References of "Chariot, Alain"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDifferential usage of NF-kB activating signals by IL-1b and TNF-a in pancreatic beta cells
Ortis, Fernanda; Miani, M; Colli, ML et al

in FEBS Letters (2012), 586

The cytokines interleukin (IL)-1b and tumor necrosis factor (TNF)-a induce b-cell death in type 1 diabetes via NF-kB activation. IL-1b induces a more marked NF-kB activation than TNF-a, with higher ... [more ▼]

The cytokines interleukin (IL)-1b and tumor necrosis factor (TNF)-a induce b-cell death in type 1 diabetes via NF-kB activation. IL-1b induces a more marked NF-kB activation than TNF-a, with higher expression of genes involved in b-cell dysfunction and death. We show here a differential usage of the IKK complex by IL-1b and TNF-a in b-cells. While TNF-a uses IKK complexes containing both IKKa and IKKb, IL-1b induces complexes with IKKa only; this effect is achieved by induction of IKKb degradation via the proteasome. Both IKKg and activation of the TRAF6-TAK1-JNK pathway are involved in IL-1b-induced IKKb degradation. [less ▲]

Detailed reference viewed: 269 (4 ULg)
See detailCortical interneurons tangential migration : p27(Kip1) as a novel master regulator.
Godin, Juliette ULg; Thomas, Noémie; Laguesse, Sophie ULg et al

Poster (2012)

Detailed reference viewed: 10 (2 ULg)
See detailp27(Kip1) as a master regulator of cortical neuron migration.
Godin, Juliette ULg; Thomas, Noémie; Laguesse, Sophie ULg et al

Poster (2012)

Detailed reference viewed: 7 (0 ULg)
See detailp27(Kip1) as a master regulator of cortical neuron migration.
Godin, Juliette ULg; Thomas, Noémie; Laguesse, Sophie ULg et al

Poster (2012)

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailp27(Kip1) Is a Microtubule-Associated Protein that Promotes Microtubule Polymerization during Neuron Migration.
Godin, Juliette ULg; Thomas, Noemie; Laguesse, Sophie ULg et al

in Developmental Cell (2012), 23(4), 729-44

The migration of cortical interneurons is characterized by extensive morphological changes that result from successive cycles of nucleokinesis and neurite branching. Their molecular bases remain elusive ... [more ▼]

The migration of cortical interneurons is characterized by extensive morphological changes that result from successive cycles of nucleokinesis and neurite branching. Their molecular bases remain elusive, and the present work describes how p27(Kip1) controls cell-cycle-unrelated signaling pathways to regulate these morphological remodelings. Live imaging reveals that interneurons lacking p27(Kip1) show delayed tangential migration resulting from defects in both nucleokinesis and dynamic branching of the leading process. At the molecular level, p27(Kip1) is a microtubule-associated protein that promotes polymerization of microtubules in extending neurites, thereby contributing to tangential migration. Furthermore, we show that p27(Kip1) controls actomyosin contractions that drive both forward translocation of the nucleus and growth cone splitting. Thus, p27(Kip1) cell-autonomously controls nucleokinesis and neurite branching by regulating both actin and microtubule cytoskeletons. [less ▲]

Detailed reference viewed: 38 (13 ULg)
Full Text
Peer Reviewed
See detailInduction of the Alternative NF-{kappa}B Pathway by Lymphotoxin {alpha}{beta} (LT{alpha}{beta}) Relies on Internalization of LT{beta} Receptor
Ganeff, Corine; Remouchamps, Caroline ULg; Boutaffala, Layla et al

in Molecular & Cellular Biology (2011), 21

Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still ... [more ▼]

Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB. [less ▲]

Detailed reference viewed: 69 (16 ULg)
Full Text
Peer Reviewed
See detailNF-kB, stem cells and breast cancer: the links get stronger
Shostak, Kateryna ULg; Chariot, Alain ULg

in Breast Cancer Research [=BCR] (2011), 13(4), 214

Self-renewing breast cancer stem cells are key actors in perpetuating tumour existence and in treatment resistance and relapse. The molecular pathways required for their maintenance are starting to be ... [more ▼]

