References of "Charlier, Thierry"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSeasonal plasticity in the song control system - Multiple brain sites of steroid hormone action and the importance of variation in song behavior
Ball, Gregory F.; Auger, Catherine J.; Bernard, Daniel J. et al

in Annals of the New York Academy of Sciences (2004), 1016

Birdsong, in non-tropical species, is generally more common in spring and summer when males sing to attract mates and/or defend territories. Changes in the volumes of song control nuclei, such as HVC and ... [more ▼]

Birdsong, in non-tropical species, is generally more common in spring and summer when males sing to attract mates and/or defend territories. Changes in the volumes of song control nuclei, such as HVC and the robust nucleus of the arcopallium (RA), are observed seasonally. Long photoperiods in spring stimulate the recrudescence of the testes and the release of testosterone. Androgen receptors, and at times estrogen receptors, are present in HVC and RA as are co-factors that facilitate the transcriptional activity of these receptors. Thus testosterone can act directly to induce changes in nucleus volume. However, dissociations have been identified at times among long photoperiods, maximal concentrations of testosterone, large song control nuclei, and high rates of song. One explanation of these dissociations is that song behavior itself can influence neural plasticity in the song system. Testosterone can act via brain-derived neurotrophic factor (BDNF) that is also released in HVC as a result of song activity. Testosterone could enhance song nucleus volume indirectly by acting in the preoptic area, a region regulating sexual behaviors, including song, that connects to the song system through catecholaminergic cells. Seasonal neuroplasticity in the song system involves an interplay among seasonal state, testosterone action, and behavioral activity. [less ▲]

Detailed reference viewed: 35 (4 ULg)
Full Text
See detailGene knock down via antisense oligonucleotides to the steroid receptor coactivator SRC-1 modulates testosterone-dependent male sexual behavior and neural gene expression
Charlier, Thierry ULg; Ball, Gregory F; Balthazart, Jacques ULg

in Hormones & Behavior (2004), 46

Studies of eukaryotic genome expression demonstrate the importance of steroid receptor coactivators in mediating efficient gene transcription. Little is know about the physiological role of these ... [more ▼]

Studies of eukaryotic genome expression demonstrate the importance of steroid receptor coactivators in mediating efficient gene transcription. Little is know about the physiological role of these coactivators in vivo. We recently showed that the Steroid Receptor Coactivator SRC-1 is densely expressed in steroid-sensitive brain areas in birds and its expression is steroid-dependent and sexually differentiated. We tested the role of SRC-1 in the activation by testosterone of male sexual behavior in quail. Daily injections of LNA antisense oligonucleotides in the third ventricle (AS group) significantly reduced the expression of male copulatory behavior in response to exogenous testosterone compared to control animals (Ctrl group) receiving the vehicle alone or scrambled LNA. Sexual behavior was restored and even enhanced within 48 hours after interruption of LNA injection (ASSC group). Western blot analysis confirmed the decrease of SRC-1 expression in AS animals and suggested an over-expression of the coactivator in ASSC animals. The effect of SRC-1 knock down on behavior was correlated with a reduced volume of the medial preoptic nucleus (POM) defined by Nissl-staining and aromatase immunohistochemistry. In addition, the amount of aromatase-immunoreactive material in POM, defined as the relative optical density of the aromatase immunoreactivity multiplied by the percentage of surface covered within the nucleus and by the total POM volume of the POM, was decreased in the AS compared to the Ctrl group, suggesting a blockade of aromatase transcription. Together, these data indicate that SRC-1 functions as a critical regulatory molecule in the brain that modulates steroid-dependent gene transcription and behavior. [less ▲]

Detailed reference viewed: 19 (1 ULg)
See detailBehavioral effects of rapid changes in aromatase activity in the central nervous system
Balthazart, Jacques ULg; Baillien, Michelle; Cornil, Charlotte ULg et al

in Kordon, C.; Gaillard, R. C.; Christen, Y. (Eds.) Research and perspectives in endocrine action (2004)

