References of "Cloots, Rudi"
     in
Bookmark and Share    
Full Text
See detailTiO2 templated films used as photoelectrode for solid-state DSSC applications: study of the pore filling by Rutherford Backscattering Spectroscopy
Dewalque, Jennifer ULg; Colson, Pierre ULg; Thalluri, Venkata Visveswara Gopala Kris ULg et al

Poster (2013, September)

Liquid-state dye-sensitized solar cells can suffer from electrolyte evaporation and leakage. Therefore solid-state hole transporting materials are investigated as alternative electrolyte materials ... [more ▼]

Liquid-state dye-sensitized solar cells can suffer from electrolyte evaporation and leakage. Therefore solid-state hole transporting materials are investigated as alternative electrolyte materials. However, in solid-state dye-sensitized solar cells, optimal TiO2 films thickness is limited to a few microns allowing the adsorption of only a low quantity of photoactive dye and thus leading to poor light harvesting and low conversion efficiency. In order to overcome this limitation, high surface area templated films are investigated as alternative to nanocrystalline films prepared by doctor-blade or screen-printing. Moreover, templating is expected to improve the pore accessibility what would promote the solid electrolyte penetration inside the porous network, making possible efficient charge transfers. In this study, films prepared from different structuring agents are discussed in terms of microstructural properties (porosity, crystallinity) as well as effect on the dye loading and Spiro-OMeTAD (2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)9,9'-spirobifluorene) solid electrolyte filling. Different techniques such as transmission electron microscopy (TEM), atmospheric poroellipsometry (AEP) and UV-visible absorption spectroscopy (UV-vis.) have been used to describe the microstructural features of the films. Besides, we have implemented Rutherford backscattering spectrometry (RBS) as an innovative non-destructive tool to characterize the hole transporting materials infiltration. Templated films show dye loading more than two times higher than nanocrystalline films prepared by doctor-blade or screen-printing and solid electrolyte infiltration up to 88%. [less ▲]

Detailed reference viewed: 96 (19 ULg)
Full Text
Peer Reviewed
See detailNanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials
Colson, Pierre ULg; Henrist, Catherine ULg; Cloots, Rudi ULg

in Journal of Nanomaterials (2013)

The never-ending race towards miniaturization of devices induced an intense research in the manufacturing processes of the components of those devices. However, the complexity of the process combined with ... [more ▼]

The never-ending race towards miniaturization of devices induced an intense research in the manufacturing processes of the components of those devices. However, the complexity of the process combined with high equipment costs makes the conventional lithographic techniques unfavorable for many researchers. Through years, nanosphere lithography (NSL) attracted growing interest due to its compatibility with wafer-scale processes as well as its potential to manufacture a wide variety of homogeneous one-, two-, or three-dimensional nanostructures. This method combines the advantages of both top-down and bottom-up approaches and is based on a two-step process: (1) the preparation of a colloidal crystal mask (CCM) made of nanospheres and (2) the deposition of the desired material through the mask. The mask is then removed and the layer keeps the ordered patterning of the mask interstices. Many groups have been working to improve the quality of the CCMs. Throughout this review, we compare the major deposition techniques to manufacture the CCMs (focusing on 2D polystyrene nanospheres lattices), with respect to their advantages and drawbacks. In traditional NSL, the pattern is usually limited to triangular structures. However, new strategies have been developed to build up more complex architectures and will also be discussed. [less ▲]

Detailed reference viewed: 98 (38 ULg)
See detailHigh Performance DSSC Based on Semiconducting Oxides Prepared Through Soft Chemistry Processes
Dewalque, Jennifer ULg; Schrijnemakers, Audrey ULg; Thalluri, Venkata Visveswara Gopala Kris ULg et al

Conference (2013, July)

DSSCs have been reported by O’Regan and Grätzel in the early nineties as a very promising alternative to conventional photovoltaic silicon devices. Main benefits of these cells are their low cost as well ... [more ▼]

