References of "Castronovo, Vincenzo"
     in
Bookmark and Share    
See detailHDAC5 depletion Decreases NDUFB5 Subunit of Mitochondrial Complex- I leading to Glucose-dependent Metabolic Reprogrammation
Hendrick, Elodie ULg; Matheus, Nicolas ULg; Peixoto, Paul ULg et al

Poster (2013, December 05)

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1. Aims : The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Methods and results : Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of NDUFB5, a subunit of the complex I of the mitochondrial respiratory chain through modulation of mRNA stability. HDAC5 depletion-induced NDUFB5 downregulation causes a significant increase of ROS production and induces uncoupled mitochondrial respiration. In addition, this HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusions : Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of NDUFB5 gene expression by altering mRNA stability and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. [less ▲]

Detailed reference viewed: 6 (0 ULg)
See detailComplexe I mitochondrial dysfunction in HDAC5 depleted cancer cells induces glucose-dependent metabolic reprogrammation.
Hendrick, Elodie ULg; Matheus, Nicolas ULg; Peixoto, Paul ULg et al

Poster (2013, September 13)

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1. Aims: The goal of this study is to further understand the metabolic response of cancer cells to HDAC5 depletion. Results: Screening transcriptomic study demonstrated that HDAC5 depletion induces a deregulation of genes encoding subunits of complex I of the mitochondrial respiratory chain leading to a significant increase of ROS production and inducing uncoupled mitochondrial respiration. In addition, this HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusion: Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of gene expression encoding mitochondrial proteins in cancer cells and provide insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailThe Anti-Tumor Effect of HDAC Inhibition in a Human Pancreas Cancer Model Is Significantly Improved by the Simultaneous Inhibition of Cyclooxygenase 2
Peulen, Olivier ULg; Gonzalez, Arnaud; Peixoto, Paul ULg et al

in PLoS ONE (2013), 8(9), 75102

Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 ... [more ▼]

Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 (COX-2) and class I histone deacetylase (HDAC) may results in a better control of pancreatic ductal adenocarcinoma. The impact of the concomitant HDAC and COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed first in vitro on human pancreas BxPC-3, PANC-1 or CFPAC-1 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib) or HDAC1/2/3/7 siRNA. To test the potential antitumoral activity of this combination in vivo, we have developed and characterized, a refined chick chorioallantoic membrane tumor model that histologically and proteomically mimics human pancreatic ductal adenocarcinoma. The combination of HDAC1/3 and COX-2 inhibition significantly impaired proliferation of BxPC-3 cells in vitro and stalled entirely the BxPC-3 cells tumor growth onto the chorioallantoic membrane in vivo. The combination was more effective than either drug used alone. Consistently, we showed that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 via the NF-kB pathway. Our data demonstrate, for the first time in a Pancreatic Ductal Adenocarcinoma (PDAC) model, a significant action of HDAC and COX-2 inhibitors on cancer cell growth, which sets the basis for the development of potentially effective new combinatory therapies for pancreatic ductal adenocarcinoma patients. [less ▲]

Detailed reference viewed: 77 (16 ULg)
Full Text
Peer Reviewed
See detailA new role for histone deacetylase 5 in the maintenance of long telomeres.
Novo, Clara Lopes; Polese, Catherine ULg; Matheus, Nicolas ULg et al

in FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2013), 27

Telomeres are major regulators of genome stability and cell proliferation. A detailed understanding of the mechanisms involved in their maintenance is of foremost importance. Of those, telomere chromatin ... [more ▼]

Telomeres are major regulators of genome stability and cell proliferation. A detailed understanding of the mechanisms involved in their maintenance is of foremost importance. Of those, telomere chromatin remodeling is probably the least studied; thus, we intended to explore the role of a specific histone deacetylase on telomere maintenance. We uncovered a new role for histone deacetylase 5 (HDAC5) in telomere biology. We report that HDAC5 is recruited to the long telomeres of osteosarcoma- and fibrosarcoma-derived cell lines, where it ensures proper maintenance of these repetitive regions. Indeed, depletion of HDAC5 by RNAi resulted in the shortening of longer telomeres and homogenization of telomere length in cells that use either telomerase or an alternative mechanism of telomere maintenance. Furthermore, we present evidence for the activation of telomere recombination on depletion of HDAC5 in fibrosarcoma telomerase-positive cancer cells. Of potential importance, we also found that depletion of HDAC5 sensitizes cancer cells with long telomeres to chemotherapeutic drugs. Cells with shorter telomeres were used to control the specificity of HDAC5 role in the maintenance of long telomeres. HDAC5 is essential for the length maintenance of long telomeres and its depletion is required for sensitization of cancer cells with long telomeres to chemotherapy. -Novo, C. L., Polese, C., Matheus, N., Decottignies, A., Londono-Vallejo, A., Castronovo, V., Mottet, D. A new role for histone deacetylase 5 in the maintenance of long telomeres. [less ▲]