Detailed reference viewed: 15 (5 ULg)
Full Text
Peer Reviewed
See detailCalcium-dependent phosphorylation processes control brain aromatase in quail
Balthazart, Jacques ULg; Baillien, Michelle; Charlier, Thierry ULg et al

in European Journal of Neuroscience (2003), 17(8), 1591-1606

Increased gene transcription activated by the binding of sex steroids to their cognate receptors is one important way in which oestrogen synthase (aromatase) activity is regulated in the brain. This ... [more ▼]

Increased gene transcription activated by the binding of sex steroids to their cognate receptors is one important way in which oestrogen synthase (aromatase) activity is regulated in the brain. This control mechanism is relatively slow (hours to days) but recent data indicate that aromatase activity in quail preoptic-hypothalamic homogenates is also rapidly (within minutes) affected by exposure to conditions that enhance Ca2+-dependent protein phosphorylation. We demonstrate here that Ca2+-dependent phosphorylations controlled by the activity of multiple protein kinases including PKC, and possibly also PKA and CAMK, can rapidly down-regulate aromatase activity in brain homogenates. These phosphorylations directly affect the aromatase molecule itself. Western blotting experiments on aromatase purified by immunoprecipitation reveal the presence on the enzyme of phosphorylated serine, threonine and tyrosine residues in concentrations that are increased by phosphorylating conditions. Cloning and sequencing of the quail aromatase identified a 1541-bp open reading frame that encodes a predicted 490-amino-acid protein containing all the functional domains that have been previously described in the mammalian and avian aromatase. Fifteen predicted consensus phosphorylation sites were identified in this sequence, but only two of these (threonine 455 and 486) match the consensus sequences corresponding to the protein kinases that were shown to affect aromatase activity during the pharmacological experiments (i.e. PKC and PKA). This suggests that the phosphorylation of one or both of these residues represents the mechanism underlying, at least in part, the rapid changes in aromatase activity. [less ▲]

Detailed reference viewed: 37 (15 ULg)
Full Text
Peer Reviewed
See detailSex differences in the distribution of the steroid receptor coactivator SRC-1 in the song control nuclei of male and female canaries
Charlier, Thierry ULg; Balthazart, Jacques ULg; Ball, Gregory F

in Brain Research (2003), 959(2), 263-274

The steroid receptor coactivator SRC-1 modulates ligand-dependent transactivation of several nuclear receptors, including the receptors for sex steroid hormones. The distribution of SRC-1 transcripts was ... [more ▼]

The steroid receptor coactivator SRC-1 modulates ligand-dependent transactivation of several nuclear receptors, including the receptors for sex steroid hormones. The distribution of SRC-1 transcripts was analyzed here by in situ hybridization in coronal sections through the brain of male and female canaries. A broad but heterogeneous distribution of SRC-1 transcripts was observed with high numbers of densely labeled cells being present in many steroid-sensitive areas including the medial preoptic nucleus, several hypothalamic nuclei, five song control nuclei (HVc, the lateral and medial portion of the magnocellular nucleus of the anterior neostriatum, area X and the nucleus uvaeformis) and several catecholaminergic areas (area ventralis of Tsai, substantia nigra, locus coeruleus). The volume of two song control nuclei, HVc and area X were reconstructed based on the boundaries of the cell groups exhibiting a denser SRC-1 expression as compared to the surrounding areas. Sex differences in the expression of SRC-1 were also detected in several song control nuclei. In particular, the volume of HVc based on the high density of SRC-1 expression was significantly larger in males than in females. The effect of steroids on the song control system could be, at least in part, indirect and result from a modulation by steroids of the catecholaminergic inputs to the song control nuclei. The presence of the steroid receptor coactivator SRC-1 in the telencephalic song control nuclei and in the catecholaminergic cell groups that innervate the song system supports the idea that SRC-1 expression could play an active role in the control of singing behavior by modulating estrogen and androgen receptor action at both locations. (C) 2002 Elsevier Science B.V. All rights reserved. [less ▲]