DSSCs have been reported by O’Regan and Grätzel in the early nineties as a very promising alternative to conventional photovoltaic silicon devices. Main benefits of these cells are their low cost as well as their mild manufacturing process. In most of the specific literature, DSSCs are made of TiO2 films prepared by doctor-blade or screen-printing of anatase nanoparticles paste. However, due to the random organization of the nanoparticles, pore accessibility by the dye and electrolyte could be incomplete. Moreover, some anatase crystallites could suffer from a lack of connectivity, leading to electron transfer issues. The strategy adopted by our group to improve photovoltaic efficiencies involves a templating-assisted process allowing the preparation of highly porous layers with well-ordered and accessible pores as well as improved crystallites connectivity. The main goal is to increase the film surface area and to perfectly control the mesostructure in order to maximize the adsorption of active dye and the electrolyte infiltration inside the porous network. This talk especially focuses on the templating-assisted synthesis of TiO2 and ZnO semiconducting layers used as photoelectrode in DSSCs. Besides, due to the surface area improvement as well as the perfect control of the pore organization and the pore size, the templating strategy can be an effective solution to overcome light harvesting and solid electrolyte filling limitations encountered in solid-state DSSCs. Special effort is paid to the tuning of the TiO2 and ZnO semiconducting layers mesostructure in order to match with solid-state DSSC applications. [less ▲]

Detailed reference viewed: 47 (6 ULg)
Full Text
See detailStudies on the Influence of Different Grain-sized Titania Scattering Layers for Dye Sensitized Solar Cells
Thalluri, Venkata Visveswara Gopala Kris ULg; Henrist, Catherine ULg; Vertruyen, Bénédicte ULg et al

Poster (2013, July)

The efficiencies of dye sensitized solar cells (DSCs) are boosted up to 12% by NIR light harvesting dyes and with the usage of scattering layer in the device preparation.The importance of Titania ... [more ▼]

The efficiencies of dye sensitized solar cells (DSCs) are boosted up to 12% by NIR light harvesting dyes and with the usage of scattering layer in the device preparation.The importance of Titania scattering layers was studied as a part of this work. These scattering layers were prepared from two different grain-sizes (100 nm & 500 nm) for SQ2-NIR and N3-UV/Vis DSCs. The 100 nm grain-sized Titania paste was commercially supplied and 500 nm grain-sized Titania paste was prepared according to literature. The morphological and structural properties of these bigger grain-sized Titania layers were deliberated by using and Scanning Electron Microscope (SEM) and X-Ray diffraction (XRD) measurements. The influence of these bigger grain-sized Titania scattering layers in SQ2-NIR and N3-UV/Vis DSCs were expounded by using various electro-optical characterization techniques such as light I-V, electrochemical impedance spectroscopy (EIS) shown in Figure 1 and external quantum efficiency (EQE) measurements. The importance of understanding the influence of these bigger grain-sized scattering Titania layers could pave a way for future design and optimizing of DSCs for increasing the amount of light harvesting. [less ▲]

Detailed reference viewed: 48 (16 ULg)
Full Text
See detailTiO2 templated films used as photoelectrode for solid-state DSSC applications: study of the pore filling by Rutherford Backscattering Spectroscopy
Dewalque, Jennifer ULg; Colson, Pierre ULg; Thalluri, Venkata Visveswara Gopala Kris ULg et al

Poster (2013, July)

Mesoporous anatase thin films are very promising materials to act as electrode in dye-sensitized solar cells. Randomly oriented nanocrystalline TiO2 particles are usually used to prepare photoelectrodes ... [more ▼]

Mesoporous anatase thin films are very promising materials to act as electrode in dye-sensitized solar cells. Randomly oriented nanocrystalline TiO2 particles are usually used to prepare photoelectrodes with a thickness of 10-15 µm. However, in solid-state DSSCs, TiO2 films thickness is limited to few µm allowing the adsorption of only a low quantity of photoactive dye and thus leading to a poor light harvesting and low conversion efficiencies. In order to overcome this limitation, templated-assisted dip-coating techniques are used to obtain thin films with high surface area. Moreover, templating is expected to improve the pore accessibility what would promote the solid electrolyte penetration inside the porous network, making possible efficient charge transfers. In this study, films prepared from different structuring agents are discussed in terms of microstructure properties (porosity, crystallinity) and impact on the dye loading and solid electrolyte filling. As-obtained templated films have been compared to nanocrystalline films prepared by doctor blade or screen printing as reference. Different techniques such as transmission electron microscopy (TEM), atmospheric poroellipsometry (AEP) and UV-visible absorption spectroscopy (UV-vis.) have been used to describe the microstructural features of the films. Solid electrolyte infiltration has been extensively investigated by Rutherford Backscattering Spectroscopy (RBS). Finally, templated films were evaluated as photoelectrode in solid-state DSSCs and compared to nanoparticles layers. [less ▲]

