic, demonstrating the critical importance of domain interactions for defining the VEGF properties. The number, size and localization of newly formed blood vessels in a model of tumour angiogenesis strongly depend also on the C-terminal domain composition, suggesting that association of several VEGF isoforms may be more efficient for treating ischemic diseases than the use of any single variant. [less ▲]

Detailed reference viewed: 30 (12 ULg)
Full Text
Peer Reviewed
See detailEffects of platelet-rich plasma (PRP) on the healing of Achilles tendons of rats
Kaux, Jean-François ULg; Drion, Pierre ULg; Colige, Alain ULg et al

in Wound Repair & Regeneration : Official Publication of the Wound Healing Society and the European Tissue Repair Society (2012), 20(5), 748-756

Platelet-Rich Plasma (PRP) contains growth factors involved in the tissular healing process. The aim of the study was to determine if an injection of PRP could improve the healing of sectioned Achilles ... [more ▼]

Platelet-Rich Plasma (PRP) contains growth factors involved in the tissular healing process. The aim of the study was to determine if an injection of PRP could improve the healing of sectioned Achilles tendons of rats. After surgery, rats received an injection of PRP (n=60) or a physiological solution (n=60) in situ. After 5, 15 and 30 days, 20 rats of both groups were euthanized and 15 collected tendons were submitted to a biomechanical test using cryo-jaws before performing transcriptomic analyses. Histological and biochemical analyses were performed on the 5 remaining tendons in each group. Tendons in the PRP group were more resistant to rupture at 15 and 30 days. The mechanical stress was significantly increased in tendons of the PRP group at day 30. Histological analysis showed a precocious deposition of fibrillar collagen at day 5 confirmed by a biochemical measurement. The expression of tenomodulin was significantly higher at day 5. The mRNA level of type III collage, matrix metalloproteinase 2, 3 and 9 was similar in the 2 groups at all time points whereas type I collagen was significantly increased at day 30 in the PRP group. In conclusion, an injection of PRP in sectioned rat Achilles tendon influences the early phase of tendons healing and results in an ultimate stronger mechanical resistance. [less ▲]

Detailed reference viewed: 103 (53 ULg)
See detailDermatosparaxis : altered processing of type I procollagen by ADAMTS2 and beyond.
Colige, Alain ULg

Conference (2012, September)

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailInfluence of type of contraction upon tendinous tissue during training: animal model
Kaux, Jean-François ULg; Drion, Pierre ULg; Croisier, Jean-Louis ULg et al

in Meeusen, R; Duchateau, J; Roelands, B (Eds.) et al Book of Abstracts of the 17th annual Congress of the ECSS (2012, July)

Introduction: The treatment of choice for tendinopathies is eccentric reeducation. Although the clinical results appear favourable, the biomechanical changes to the tissue are not yet clear. Materiel and ... [more ▼]

Introduction: The treatment of choice for tendinopathies is eccentric reeducation. Although the clinical results appear favourable, the biomechanical changes to the tissue are not yet clear. Materiel and methods: This study compared the effects of two methods of training (eccentric (E) training and concentric (C) training) with untrained (U) rats. The animals underwent training over a period of five weeks. The tricipital, patellar and Achilles tendons were subsequently removed to perform a traction test to the point of tendon rupture, and a histological analysis was performed. Results: There was a significant improvement in the rupture force of the patellar and tricipital tendons between the U and E groups. The tricipital tendons in the control group presented a significantly smaller cross-section than the E- and C-trained groups. No significant difference was observed for the constraints between the three groups for all three tendons. However, a tendency towards improvement was observed between the trained and the U groups for the patellar tendon. Histological studies demonstrated the development of a greater number of blood vessels and a larger quantity of collagen in the eccentric group. Discussion and conclusion: The mechanical properties of tendons in rats improve after specific training, especially following eccentric training. [less ▲]

Detailed reference viewed: 68 (11 ULg)
See detailGlobal analysis of gene expression in the skin of mice after a 92 days journey in microgravity.
Neutelings, Thibaut ULg; Liu, Y.; Cancedda, R. et al

Poster (2012, May 04)

Detailed reference viewed: 16 (5 ULg)
Full Text
Peer Reviewed
See detailEffects of platelet-rich plasma on the healing of tendons: animal model
Kaux, Jean-François ULg; Drion, Pierre ULg; Colige, Alain ULg et al

in Biomedica 2012 (2012, April)

Introduction: Platelet-Rich Plasma (PRP) contains lot of growth factors which could enhance the healing process of different tissues. We aimed to determine if a single injection of PRP could improve the ... [more ▼]