Detailed reference viewed: 128 (4 ULg)
Full Text
See detailModulation of steroid activity by transcription coactivators in songbirds
Charlier, Thierry ULg; Auger, Catherine J; Balthazart, Jacques ULg et al

in Hormones & Behavior (2003), 44

Songbirds have developed a specialized, steroid-dependent telencephalic vocal control system for the production of learned vocalization. Recent progress in the study of the mechanisms by which steroid ... [more ▼]

Songbirds have developed a specialized, steroid-dependent telencephalic vocal control system for the production of learned vocalization. Recent progress in the study of the mechanisms by which steroid receptors act on the eukaryotic genome has highlighted the role of a newly discovered protein family, the Nuclear Receptor Coactivators. More specifically, the CREB-binding protein (CBP) and the Steroid Receptor Coactivator-1 (SRC-1) have been shown to be actively involved in mediating steroid hormone action in the developing rat brain. The distribution of the coactivator SRC-1 was analyzed in canaries by in situ hybridization. A very broad but heterogeneous distribution of the transcript was observed, mainly in steroid-sensitive areas of the hypothalamus, the song control system and several catecholaminergic areas. The presence of SRC-1 in these regions was also confirmed by immunocytochemistry. A similar very high concentration of the coactivator CBP protein was also found in steroid-sensitive areas of the hypothalamus and in the song system. Sex differences in SRC-1 mRNA concentration were detected in HVC and in area X. Moreover, preliminary data obtained independently in starlings (CBP) and in quail (SRC-1) suggest that the expression of coactivators is regulated by steroids as well as by photoperiod. The presence of these steroid receptor coactivators in the telencephalic song control nuclei and in catecholaminergic cell groups that innervate the song system and their possible regulation by photoperiod and/or steroids support the idea that SRC-1 and CBP could play an important role in the control of singing behavior by modulating estrogen and androgen receptor action. [less ▲]

Detailed reference viewed: 7 (4 ULg)
See detailCloning and identification of functional domains in quail Brain aromatase
Charlier, Thierry ULg; Baillien, Michelle; Ball, Gregory F. et al

Poster (2003)

Recent evidence indicates that aromatase activity (AA) in the hypothalamus is not only modulated by slow (hours to days) genomic actions but also through fast (seconds to minutes) non-genomic mechanisms ... [more ▼]

Recent evidence indicates that aromatase activity (AA) in the hypothalamus is not only modulated by slow (hours to days) genomic actions but also through fast (seconds to minutes) non-genomic mechanisms. We recently showed that Calcium (Ca2+)-dependent phosphorylations catalyzed by multiple protein kinases including PKC, and possibly PKA and CAMK, rapidly down-regulate AA in quail hypothalamic homogenates. Western blotting experiments also indicated that phosphorylations affect the aromatase molecule itself but it was impossible to fully characterize the putative phosphorylation sites on the quail enzyme because its sequence was unknown. We therefore cloned and sequenced the quail brain aromatase. We identified a 1541-bp open reading frame that encodes a predicted 490-amino acid protein containing all functional domains previously described in mammalian and other avian aromatases. Multiple motifs match consensus sequences corresponding to several protein kinases including those that were shown to affect AA during pharmacological experiments with specific kinase inhibitors (e.g., PKC, PKA, MAPK, Myosine light chain kinase, Tyr. kinase). Another potential control pathway of AA, independent from phosphorylations, could involve a direct control by Ca2+-dependent calmodulin (CAM), as suggested by the identification in Western blots of CAM on purified aromatase from quail hypothalamic homogenates. Accordingly, two Ca2+-dependent calmodulin binding motifs (1-8-14b) as defined by Rhoads and Friedberg (FASEB, 1997, 11:331-340) are present and conserved in most vertebrates including quail aromatase. These results suggest that the phosphorylation of some residues as well as the direct binding of calmodulin on the aromatase protein represent part of the mechanism(s) underlying the rapid changes in AA. [less ▲]