Detailed reference viewed: 28 (9 ULg)
Full Text
Peer Reviewed
See detailSystematic processing of β – tricalcium phosphate for efficient protein loading and in vitro analysis of antigen uptake
Ozhukil Kollath, Vinayaraj ULg; De Geest, Bruno; Mullens, Steven et al

in Advanced Engineering Materials (2013), 15(4), 295-301

Microparticulate calcium phosphate (CaP) powders are promising drug carriers because of their biocompatibility and degradability under physiological conditions. The adsorption capability of CaP ... [more ▼]

Microparticulate calcium phosphate (CaP) powders are promising drug carriers because of their biocompatibility and degradability under physiological conditions. The adsorption capability of CaP microparticles makes them interesting candidates, within the inorganic carrier materials, for delivering protein antigens to professional antigen presenting cells (APC) for vaccination purpose. However, in order to bind and deliver a sufficient amount of protein, the challenge is to effectively increase the binding capacity of this material. In this study, b-tricalcium phosphate (b-TCP) powder is engineered to obtain microparticles with increased protein loading, using bovine serum albumin as a model antigen. The decrease in particle size and increase in specific surface area of carrier is shown to strongly affect protein adsorption. Finally, we demonstrate that the processed b-TCP is capable of delivering its protein payload in vitro to dendritic cells, which are professional APCs and the target cell population for microparticulate vaccines. [less ▲]

Detailed reference viewed: 44 (13 ULg)
Full Text
See detailLong term stability of TiO2 templated multilayer films used as high efficiency photoelectrode in liquid DSSCs
Dewalque, Jennifer ULg; Nguyen, Ngoc Duy ULg; Henrist, Catherine ULg et al

Poster (2013, March)

To our knowledge, the stability results reported in the literature only concern cells made from classical doctor-bladed or screen-printed nanoparticles films. This study focuses on the comparison of the ... [more ▼]

To our knowledge, the stability results reported in the literature only concern cells made from classical doctor-bladed or screen-printed nanoparticles films. This study focuses on the comparison of the long-term stability of these cells with DSSCs working with templated mesoporous films. Indeed, the increased surface area of templated films could lead to a faster degradation of the resulting cells. In accordance with IEC:1646:1996 standard tests, light soaking test at 45°C has been applied to determine the cells stability under prolonged illumination. Moreover, thermal stress in the dark has been applied. Unfortunately, due to the sealing material heat resistance, thermal stress test was only performed at 45°C. [less ▲]

Detailed reference viewed: 117 (33 ULg)
Full Text
See detailHierarchical Porous TiO2 thin films by soft and dual templating: A quantitative approach of specific surface and porosity
Henrist, Catherine ULg; Cloots, Rudi ULg; Colson, Pierre ULg et al

Poster (2013, March)

Hierarchical porous structures, with different pore sizes, constitute an important field of research for many applications. However, increasing the pore size results in the decrease of specific surface ... [more ▼]

Hierarchical porous structures, with different pore sizes, constitute an important field of research for many applications. However, increasing the pore size results in the decrease of specific surface. There is a need to quantify and predict the resulting porosity and specific surface. We have prepared hierarchical porous TiO2 thin films either by surfactant templating (soft) or dual surfactant/microspheres templating (soft/hard). They all show narrow, bimodal distribution of pores. Soft templating route leads to very thin films showing high specific surface and bimodal porosity with diameters of 10 nm and 54 nm. Dual templating route combines a Pluronic surfactant-based precursor solution with polystyrene (PS) microspheres (diam. 250 nm) in a one-pot simple process. This gives thicker films with a bimodal distribution of pores (8 nm and 165-200 nm). The dye loading of hierarchical films is compared to pure Pluronic-templated TiO2 films and shows a relative decrease of 29% for Single Templating (ST) and 43% for Dual Templating (DT-250). Finally, a geometrical model is proposed and validated for each system, based on the agreement between calculated specific surfaces and experimental dye loading with N719 dye. [less ▲]