Introduction: Platelet-Rich Plasma (PRP) contains lot of growth factors which could enhance the healing process of different tissues. We aimed to determine if a single injection of PRP could improve the cicatrisation of ruptured Achilles tendons of rats. Material and Methods: A 5mm defect was surgically made in the Achilles tendon of 120 rats. A few hours after surgery, 45 rats received a PRP or PBS injection in situ. After 5, 15 and 30 days, 20 rats of both groups were euthanized and 15 collected tendons were immediately submitted to a biomechanical tensile strength test until rupture using a “cryo-jaw” device. After, theses samples were used for transcriptomic analyses. Histological and biochemical analyses were performed on the five remained tendons in each group. Results: Tendons in the PRP group were more resistant to rupture at 15 and 30 days than those in the control group. The transverse area of tendons in the PRP group was significantly higher at day 5 and 15. The constraint was significantly increased in tendons of the PRP group in the late phase of the healing (day 30). Histological and immunohistological analysis showed an increased staining for fibrillar collagen at day 5 confirmed by a biochemical analysis showing an increased collagen concentration in the callus. The expression of tenomodulin, a tenocyte differentiation marker, was significantly higher in the PRP-treated tendons at day 5. No significant difference in terms of mRNA for type III collagen and matrix metalloproteinase 9 was observed at any time between the 2 groups. Conclusion: A single injection of PRP in sectioned Achilles tendon of rats few hours after surgery influences the early phase of tendons healing, resulting in an ultimate stronger mechanical resistance. [less ▲]

Detailed reference viewed: 55 (10 ULg)
Full Text
Peer Reviewed
See detailRho proteins crosstalk via RhoGDIalpha
Stultiens, Audrey ULg; HO, Thi Thanh Giang ULg; Nusgens, Betty ULg et al

in Communicative & Integrative Biology (2012), 5(1), 99-101

Detailed reference viewed: 37 (13 ULg)
Peer Reviewed
See detailDoes vascular endothelial growth factor improve ovarian tissue recovery after cryopreservation?
Henry, Laurie ULg; Fransolet, Maïté ULg; Labied, Soraya ULg et al

in Giornale italiano di obstetricia e gynecologia (2012)

Detailed reference viewed: 33 (7 ULg)
Full Text
Peer Reviewed
See detailIsoform 111 of vascular endothelial growth factor (VEGF111) improves angiogenesis of ovarian tissue xenotransplantation
Labied, Soraya ULg; Delforge, Yves ULg; Blacher, Silvia ULg et al

in Journal of Assisted Reproduction & Genetics (2012), 28(11), 1009

Detailed reference viewed: 36 (13 ULg)
Full Text
Peer Reviewed
See detailThe angiogenesis suppressor gene AKAP12 is under the epigenetic control of HDAC7 in endothelial cells.
Turtoi, Andrei ULg; Mottet, Denis ULg; Matheus, Nicolas ULg et al

in Angiogenesis (2012)

Histone deacetylases (HDACs) are a family of 18 enzymes that deacetylate lysine residues of both histone and nonhistone proteins and to a large extent govern the process of angiogenesis. Previous studies ... [more ▼]

Histone deacetylases (HDACs) are a family of 18 enzymes that deacetylate lysine residues of both histone and nonhistone proteins and to a large extent govern the process of angiogenesis. Previous studies have shown that specific inhibition of HDAC7 blocks angiogenesis both in vitro and in vivo. However, the underlying molecular mechanisms are not fully understood and hence preclude any meaningful development of suitable therapeutic modalities. The goal of the present study was to further the understanding of HDAC7 epigenetic control of angiogenesis in human endothelial cells using the proteomic approach. The underlying problem was approached through siRNA-mediated gene-expression silencing of HDAC7 in human umbilical vein endothelial cells (HUVECs). To this end, HUVEC proteins were extracted and proteomically analyzed. The emphasis was placed on up-regulated proteins, as these may represent potential direct epigenetic targets of HDAC7. Among several proteins, A-kinase anchor protein 12 (AKAP12) was the most reproducibly up-regulated protein following HDAC7 depletion. This overexpression of AKAP12 was responsible for the inhibition of migration and tube formation in HDAC7-depleted HUVEC. Mechanistically, H3 histones associated with AKAP12 promoter were acetylated following the removal of HDAC7, leading to an increase in its mRNA and protein levels. AKAP12 is responsible for protein kinase C mediated phosphorylation of signal transducer and activator of transcription 3 (STAT3). Phosphorylated STAT3 increasingly binds to the chromatin and AKAP12 promoter and is necessary for maintaining the elevated levels of AKAP12 following HDAC7 knockdown. We demonstrated for the first time that AKAP12 tumor/angiogenesis suppressor gene is an epigenetic target of HDAC7, whose elevated levels lead to a negative regulation of HUVEC migration and inhibit formation of tube-like structures. [less ▲]