Self-renewing breast cancer stem cells are key actors in perpetuating tumour existence and in treatment resistance and relapse. The molecular pathways required for their maintenance are starting to be elucidated. Among them is the transcription factor NF-κB, which is known to play critical roles in cell survival, inflammation and immunity. Recent studies indicate that mammary epithelial NF-κB regulates the self-renewal of breast cancer stem cells in a model of Her2-dependent tumourigenesis. We will describe here the NF-κB-activating pathways that are involved in this process and in which progenitor cells this transcription factor is actually activated. [less ▲]

Detailed reference viewed: 56 (14 ULg)
See detailp27(Kip1) as a master regulator of cortical neuron migration
Godin, Juliette ULg; Thomas, Noémie; Laguesse, Sophie ULg et al

Scientific conference (2011, June)

Detailed reference viewed: 19 (2 ULg)
Full Text
Peer Reviewed
See detailInvolvement of placental growth factor in Wallerian degeneration
Chaballe, Linda ULg; Close, Pierre ULg; SEMPELS, Maxime ULg et al

in Glia (2011), 59(3), 379-396

Wallerian degeneration (WD) is an inflammatory process of nerve degeneration, which occurs more rapidly in the peripheral nervous system compared with the central nervous system, resulting, respectively ... [more ▼]

Wallerian degeneration (WD) is an inflammatory process of nerve degeneration, which occurs more rapidly in the peripheral nervous system compared with the central nervous system, resulting, respectively in successful and aborted axon regeneration. In the peripheral nervous system, Schwann cells (SCs) and macrophages, under the control of a network of cytokines and chemokines, represent the main cell types involved in this process. Within this network, the role of placental growth factor (PlGF) remains totally unknown. However, properties like monocyte activation/attraction, ability to increase expression of pro-inflammatory molecules, as well as neuroprotective effects, make it a candidate likely implicated in this process. Also, nothing is described about the expression and localization of this molecule in the peripheral nervous system. To address these original questions, we decided to study PlGF expression under physiological and degenerative conditions and to explore its role in WD, using a model of sciatic nerve transection in wild-type and Pgf(-/-) mice. Our data show dynamic changes of PlGF expression, from periaxonal in normal nerve to SCs 24h postinjury, in parallel with a p65/NF-κB recruitment on Pgf promoter. After injury, SC proliferation is reduced by 30% in absence of PlGF. Macrophage invasion is significantly delayed in Pgf(-/-) mice compared with wild-type mice, which results in worse functional recovery. MCP-1 and proMMP-9 exhibit a 3-fold reduction of their relative expressions in Pgf(-/-) injured nerves, as demonstrated by cytokine array. In conclusion, this work originally describes PlGF as a novel member of the cytokine network of WD. [less ▲]

Detailed reference viewed: 64 (21 ULg)
Full Text
See detailInvolvement of Placental growth factor in Wallerian degeneration
Chaballe, Linda ULg; Close, Pierre ULg; Sempels, Maxime ULg et al

Poster (2010, September)

Detailed reference viewed: 37 (12 ULg)
Full Text
Peer Reviewed
See detailThe repressing function of the oncoprotein BCL-3 requires CtBP while its polyubiquitination and degradation involve the E3 ligase TBLR1
Keutgens, Aurore ULg; Shostak, Kateryna ULg; Close, Pierre ULg et al

in Molecular & Cellular Biology (2010), 30

The nuclear and oncogenic BCL-3 protein activates or represses gene transcription when bound to NF-kB proteins p50 and p52, yet the molecules that specifically interact with BCL-3 and drive BCL-3-mediated ... [more ▼]