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailMultiple mechanisms control brain aromatase activity at the genomic and non-genomic level
Balthazart, Jacques ULg; Baillien, Michelle; Charlier, Thierry ULg et al

in Journal of Steroid Biochemistry & Molecular Biology (2003), 86

Evidence has recently accumulated indicating that aromatase activity in the preoptic area is modulated in parallel by both slow (hours to days) genomic and rapid (minutes to hours) non-genomic mechanisms ... [more ▼]

Evidence has recently accumulated indicating that aromatase activity in the preoptic area is modulated in parallel by both slow (hours to days) genomic and rapid (minutes to hours) non-genomic mechanisms. We review here these two types of control mechanisms and their potential contribution to various aspects of brain physiology in quail. High levels of aromatase mRNA, protein and activity (AA) are present in the preoptic area of this species where the transcription of aromatase is controlled mainly by steroids. Estrogens acting in synergy with androgens play a key role in this control and both androgen and estrogen receptors (ER; alpha and beta subtypes) are present in the preoptic area even if they are not necessarily co-localized in the same cells as aromatase. Steroids have more pronounced effects on aromatase transcription in males than in females and this sex difference could be caused, in part, by a sexually differentiated expression of the steroid receptor coactivator 1 in this area. The changes in aromatase concentration presumably control seasonal variations as well as sex differences in brain estrogen production. Aromatase activity in hypothalamic homogenates is also rapidly (within minutes) down-regulated by exposure to conditions that enhance protein phosphorylation such as the presence of high concentrations of calcium, magnesium and ATP. Similarly, pharmacological manipulations such as treatment with thapsigargin or stimulation of various neurotransmitter receptors (alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid (AMPA), kainate, and N-methyl-d-aspartate (NMDA)) leading to enhanced intracellular calcium concentrations depress within minutes the aromatase activity measured in quail preoptic explants. The effects of receptor stimulation are presumably direct: electrophysiological data confirm the presence of these receptors in the membrane of aromatase-expressing cells. Inhibitors of protein kinases interfere with these processes andWestern blotting experiments on brain aromatase purified by immunoprecipitation confirm that the phosphorylations regulating aromatase activity directly affect the enzyme rather than another regulatory protein. Accordingly, several phosphorylation consensus sites are present on the deduced amino acid sequence of the recently cloned quail aromatase. Fast changes in the local availability of estrogens in the brain can thus be caused by aromatase phosphorylation so that estrogen could rapidly regulate neuronal physiology and behavior. The rapid as well as slower processes of local estrogen production in the brain thus match well with the genomic and non-genomic actions of steroids in the brain. These two processes potentially provide sufficient temporal variation in the bio-availability of estrogens to support the entire range of established effects for this steroid. [less ▲]

Detailed reference viewed: 34 (17 ULg)
Full Text
Peer Reviewed
See detailThe neuroendocrinology of reproductive behavior in Japanese quail
Balthazart, Jacques ULg; Baillien, Michelle; Charlier, Thierry ULg et al

in Domestic Animal Endocrinology (2003), 25

Sex steroid hormones such as testosterone have widespread effects on brain physiology and function but one of their best characterized effects arguably involves the activation of male sexual behavior ... [more ▼]

Sex steroid hormones such as testosterone have widespread effects on brain physiology and function but one of their best characterized effects arguably involves the activation of male sexual behavior. During the past 20 years we have investigated the testosterone control of male sexual behavior in an avian species, the Japanese quail (Coturnix japonica).We briefly reviewhere the main features and advantages of this species relating to the investigation of fundamental questions in the field of behavioral neuroendocrinology, a field that studies inter-relationship among hormones, brain and behavior. Special attention is given to the intracellular metabolism of testosterone, in particular its aromatization into an estrogen, which plays a critical limiting role in the mediation of the behavioral effects of testosterone. Brain aromatase activity is controlled by steroids which increase the transcription of the enzyme, but afferent inputs that affect the intraneuronal concentrations of calcium also appear to have a pronounced effect on the enzyme activity through rapid changes in its phosphorylation status. The physiological significance of these slowgenomic and rapid, presumably non-genomic, changes in brain aromatase activity are also briefly discussed. [less ▲]