Detailed reference viewed: 203 (26 ULg)
Full Text
Peer Reviewed
See detailIn vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: A new tool for oncology and radiotracer development.
Warnock, Geoffrey; Turtoi, Andrei ULg; Blomme, Arnaud ULg et al

in Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine (2013), 54(10), 1782-1788

For many years the laboratory mouse has been used as the standard model for in vivo oncology research, particularly in the development of novel PET tracers, but the growth of tumors on chicken ... [more ▼]

For many years the laboratory mouse has been used as the standard model for in vivo oncology research, particularly in the development of novel PET tracers, but the growth of tumors on chicken chorioallantoic membrane (CAM) provides a more rapid, low cost and ethically sustainable alternative. For the first time, we demonstrate the feasibility of in vivo PET and CT imaging in a U87 glioblastoma tumor model on chicken chorioallantoic membrane (CAM), with the aim of applying this model for screening of novel PET tracers. Methods: U87 glioblastoma cells were implanted on the CAM at day 11 post-fertilization and imaged at day 18. A small animal imaging cell was used to maintain incubation and allow anesthesia using isoflurane. Radiotracers were injected directly into the exposed CAM vasculature. Sodium [18F]fluoride was used to validate the imaging protocol, demonstrating that image-degrading motion can be removed with anesthesia. Tumor glucose metabolism was imaged using [18F]fluorodeoxyglucose and tumor protein synthesis was imaged using 2-[18F]fluoro-L-tyrosine. Anatomical images were obtained by contrast enhanced CT, facilitating clear delineation of the tumor, delineation of tracer uptake in tumor versus embryo and accurate volume measurements. Results: PET imaging of tumor glucose metabolism and protein synthesis was successfully demonstrated in the CAM U87 glioblastoma model. Catheterization of CAM blood vessels facilitated dynamic imaging of glucose metabolism with [18F]fluorodeoxyglucose and demonstrated the ability to study PET tracer uptake over time in individual tumors, while CT imaging improved the accuracy of tumor volume measurements. Conclusion: In summary, we describe the novel application of PET/CT in the CAM tumor model, with optimization of typical imaging protocols. PET imaging in this valuable tumor model could prove particularly useful for rapid, high-throughput screening of novel radiotracers. [less ▲]

Detailed reference viewed: 99 (32 ULg)
Peer Reviewed
See detailConcomitant inhibition of class I HDAC and COX-2 exerts a antitumor effect in a human pancreatic cancer model
Gonzalez, Arnaud ULg; Peixoto, Paul ULg; Turtoi, Andrei ULg et al

Poster (2013, July 11)

- Introduction : Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in developed countries. Early-stage pancreatic cancer is usually clinically silent, and disease only ... [more ▼]

- Introduction : Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in developed countries. Early-stage pancreatic cancer is usually clinically silent, and disease only becomes apparent after the tumor invades surrounding tissues or metastatises to distant organs. Moreover, the current chemotherapeutic treatments have no or few effects on this type of cancer, increasing only slightly the median survival of the patients. The survival rate at 5-years is only 3%. There is a need to develop new effective therapies for PDAC patients together with a robust and fast in vivo model allowing drug screening. In this study, We tested whether the combined inhibition of cyclooxygenase-2 (COX-2) and class I histone deacetylase (HDAC) may result in a better control of PDAC. We improved the formation of pancreatic tumor on Chorioallantoic membrane (CAM), an alternative to murine model. - Methods : The impact of the concomitant HDAC and COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed in vitro on human pancreas BxPC-3 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib) or HDAC1/3/7 siRNA. To test the potential antitumoral activity of this combination in vivo, we improved, characterized and used model of pancreas tumors growing on chick chorioallantoic membrane. - Results : The inhibition of HDAC1/3 by SiRNA or MS-275 treatment reduced significantly the growth of BxPC-3 cells in vitro. Furthermore, we showed by QPCR and immunoblotting that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 at least via the NF-kB pathway. Based on this observation, we decided to test the effect of MS-275 combined with celecoxib a COX-2 inhibitor. This combination was more effective then either drug used alone to reduce the growth of BxPC-3 cells. By FACS analysis we showed that MS-275/celecoxib combination decreased significantly the proportion of cells in S phase and increased significantly and drastically the proportion in G0/G1 at 24, 48 and 72h. By immunobloting this GO/G1 arrest was confirmed by accumulation of cell cycle repressors (P21, P27) and disappearance of hyper phosphorylated form of RB protein. Following a procedure development, we produced on CAM 60 mm3 functionally vascularized tumors mimicking human pancreatic tumors on CAM model. The clinical relevance of this model is supported by the CK7+/CK19+/CK20-/CEA+/Ki67+/CD56- immunolabeling. Recently we have discovered several novel biomarkers of human PDAC: MYOF, TGFBI, LTBP2. These antigens were expressed in tumors grown on CAM, reaffirming its clinical relevance. The concept of the co-treatment by MS-275 and celecoxib was validated using this model. We showed that celecoxib alone did not significantly reduce tumor growth. MS-275 alone decreased tumor growth by 50% and combination of celecoxib and MS-275 stalled entirely the tumor growth. - Conclusions : Our data demonstrate a significant synergic anti-tumoral action of HDAC and COX-2 inhibitors, which set a basis for the development of potentially effective new combinatory therapies for PDAC patients. [less ▲]