Detailed reference viewed: 53 (17 ULg)
Full Text
Peer Reviewed
See detailFlow abilities of powders and granular materials evidenced from dynamical tap density measurement
Traina, Karl; Cloots, Rudi ULg; Bontempi, Sébastien ULg et al

in Powder Technology (2013), 235

This paper offers an overview of the flow properties of granular systems, including voids, granular porosity and random packing characteristics. For the purposes of the study, the notion of additional ... [more ▼]

This paper offers an overview of the flow properties of granular systems, including voids, granular porosity and random packing characteristics. For the purposes of the study, the notion of additional porous volume is intro-duced. This volume is defined as the additional air volume added to the optimal granular packing. It represents the difference between the volume of the bulk powder bed and that of the same powder but when ideally packed. It appears as the volume of additional air (or voids) trapped/stored between the grains when the powder passes from a dynamical state to a static state (during the filling of a container or the formation of a powder heap, for example). Therefore, if the powder bed traps air, it is then able to restore air partially or completely or not at all, depending on the intergranular cohesion level. This mechanism of the storing and releasing of air can be analysed from the measurement of compressibility curves. If the powder is non-cohesive or free flowing, it traps a small amount of air in its static state. Conversely, if the powder is cohesive, it traps more air. These data can be related to the flow properties of granular materials. Indeed, the compressibility curves obtained for gran-ular materials provide information such as additional porosity, a kinetic parameter which characterizes the com-pressibility dynamics, a granular relaxation index which predicts how far a powder is from its optimal packing state and an index which gauges the de-areation speed of the powder. Measurement of such properties provides a better understanding of the nature of granular materials. Measurements of dynamical compressibility were car-ried out on five granular materials (two different lactose powders, hydrated lime Ca(OH)2, yttrium stabilized zir-conia balls and polystyrene balls). The overall results are presented using a radar graph. The use of this tool and its advantages are discussed in relation to the measurement and characterization of powder flow properties. [less ▲]

Detailed reference viewed: 65 (16 ULg)
See detailYBCO SUPERCONDUCTING THICK FILMS: ELECTROPHORETIC DEPOSITION (EPD) ON NON-PLANAR SILVER SUBSTRATES
Namburi, Devendra Kumar ULg; Closset, Raphaël ULg; Fagnard, Jean-François ULg et al

Scientific conference (2013, January 30)

A new formulation of a stable YBa2Cu3O7-δ (YBCO) suspension is proposed in which butanol is preferred to the commonly-used acetone as the suspension medium. Appropriate surfactant has been used to develop ... [more ▼]

A new formulation of a stable YBa2Cu3O7-δ (YBCO) suspension is proposed in which butanol is preferred to the commonly-used acetone as the suspension medium. Appropriate surfactant has been used to develop the superficial charge on the YBCO particles in order to promote migration during the process of electrophoresis. YBCO thick films were deposited on silver tubes and half-tubes by electrophoretic deposition (EPD). The EPD parameters (deposition voltage, deposition time, number of layers etc.) were optimized with respect to the microstructural properties of the YBCO layers after an intermediate heat treatment at 920°C. An essential criterion is the minimization of macrocracks after the 920°C heat treatment, since it was found to favour good superconducting properties after the final heat treatment. This final heat treatment involves (i) partial melting above the peritectic temperature, (ii) peritectic recombination at lower temperature and (iii) reoxygenation at 500°C. Finally, the superconducting properties of the best films are discussed. A uniformly coated 55μm-thick YBCO film on a curved Ag substrate showed excellent superconducting properties with the onset of critical temperature at 92.2 K and an associated sharp resistive transition with transition width < 1 K. [less ▲]

Detailed reference viewed: 135 (43 ULg)
Full Text
Peer Reviewed
See detailLithium transition metal (Ti, Nb, V) oxide mesoporous thin films: contrasting results when attempting direct synthesis by evaporation-induced self assembly
Caes, Sébastien ULg; Malherbe, Cédric ULg; Krins, Natacha ULg et al

in Microporous and Mesoporous Materials (2013), 172

This work investigates the possibility to prepare mesoporous thin films of Li-Ti, Li-Nb, Li-Nb-V and Li-V oxides through a direct sol-gel EISA route by dissolving a lithium salt in the precursor solution ... [more ▼]