Detailed reference viewed: 39 (9 ULg)
Peer Reviewed
See detailGlobal analysis of gene expression in the skin of mice after a 92 days journey in microgravity.
Neutelings, Thibaut ULg; Liu, Y.; Cancedda, R et al

Conference (2012)

Detailed reference viewed: 8 (2 ULg)
Full Text
See detailChitosan-based biomimetic scaffolds and methods for preparing the same
Filée, Patrick; Freichels, Astrid ULg; Jérôme, Christine ULg et al

Patent (2011)

The invention concerns chitosan-based biomimetic scaffolds and methods for modulating their intrinsic properties such as rigidity, elasticity, resistance to mechanical stress, porosity, biodegradation and ... [more ▼]

The invention concerns chitosan-based biomimetic scaffolds and methods for modulating their intrinsic properties such as rigidity, elasticity, resistance to mechanical stress, porosity, biodegradation and absorbance of exudates. Therefore, the present invention relates to a layered chitosan-based scaffold wherein said layered scaffold comprises at least two fused layers, wherein at least one layer consists of a chitosan nanofiber scaffold membrane and at least one of the other layers of a porous chitosan scaffold support layer. Moreover, the present invention provides a layered chitosan-based scaffold characterized by (i) a good adhesion between the porous and nanofiber layers, (ii) a tuneable porosity of the nanofiber layer by tuning the distance between the nanofibers, (iii) a stable nanofibers and porous morphology even when immersed in water or other solvents and a process for the preparation of such layered chitosan-based scaffold.Finally, the present invention provides the use of the layered electrospun chitosan-based scaffold of the invention or the layered electrospun chitosan-based scaffold produced by the process of the invention as a wound dressing, in tissue engineering or for biomedical applications. [less ▲]

Detailed reference viewed: 37 (8 ULg)
Full Text
See detailChitosan-based biomimetic scaffolds and methods for preparing the same
Filée, Patrice; Freichels, Astrid ULg; Jérôme, Christine ULg et al

Patent (2011)

The invention concerns chitosan biomimetic scaffolds and methods for modulating their intrinsic properties such as rigidity, elasticity, resistance to mechanical stress, porosity, biodegradation and ... [more ▼]

The invention concerns chitosan biomimetic scaffolds and methods for modulating their intrinsic properties such as rigidity, elasticity, resistance to mechanical stress, porosity, biodegradation and absorbance of exudates. Therefore, the present invention relates to a layered chitosan scaffold wherein said layered scaffold comprises at least two fused layers, wherein at least one of the fused layers comprises a chitosan nanofiber membrane and the other fused layer comprises a porous chitosan support layer. Moreover, the present invention provides a layered chitosan scaffold characterized by (i) a good adhesion between the porous and nanofiber layers, (ii) a tuneable porosity of the nanofiber layer by tuning the distance between the nanofibers, (iii) a stable nanofibers and porous morphology even when immersed in water or other solvents and a process for the preparation of such layered chitosan scaffold. Finally, the present invention provides the use of the layered electrospun chitosan scaffold of the invention or the layered electrospun chitosan scaffold produced by the process of the invention as a wound dressing, in tissue engineering or for biomedical applications. [less ▲]

Detailed reference viewed: 36 (1 ULg)
See detailDevelopment of electrospun chitosan scaffold for wound dressing application
Aqil, Abdelhafid ULg; Tchemtchoua, Victor; Colige, Alain ULg et al

Poster (2011, November 28)

Wound dressing is one of the most promising medical applications for chitosan, due to its adhesive nature, together with some biological properties including bacteriostatic and fungistatic properties that ... [more ▼]

Wound dressing is one of the most promising medical applications for chitosan, due to its adhesive nature, together with some biological properties including bacteriostatic and fungistatic properties that help in faster wound healing. In this work we propose a chitosan biomimetic scaffolds and methods for modulating their intrinsic properties such as rigidity, elasticity, resistance to mechanical stress, porosity, biodegradation and absorbance of exudates. Therefore, the chitosan scaffold comprising at least two fused layers, wherein the advantage of a first fused layer composed of a chitosan electrospun nanofiber membrane are oxygen-permeability, high porosity, variable pore-size distribution, high surface to volume ratio, and most importantly, morphological similarity to natural extracellular matrix in skin, which promote cell adhesion migration and proliferation. The advantages of a second fused layer comprising a porous chitosan support layer are improving mechanical property, good absorption capacities to remove excess exudates and good water and gas exchange. Moreover, the scaffold was characterized by (i) a good adhesion between the porous and nanofiber layers, (ii) a tuneable porosity of the nanofiber layer by tuning the distance between the nanofibers, (iii) a stable nanofibers and porous morphology even when immersed in water. Finally, the scaffolds have shown tremendous promise as a wound dressing, in tissue engineering. The three main human cell types fibroblasts, endothelial cells and keratinocytes was cultured in vitro on electrospun nanofibers scaffold. Properties of electrospun chitosan scaffold and chitosan sponges obtained by lyophilization were also compared in vivo, in order to evaluate importance of the 3D-architecture of the biomaterial. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailHuman papillomavirus entry into NK cells requires CD16 expression and triggers cytotoxic activity and cytokine secretion.
Renoux, Virginie ULg; Bisig, Bettina ULg; Langers, Inge ULg et al