Detailed reference viewed: 77 (6 ULg)
See detailMitochondrial dysfunction in HDAC5-depleted cancer cells induces glucose-dependent metabolic adaptation
Hendrick, Elodie ULg; Matheus, Nicolas ULg; Peixoto, Paul ULg et al

Poster (2013, May 17)

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that depletion of HDAC5 using siRNA technology triggered cancer cells to both autophagy and apoptosis1. Aims: The goal of this study is to further investigate the molecular mechanisms by which HDAC5 depletion induces both autophagy and apoptosis in cancer cells. Results: Screening transcriptomic study demonstrated that HDAC5 depletion induces a deregulation of genes encoding subunits of complex I of the mitochondrial respiratory chain leading to a significant increase of ROS production. This ROS accumulation promotes autophagy including mitophagy. Indeed, pretreatment with NAC, a ROS scavenger, blocked autophagy triggered by HDAC5 silencing. This autophagy seems to be protective as its blocking with NAC, chloroquine or bafilomycin A1 enhances pro-apoptotic effect of HDAC5 depletion. In addition, mitochondrial dysfunction provokes metabolism adaptation associated with increase of the importance of glucose metabolism in HDAC5 depleted cancer cells. Indeed, low-glucose culture of HDAC5-depleted cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusion: Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of gene expression encoding mitochondrial proteins in cancer cells and provide insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. [less ▲]

Detailed reference viewed: 14 (1 ULg)
See detailJNK/ROS signaling pathway is responsible for induction of autophagy in HDAC5 depleted cancer cells
Hendrick, Elodie ULg; Mathéus, Nicolas; Peixoto, Paul ULg et al

Poster (2013, February 02)

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that depletion of HDAC5 using siRNA technology triggered cancer cells to both autophagy and apoptosis (ref papier). The study of autophagy in cancer is a new research field that has recently generated tremendous attention due to the recognition that autophagy can have either pro-survival or pro-death functions depending on its level of activation. In addition, more and more studies indicate that a complex relationship exists between autophagy and apoptosis, and that the interplay between these two processes determines whether a cell will live or die. Aims: The goal of this study is to further understand the role of autophagy induced by HDAC5 depletion. Current investigations include determining the molecular mechanisms by which HDAC5 depletion induces autophagy and exploring regulatory relationship between autophagy and apoptosis on cancer cell death in absence of HDAC5. Results: The set up of the autophagy in absence of HDAC5 was demonstrated by the conversion of LC3 and development of autophagosomes by electronic microscopy. Transcriptomic study demonstrated a deregulation of a set of genes involved in ROS detoxification in HDAC5 depleted cancer cells leading to significant increase of ROS levels. Further investigations showed that pretreatment with NAC, a ROS scavenger, effectively blocked the accumulation of ROS and autopahgy triggered by HDAC5 silencing. Moreover, HDAC5 depletion induces activation of JNK, and knockdown of JNK by siRNA inhibited ROS production and autophagy, but antioxidant NAC failed to block JNK activation induced by HDAC5 depletion indicating that JNK activation may be a upstream signaling of ROS and should be a core component in HDAC5 silencing-induced autophagic signaling pathway. Finally, blocking of autophagy induced by HDAC5 silencing with NAC or chloroquine and bafilomycin enhanced pro-apoptotic effect. Conclusion: Autophagy functions as a prosurvival mechanism to mitigate HDAC5 depletion-induced apoptotic cell death, suggesting that targeting autophagy might improve the therapeutic effects of specific HDAC5 inhibition. [less ▲]