This work investigates the possibility to prepare mesoporous thin films of Li-Ti, Li-Nb, Li-Nb-V and Li-V oxides through a direct sol-gel EISA route by dissolving a lithium salt in the precursor solution. Experimental conditions involve a hydrolysis molar ratio H2O/TM ~10 (TM = Ti,Nb,V) and the common Pluronic structuring agent P123 (EO20-PO70-EO20). Systematic formation of lithium-containing oxides as first-crystallizing phases points to a significant intermixture of lithium and transition metal ions in the inorganic network. In the case of Ti-based and Nb-based oxide films, addition of lithium to the precursor solution is compatible with the formation of amorphous mesoporous films at 350°C. On the contrary, addition of lithium has a detrimental effect on the notoriously difficult formation of vanadium-based mesostructured films: even when replacing half of the vanadium by niobium as a stabilizer, formation of mesostructured films has not been possible in the investigated range of experimental conditions. [less ▲]

Detailed reference viewed: 75 (34 ULg)
Full Text
Peer Reviewed
See detailMorphological and opto-electrical properties of solution deposited Platinum counter electrode for low cost dye sensitized solar cells
Thalluri, Venkata Visveswara Gopala Kris ULg; Décultot, Marc ULg; Henrist, Catherine ULg et al

in Physical Chemistry Chemical Physics [=PCCP] (2013), 15

Although Platinum (Pt) is a rare and very expensive material, Pt counter electrodes are still very commonly used for reaching high efficiencies in dye-sensitized solar cells (DSCs). The use of alternative ... [more ▼]

Although Platinum (Pt) is a rare and very expensive material, Pt counter electrodes are still very commonly used for reaching high efficiencies in dye-sensitized solar cells (DSCs). The use of alternative cheaper catalyst materials did not yet yield to equivalent efficiencies. In this work, we tried to understand how to reduce the amount of deposited Pt-material and simultaneously to deliver higher DSC performances. We systematically compared the properties of Pt-counter electrodes prepared by simple solution deposition methods such as spray-coating, dip-coating, brushing with reference to the Pt-electrodes prepared by sputtering onto fluorine doped-tin oxides (FTOs). The morphological and structural characterizations of the deposited Pt-layers were performed by atomic force microscopy (AFM) and scanning electron microscope (SEM). The composition of Pt-material was quantified by using SEM electron dispersive x-ray (EDX) mapping measurements are further compared with optical transmission measurements. Also contact angle and sheet resistance measurements were performed. By taking Pt-layers composition, morphology and structural factors into account 9.16% efficient N3 dye based DSCs were assembled. The DSCs were subjected to various opto-electrical characterization techniques like current-voltage (I-V), external quantum efficiency (EQE), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and transient photo voltage (TPV) measurements. The obtained experimental data suggest that the Pt counter electrodes prepared by solution deposition methods can also reach to high DSC device performances with a consumption of very less amount of Pt material compared with sputtered Pt-layers. This process also proves that higher DSC performances are not limited to the usage of sputtered Pt-layer as counter electrode. [less ▲]

Detailed reference viewed: 100 (26 ULg)
Full Text
Peer Reviewed
See detailMullite plasma spraying for in situ repair of cracks in mullite refractories: Simultaneous optimization of porosity and thickness by statistical design of experiments
Schrijnemakers, Audrey ULg; Francq, B. G.; Cloots, Rudi ULg et al

in Journal of Thermal Spray Technology (2013), 22(7), 1133-1139

We report a laboratory-scale study about the suitability of the plasma spraying process for "in situ" repair of cracks in mullite refractories of industrial furnaces. The "design of experiments" approach ... [more ▼]

We report a laboratory-scale study about the suitability of the plasma spraying process for "in situ" repair of cracks in mullite refractories of industrial furnaces. The "design of experiments" approach is used to investigate how the coating porosity and thickness are influenced by six experimental parameters. Arc current, secondary gas (H 2) flow rate, and stand-off distance are the most significant parameters for both responses. Several interaction terms also affect significantly the thickness response. The validity of the model equations is discussed both from a statistical point of view and regarding the physical credibility of the main model terms. Additional experiments confirm that the measured properties lie into the prediction intervals provided by the model. Using a set of parameters optimized for minimal porosity and high thickness (relevant for the crack repair application), coatings with 6% porosity and 1070 μm thickness can be prepared reproducibly. © 2013 ASM International. [less ▲]