Detailed reference viewed: 55 (16 ULg)
See detailSeasonal changes in the songbird brain are modulated by song performance via testosterone-dependent and independent action
Sartor, Jennifer J; Charlier, Thierry ULg; Pytte, Caroline L et al

Poster (2002)

Detailed reference viewed: 8 (1 ULg)
See detailConverging evidence that song performance modulates seasonal changes in the avian song control system
Sartor, Jennifer J; Charlier, Thierry ULg; Pytte, Caroline L et al

Poster (2002)

Detailed reference viewed: 15 (1 ULg)
Full Text
Peer Reviewed
See detailSex differences in the distribution of the steroid receptor-coactivator-1 in the canary brain
Charlier, Thierry ULg; Ball, Gregory F; Balthazart, Jacques ULg

in Hormones & Behavior (2002), 41

Detailed reference viewed: 5 (2 ULg)
Full Text
Peer Reviewed
See detailSteroid receptor coactivator SRC-1 exhibits high expression in steroid-sensitive brain areas regulating reproductive behaviors in the quail brain.
Charlier, Thierry ULg; Lakaye, Bernard ULg; Ball, Gregory F et al

in Neuroendocrinology (2002), 76(5), 297-315

The steroid receptor coactivator SRC-1 modulates ligand-dependent transactivation of several nuclear receptors, including the receptors for sex steroid hormones. Reducing the expression of SRC-1 by ... [more ▼]

The steroid receptor coactivator SRC-1 modulates ligand-dependent transactivation of several nuclear receptors, including the receptors for sex steroid hormones. Reducing the expression of SRC-1 by injection of specific antisense oligonucleotides markedly inhibits the effects of estrogens of the sexual differentiation of brain and behavior in rats and inhibits the activation of female sexual behavior in adult female rats. SRC-1 thus appears to be involved in both the development and activation of sexual behavior. In the Japanese quail brain, we amplified by RT-PCR a 3,411-bp fragment extending from the HLH domain to the activating domain-2 of the protein. The quail SRC-1 is closely related to the mammalian (m) SRC-1 and contains a high proportion of GC nucleotides (62.5%). Its amino acid sequence presents 70% identity with mammalian SRC-1 and contains the three conserved LXXLL boxes involved in the interaction with nuclear receptors. In both males and females, RT-PCR demonstrates a similarly high level of expression in the telencephalon, diencephalon, optic lobes, brain stem, spinal cord, pituitary, liver, kidney, adrenal gland, heart, lung, gonads and gonoducts. Males express significantly higher levels of SRC-1 in the preoptic area-hypothalamus than females. In both sexes, lower levels of expression are observed in the cerebellum and muscles. In situ hybridization utilizing a mixture of four digoxigenin-labeled oligonucleotides confirms at the cellular level the widespread distribution of SRC-1 mRNA in the brain and a particularly dense expression in steroid-sensitive areas that play a key role in the control of male sexual behavior. These data confirm the presence and describe for the first time the SRC-1 distribution in the brain of an avian species. They confirm its broad, nearly ubiquitous, distribution in the entire body including the brain as could be expected for a coactivator that regulates to the action of many nuclear receptors. However this distribution is heterogeneous in the brain and sexually differentiated in at least some areas. The very dense expression of SRC-1 in limbic and mesencephalic nuclei that are associated with the control of male sexual behavior is consistent with the notion that this coactivator plays a significant role in the activation of this behavior. [less ▲]

Detailed reference viewed: 41 (12 ULg)
See detailCloning and distribution of steroid receptor coactivator SRC-1 in quail.
Charlier, Thierry ULg; Lakaye, Bernard ULg; Ball, Gregory F. et al

Poster (2001)

Detailed reference viewed: 5 (1 ULg)