Detailed reference viewed: 7 (1 ULg)
See detailJNK/ROS Signaling Pathway Is Responsible for Induction of Autophagy in HDAC5 depleted Cancer Cells
Hendrick, Elodie ULg; Mathéus, Nicolas; Peixoto, Paul ULg et al

Conference (2013, January 29)

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that depletion of HDAC5 using siRNA technology triggered cancer cells to both autophagy and apoptosis (ref papier). The study of autophagy in cancer is a new research field that has recently generated tremendous attention due to the recognition that autophagy can have either pro-survival or pro-death functions depending on its level of activation. In addition, more and more studies indicate that a complex relationship exists between autophagy and apoptosis, and that the interplay between these two processes determines whether a cell will live or die. Aims: The goal of this study is to further understand the role of autophagy induced by HDAC5 depletion. Current investigations include determining the molecular mechanisms by which HDAC5 depletion induces autophagy and exploring regulatory relationship between autophagy and apoptosis on cancer cell death in absence of HDAC5. Results: The set up of the autophagy in absence of HDAC5 was demonstrated by the conversion of LC3 and development of autophagosomes by electronic microscopy. Transcriptomic study demonstrated a deregulation of a set of genes involved in ROS detoxification in HDAC5 depleted cancer cells leading to significant increase of ROS levels. Further investigations showed that pretreatment with NAC, a ROS scavenger, effectively blocked the accumulation of ROS and autopahgy triggered by HDAC5 silencing. Moreover, HDAC5 depletion induces activation of JNK, and knockdown of JNK by siRNA inhibited ROS production and autophagy, but antioxidant NAC failed to block JNK activation induced by HDAC5 depletion indicating that JNK activation may be a upstream signaling of ROS and should be a core component in HDAC5 silencing-induced autophagic signaling pathway. Finally, blocking of autophagy induced by HDAC5 silencing with NAC or chloroquine and bafilomycin enhanced pro-apoptotic effect. Conclusion: Autophagy functions as a prosurvival mechanism to mitigate HDAC5 depletion-induced apoptotic cell death, suggesting that targeting autophagy might improve the therapeutic effects of specific HDAC5 inhibition. [less ▲]

Detailed reference viewed: 7 (0 ULg)
See detailJNK/ROS signaling pathway is responsible for induction of autophagy in HDAC5 depleted cancer cells
Hendrick, Elodie ULg; Mathéus, Nicolas; Peixoto, Paul ULg et al

Poster (2013, January 28)

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that depletion of HDAC5 using siRNA technology triggered cancer cells to both autophagy and apoptosis (ref papier). The study of autophagy in cancer is a new research field that has recently generated tremendous attention due to the recognition that autophagy can have either pro-survival or pro-death functions depending on its level of activation. In addition, more and more studies indicate that a complex relationship exists between autophagy and apoptosis, and that the interplay between these two processes determines whether a cell will live or die. Aims: The goal of this study is to further understand the role of autophagy induced by HDAC5 depletion. Current investigations include determining the molecular mechanisms by which HDAC5 depletion induces autophagy and exploring regulatory relationship between autophagy and apoptosis on cancer cell death in absence of HDAC5. Results: The set up of the autophagy in absence of HDAC5 was demonstrated by the conversion of LC3 and development of autophagosomes by electronic microscopy. Transcriptomic study demonstrated a deregulation of a set of genes involved in ROS detoxification in HDAC5 depleted cancer cells leading to significant increase of ROS levels. Further investigations showed that pretreatment with NAC, a ROS scavenger, effectively blocked the accumulation of ROS and autopahgy triggered by HDAC5 silencing. Moreover, HDAC5 depletion induces activation of JNK, and knockdown of JNK by siRNA inhibited ROS production and autophagy, but antioxidant NAC failed to block JNK activation induced by HDAC5 depletion indicating that JNK activation may be a upstream signaling of ROS and should be a core component in HDAC5 silencing-induced autophagic signaling pathway. Finally, blocking of autophagy induced by HDAC5 silencing with NAC or chloroquine and bafilomycin enhanced pro-apoptotic effect. Conclusion: Autophagy functions as a prosurvival mechanism to mitigate HDAC5 depletion-induced apoptotic cell death, suggesting that targeting autophagy might improve the therapeutic effects of specific HDAC5 inhibition. [less ▲]