Detailed reference viewed: 42 (14 ULg)
Full Text
Peer Reviewed
See detailDifferences in the structural and magnetic properties of nanosized barium hexaferrite powders prepared by single and double microemulsion techniques
Koutzarova, T.; Kolev, S.; Ghelev, Ch et al

in Journal of Alloys & Compounds (2013), 579

Barium hexaferrite powders of nanometer particle size synthesized via two variants of the microemulsion technique, namely, single microemulsion and double microemulsion, were studied. The influence was ... [more ▼]

Barium hexaferrite powders of nanometer particle size synthesized via two variants of the microemulsion technique, namely, single microemulsion and double microemulsion, were studied. The influence was explored of the type of microemulsion technique on the microstructure and on the magnetic properties of the barium hexaferrite powders. The average particle size of the barium hexaferrite powders was in the range from 110 nm to 442 nm depending on the method and conditions of synthesis. The particles with size below 150 nm had irregular shapes between spherical and platehexagonal; the bigger ones had an almost perfect hexagonal shape. The powders obtained by single microemulsion had better magnetic characteristics (saturation magnetization of 65.12 emu/g and coercivity field of 3.6 × 105 A/m) than those obtained by double microemulsion. © 2013 Elsevier B.V. All rights reserved. [less ▲]

Detailed reference viewed: 18 (2 ULg)
Full Text
Peer Reviewed
See detailEffect of freeze-drying and self-ignition process on the microstructural and electrochemical properties of Li4Ti5O12
Jamin, Claire ULg; Traina, Karl; Eskenazi, David ULg et al

in Materials Research Bulletin (2013), 48

Crystalline Li4Ti5O12 is synthesized by a method involving the freeze-drying and self-ignition of a gel prepared from titanium isopropoxide, lithium nitrate and hydroxypropylmethylcellulose (HPMC). This ... [more ▼]

Crystalline Li4Ti5O12 is synthesized by a method involving the freeze-drying and self-ignition of a gel prepared from titanium isopropoxide, lithium nitrate and hydroxypropylmethylcellulose (HPMC). This synthesis route yields crystalline Li4Ti5O12 particles after calcination at 800°C for 2 h. In an alternative route, addition of ammonium nitrate shifts the self-ignition mode from wave-like propagation to simultaneous. Powders with different microstructures are thereby obtained. Electrochemical characterization shows that the best results for Li+ intercalation/desintercalation are obtained for the powder prepared without ammonium nitrate addition. These results highlight the necessity for a control of the self-ignition mode to obtain adequate properties. [less ▲]

Detailed reference viewed: 38 (11 ULg)
Full Text
Peer Reviewed
See detailCascade of granular flows for characterizing segregation
Lumay, Geoffroy ULg; Boschini, Frédéric ULg; Cloots, Rudi ULg et al

in Powder Technology (2013)

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailThe influence of a grain boundary on the thermal transport properties of bulk, melt-processed Y-Ba-Cu-O
Marchal, C.; Fagnard, Jean-François ULg; Shi, Y. H. et al

in Superconductor Science and Technology (2013), 26

We report the dependence of thermal conductivity, thermoelectric power and electrical resistivity on temperature for a bulk, large grain melt-processed Y-Ba-Cu-O (YBCO) high temperature superconductor ... [more ▼]

We report the dependence of thermal conductivity, thermoelectric power and electrical resistivity on temperature for a bulk, large grain melt-processed Y-Ba-Cu-O (YBCO) high temperature superconductor (HTS) containing two grains separated by a well-defined grain boundary. Transport measurements at temperatures between 10 and 300 K were carried out both within one single grain (intra-granular properties) and across the grain boundary (inter-granular properties). The influence of an applied external magnetic field of up to 8 T on the measured sample properties was also investigated. The presence of the grain boundary is found to affect strongly the electrical resistivity of the melt-processed bulk sample, but has almost no effect on its thermoelectric power and thermal conductivity, within experimental error. The results of this study provide direct evidence that the heat flow in multi-granular melt-processed YBCO bulk samples should be virtually unaffected by the presence of grain boundaries in the material. © 2013 IOP Publishing Ltd. [less ▲]

Detailed reference viewed: 101 (30 ULg)