The nuclear and oncogenic BCL-3 protein activates or represses gene transcription when bound to NF-kB proteins p50 and p52, yet the molecules that specifically interact with BCL-3 and drive BCL-3-mediated effects on gene expression remain largely uncharacterized. Moreover, GSK3-mediated phosphorylation of BCL-3 triggers its degradation through the proteasome, but the proteins involved in this degradative pathway are poorly characterized. Biochemical purification of interacting partners of BCL-3 led to the identification of CtBP as a molecule required for the ability of BCL-3 to repress gene transcription. CtBP is also required for the oncogenic potential of BCL-3 and for its ability to inhibit UV-mediated cell apoptosis in keratinocytes. We also defined the E3 ligase TBLR1 as a protein involved in BCL-3 degradation through a GSK3-independent pathway. Thus, our data demonstrate that the LSD1/CtBP complex is required for the repressing abilities of an oncogenic IkB protein, and they establish a functional link between the E3 ligase TBLR1 and NF-kB. [less ▲]

Detailed reference viewed: 75 (23 ULg)
Full Text
Peer Reviewed
See detailThe emerging role of lysine acetylation of non-nuclear proteins
Close, Pierre ULg; Creppe, Catherine; Gillard, Magali ULg et al

in Cellular and Molecular Life Sciences : CMLS (2010), 67(8), 1255-1264

Lysine acetylation is a post-translational modification that critically regulates gene transcription by targeting histones as well as a variety of transcription factors in the nucleus. More recent reports ... [more ▼]

Lysine acetylation is a post-translational modification that critically regulates gene transcription by targeting histones as well as a variety of transcription factors in the nucleus. More recent reports have also demonstrated that numerous proteins located outside the nucleus are also acetylated and that this modification has profound consequences on their functions. This review describes the latest findings on the substrates acetylated outside the nucleus and on the acetylases and deacetylates that catalyse these modifications. Protein acetylation is emerging as a major mechanism by which key proteins are regulated in many physiological processes such as migration, metabolism and aging as well as in pathological circumstances such as cancer and neurodegenerative disorders. [less ▲]

Detailed reference viewed: 161 (23 ULg)
Full Text
See detailElongator orchestrates cerebral cortical neurogenesis
creppe, catherine; malinouskaya, lina; Volvert, Marie-Laure ULg et al

in Medecine Sciences : M/S (2010)

Pas d'abstract pour cette publication

Detailed reference viewed: 68 (18 ULg)
Peer Reviewed
See detailTNFL–Induced p100 processing (TIPP) relies on the internalization of the cognate TNFR
Ganeff, Corinne; Galopin, Géraldine; Remouchamps, Caroline ULg et al

Conference (2010, January)

Detailed reference viewed: 9 (4 ULg)
Full Text
Peer Reviewed
See detailElongator - an emerging role in neurological disorders
Nguyen, Laurent ULg; Humbert, Sandrine; Saudou, Frédéric et al

in Trends in Molecular Medicine (2010), 16

We are currently facing important challenges to prevent and cure neurological disorders that are becoming a major public health issue in our aging society. Because of the lack of mechanism-based ... [more ▼]

We are currently facing important challenges to prevent and cure neurological disorders that are becoming a major public health issue in our aging society. Because of the lack of mechanism-based treatments to correct brain malformations or to prevent the progression of cell death in neurodegenerative disorders, most of these pathologies follow a fatal course. Thus, one major objective is to understand the molecular events that underlie these diseases in order to prevent their onset and/or halt their progression. Converging experimental and clinical evidences obtained by our lab and others prompt us to speculate that Elongator may be commonly targeted in different neurological disorders and as such, should represent a strong candidate for research and development efforts to design drug-based therapies. [less ▲]

Detailed reference viewed: 62 (13 ULg)
Full Text
Peer Reviewed
See detailMolecular Layers underlying cytoskeletal remodelling during cortical development
Heng, J.; Chariot, Alain ULg; Nguyen, Laurent

in Trends in Neurosciences (2010), 33

During neural development, the cytoskeleton of newborn neurons is subjected to extensive and dynamic remodelling to facilitate the sequential steps of neurogenesis, cell migration and terminal ... [more ▼]