Detailed reference viewed: 3 (2 ULg)
Full Text
Peer Reviewed
See detailMyoferlin is a key regulator of EGFR activity in human breast cancer
Turtoi, Andrei ULg; BLOMME, A.; Bellahcene, Akeila ULg et al

in Cancer Research (2013), 73

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailA new murine model of osteoblastic/osteolytic lesions from human androgen-resistant prostate cancer.
Fradet, Anais; Sorel, Helene; Depalle, Baptiste et al

in PloS one (2013), 8(9), 75092

BACKGROUND: Up to 80% of patients dying from prostate carcinoma have developed bone metastases that are incurable. Castration is commonly used to treat prostate cancer. Although the disease initially ... [more ▼]

BACKGROUND: Up to 80% of patients dying from prostate carcinoma have developed bone metastases that are incurable. Castration is commonly used to treat prostate cancer. Although the disease initially responds to androgen blockade strategies, it often becomes castration-resistant (CRPC for Castration Resistant Prostate Cancer). Most of the murine models of mixed lesions derived from prostate cancer cells are androgen sensitive. Thus, we established a new model of CRPC (androgen receptor (AR) negative) that causes mixed lesions in bone. METHODS: PC3 and its derived new cell clone PC3c cells were directly injected into the tibiae of SCID male mice. Tumor growth was analyzed by radiography and histology. Direct effects of conditioned medium of both cell lines were tested on osteoclasts, osteoblasts and osteocytes. RESULTS: We found that PC3c cells induced mixed lesions 10 weeks after intratibial injection. In vitro, PC3c conditioned medium was able to stimulate tartrate resistant acid phosphatase (TRAP)-positive osteoclasts. Osteoprotegerin (OPG) and endothelin-1 (ET1) were highly expressed by PC3c while dikkopf-1 (DKK1) expression was decreased. Finally, PC3c highly expressed bone associated markers osteopontin (OPN), Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP) and produced mineralized matrix in vitro in osteogenic conditions. CONCLUSIONS: We have established a new CRPC cell line as a useful system for modeling human metastatic prostate cancer which presents the mixed phenotype of bone metastases that is commonly observed in prostate cancer patients with advanced disease. This model will help to understand androgen-independent mechanisms involved in the progression of prostate cancer in bone and provides a preclinical model for testing the effects of new treatments for bone metastases. [less ▲]

Detailed reference viewed: 20 (0 ULg)
Full Text
Peer Reviewed
See detailLes proteines SIBLING - Outils moleculaires de la progression tumorale et de l'angiogenese.
Lamour, Virginie; Nokin, Marie-Julie ULg; Henry, Aurélie ULg et al

in Medecine sciences : M/S (2013), 29(11), 1018-25

The small integrin-binding ligand N-linked glycoprotein (SIBLING) family consists of osteopontin (OPN), bonesialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP) and matrix ... [more ▼]

The small integrin-binding ligand N-linked glycoprotein (SIBLING) family consists of osteopontin (OPN), bonesialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP) and matrix extracellular phosphoglycoprotein (MEPE). These proteins, initially identified in bone and teeth, share many structural characteristics. It is now well established that they are over expressed in many tumors and play a critical role at different steps of cancer development. In this review, we describe the roles of SIBLING proteins at different stages of cancer progression including cancer cell adhesion, proliferation, migration, invasion, metastasis and angiogenesis. [less ▲]

Detailed reference viewed: 41 (4 ULg)
Full Text
Peer Reviewed
See detailOrganized Proteomic Heterogeneity in Colorectal Cancer Liver Metastases and Implications for Therapies
Turtoi, Andrei ULg; Blomme, Arnaud; Debois, Delphine et al

in Hepatology (Baltimore, Md.) (2013)

Tumor heterogeneity is a major obstacle for developing effective anticancer treatments. Recent studies have pointed to large stochastic genetic heterogeneity within cancer lesions, where no pattern seems ... [more ▼]