in European journal of immunology (2011), 41(11), 3240-3252

Human papillomavirus (HPV) infections account for more than 50% of infection-linked cancers in women worldwide. The immune system controls, at least partially, viral infection and around 90% of HPV ... [more ▼]

Human papillomavirus (HPV) infections account for more than 50% of infection-linked cancers in women worldwide. The immune system controls, at least partially, viral infection and around 90% of HPV-infected women clear the virus within two years. However, it remains unclear which immune cells are implicated in this process and no study has evaluated the direct interaction between HPVs and NK cells, a key player in host resistance to viruses and tumors. We demonstrated an NK cell infiltration in HPV-associated pre-neoplastic cervical lesions. Since HPVs cannot grow in vitro, virus-like particles (VLPs) were used as a model for studying the NK cell response against the virus. Interestingly, NK cells displayed higher cytotoxic activity and cytokine production (TNF-alpha and IFN-gamma) in the presence of HPV-VLPs. Using flow cytometry and microscopy we observed that NK cell stimulation was linked to rapid VLP entry into these cells by macropinocytosis. Using CD16(+) and CD16(-) NK cell lines and a CD16-blocking antibody, we demonstrated that CD16 is necessary for HPV-VLP internalization, as well as for degranulation and cytokine production. Thus, we show for the first time that NK cells interact with HPVs and can participate in the immune response against HPV-induced lesions. [less ▲]

Detailed reference viewed: 122 (43 ULg)
Full Text
Peer Reviewed
See detailPlatelet-rich plasma and tendons healing: rat model
Kaux, Jean-François ULg; Drion, Pierre ULg; Colige, Alain ULg et al

in Annales de Réadaptation et de Médecine Physique (2011, October), 54(Sup 1), 125

Detailed reference viewed: 33 (11 ULg)
Full Text
Peer Reviewed
See detailPlasma enrichi en plaquettes et cicatrisation tendineuse : modèle sur rats
Kaux, Jean-François ULg; Drion, Pierre ULg; Colige, Alain ULg et al

in Annales de Réadaptation et de Médecine Physique (2011, October), 54(1), 123

Introduction: Le but de notre étude était de déterminer si une injection de plasma enrichi en plaquettes (PRP) pouvait améliorer et accélérer le processus de cicatrisation de tendons d'Achille de rats ... [more ▼]

Introduction: Le but de notre étude était de déterminer si une injection de plasma enrichi en plaquettes (PRP) pouvait améliorer et accélérer le processus de cicatrisation de tendons d'Achille de rats rompus. Matériel et méthode : Un défect de 5mm a été réalisé chirurgicalement au niveau de tendons d'Achille de 120 rats. Soixante rats ont reçu respectivement une infiltration de PRP ou PBS in situ après chirurgie. Vingt rats de chaque groupe ont été euthanasiés après 5, 15 et 30 jours. Quinze tendons de chaque groupe ont été directement soumis à un test de traction biomécanique jusqu'à rupture à l'aide de clamps de type "cryo-jaw" et ensuite collectés pour réaliser des analyses transcriptomiques. Des études histologique et biochimique ont également été réalisées sur les 5 tendons restant de chaque groupe. Résultats: Les tendons du groupe PRP étaient plus résistants à la rupture à 15 et 30 jours que ceux du groupe contrôle. La section transverse des tendons était significativement plus grande au sein du groupe PRP à J5 et J15. Les contraintes étaient significativement plus grandes au sein des tendons dans les phases tardives de cicatrisation. L'étude histologique montrait une augmentation de coloration pour les fibres de collagène à J5 au sein du groupe PRP, résultats confirmés par l'analyse biochimique montrant une augmentation de la concentration de collagène au sein du "cal" tendineux. L'expression de la ténomoduline, un marqueur de la différentiation des ténocytes, était significativement plus important au sein du groupe PRP à J5. Aucune différence significative en terme d'ARNm n'a été observée pou r le collagène de type III ni pour la MMP-9, à aucun temps, entre les 2 groupes. Conclusion : Une injection de PRP au sein de tendons d'Achille de rats rompus influence les phases précoces du la cicatrisation tendineuse, entrainant une meilleure résistance mécanique à la rupture. [less ▲]

Detailed reference viewed: 100 (18 ULg)