During neural development, the cytoskeleton of newborn neurons is subjected to extensive and dynamic remodelling to facilitate the sequential steps of neurogenesis, cell migration and terminal differentiation. As we begin to elucidate the molecular mechanisms which precipitate these functions, it is clear that while common factors may be required, different configurations of the cytoskeleton prefigure the correct execution of each step, such that we can define cohorts of proteins whose functions are indispensable for the control of neuronal migration but not terminal differentiation. It has also emerged that these combinatorial protein functions are predetermined by regulated gene expression, as well as precise subcellular localisation of their protein products. We present this view in the context of recent striking data on how the cytoskeleton is regulated during the maturation of cortical neurons within the developing brain. [less ▲]

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailSHIP-1 inhibits CD95/APO-1/Fas-induced apoptosis in primary T lymphocytes and T leukemic cells by promoting CD95 glycosylation independently of its phosphatase activity
Charlier, Edith ULg; Condé, Claude ULg; Zhang, Jing et al

in Leukemia : Official Journal of the Leukemia Society of America, Leukemia Research Fund, U.K (2010)

SHIP-1 functions as a negative regulator of immune responses by hydrolyzing phosphatidylinositol-3,4,5-triphosphate generated by PI 3-kinase activity. As a result, SHIP-1 deficiency in mice results in ... [more ▼]

SHIP-1 functions as a negative regulator of immune responses by hydrolyzing phosphatidylinositol-3,4,5-triphosphate generated by PI 3-kinase activity. As a result, SHIP-1 deficiency in mice results in myeloproliferation and B cell lymphoma. On the other hand, SHIP-1 deficient mice have a reduced T cell population, but the underlying mechanisms are unknown. In this work, we hypothesized that SHIP-1 plays anti-apoptotic functions in T cells upon stimulation of the death receptor CD95/APO-1/Fas. Using primary T cells from SHIP-1-/- mice and T leukemic cell lines, we report here that SHIP-1 is a potent inhibitor of CD95-induced death. We observed that a small fraction of the SHIP-1 pool is localized to the endoplasmic reticulum where it promotes CD95 glycosylation. This post-translational modification requires an intact SH2 domain of SHIP-1, but is independent of its phosphatase activity. The glycosylated CD95 fails to oligomerize upon stimulation, resulting in impaired DISC formation and downstream apoptotic cascade. These results uncover an unanticipated inhibitory function for SHIP-1 and emphasize the role of glycosylation in the regulation of CD95 signaling in T cells. This work may also provide a new basis for therapeutic strategies using compounds inducing apoptosis through the CD95 pathway on SHIP-1 negative leukemic T cells. [less ▲]

Detailed reference viewed: 86 (16 ULg)
Full Text
Peer Reviewed
See detailMolecular layers underlying cytoskeletal remodelling during cortcial development
Heng, Julian; Chariot, Alain ULg; Nguyen, Laurent ULg

in Trends in Neurosciences (2010)

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailBCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1.
Keutgens, Aurore ULg; Zhang-Shao, Xin ULg; Shostak, Kateryna ULg et al

in Journal of Biological Chemistry (2010), 285(33), 2583125840

The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the ... [more ▼]

The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the mechanisms underlying its degradation remain poorly understood. Yeast-two-hybrid analysis led to the identification of the proteasome subunit PSMB1 as a BCL-3-associated protein. The binding of BCL-3 to PSMB1 is required for its degradation through the proteasome. Indeed, PSMB1-depleted cells are defective in degrading polyubiquitinated BCL-3. The N-terminal part of BCL-3 includes lysines 13 and 26 required for the K48-linked polyubiquitination of BCL-3. Moreover, the E3 ligase FBW7 known to polyubiquitinate a variety of substrates phosphorylated by GSK3 is dispensable for BCL-3 degradation. Thus, our data defined an unique motif of BCL-3 that is needed for its recruitment to the proteasome and identified PSMB1 as a key protein required for the proteasome-mediated degradation of a nuclear and oncogenic IkappaB protein. [less ▲]

Detailed reference viewed: 79 (36 ULg)