Tumor heterogeneity is a major obstacle for developing effective anticancer treatments. Recent studies have pointed to large stochastic genetic heterogeneity within cancer lesions, where no pattern seems to exist that would enable a more structured targeted therapy approach. Because to date no similar information is available at the protein (phenotype) level, we employed matrix assisted laser desorption ionization (MALDI) image-guided proteomics and explored the heterogeneity of extracellular and membrane subproteome in a unique collection of eight fresh human colorectal carcinoma (CRC) liver metastases. Monitoring the spatial distribution of over 1,000 proteins, we found unexpectedly that all liver metastasis lesions displayed a reproducible, zonally delineated pattern of functional and therapeutic biomarker heterogeneity. The peritumoral region featured elevated lipid metabolism and protein synthesis, the rim of the metastasis dis- played increased cellular growth, movement, and drug metabolism, whereas the center of the lesion was characterized by elevated carbohydrate metabolism and DNA-repair activity. From the aspect of therapeutic targeting, zonal expression of known and novel biomarkers was evident, reinforcing the need to select several targets in order to achieve optimal coverage of the lesion. Finally, we highlight two novel antigens, LTBP2 and TGFBI, whose expression is a consistent feature of CRC liver metastasis. We demon- strate their in vivo antibody-based targeting and highlight their potential usefulness for clinical applications. Conclusion: The proteome heterogeneity of human CRC liver metastases has a distinct, organized pattern. This particular hallmark can now be used as part of the strategy for developing rational therapies based on multiple sets of target- able antigens. [less ▲]

Detailed reference viewed: 42 (13 ULg)
Full Text
Peer Reviewed
See detailIdentification and Quantification of the Main Active Anticancer Alkaloids from the Root of Glaucium flavum
bournine, Lamine; Bensalem, Sihem; Wauters, Jean-Noël ULg et al

in International Journal of Molecular Sciences (2013), 14

Glaucium flavum is used in Algerian folk medicine to remove warts (benign tumors). Its local appellations are Cheqiq el-asfar and Qarn el-djedyane. We have recently reported the anti-tumoral activity of ... [more ▼]

Glaucium flavum is used in Algerian folk medicine to remove warts (benign tumors). Its local appellations are Cheqiq el-asfar and Qarn el-djedyane. We have recently reported the anti-tumoral activity of Glaucium flavum root alkaloid extract against human cancer cells, in vitro and in vivo. The principal identified alkaloid in the extract was protopine. This study aims to determine which component(s) of Glaucium flavum root extract might possess potent antitumor activity on human cancer cells. Quantitative estimation of Glaucium flavum alkaloids was realized by HPLC-DAD. Glaucium flavum effect on human normal and cancer cell viability was determined using WST-1 assay. Quantification of alkaloids in Glaucium flavum revealed that the dried root part contained 0.84% of protopine and 0.07% of bocconoline (w/w), while the dried aerial part contained only 0.08% of protopine, glaucine as the main alkaloid, and no bocconoline. In vitro evaluation of the growth inhibitory activity on breast cancer and normal cells demonstrated that purified protopine did not reproduce the full cytotoxic activity of the alkaloid root extract on cancer cell lines. On the other hand, bocconoline inhibited strongly the viability of cancer cells with an IC50 of 7.8 µM and only a low cytotoxic effect was observed against normal human cells. Our results showed for the first time that protopine is the major root alkaloid of Glaucium flavum. Finally, we are the first to demonstrate a specific anticancer effect of Glaucium flavum root extract against breast cancer cells, which can be attributed, at least in part, to bocconoline. [less ▲]

Detailed reference viewed: 48 (3 ULg)
Full Text
Peer Reviewed
See detailMyoferlin is a key regulator of EGFR activity in breast cancer.
Turtoi, Andrei ULg; Blomme, Arnaud ULg; Bellahcene, Akeila ULg et al

in Cancer Research (2013)

Myoferlin is a member of the ferlin family of proteins that participate in plasma membrane fusion, repair and endocytosis. While some reports have implicated myoferlin in cancer, the extent of its ... [more ▼]

Myoferlin is a member of the ferlin family of proteins that participate in plasma membrane fusion, repair and endocytosis. While some reports have implicated myoferlin in cancer, the extent of its expression in and contributions to cancer are not well established. In this study, we show that myoferlin is overexpressed in human breast cancers and that it is has a critical role in controlling degradation of the EGFR after its activation and internalization in breast cancer cells. Myoferlin depletion blocked EGF-induced cell migration and epithelial-to-mesenchymal transition. Both effects were induced as a result of impaired degradation of phosphorylated EGFR via dysfunctional plasma membrane caveolae and alteration of caveolin homooligomerization. In parallel, myoferlin depletion reduced tumor development in a chicken chorioallantoic membrane xenograft model of human breast cancer. Considering the therapeutic significance of EGFR targeting, our findings identify myoferlin as an novel candidate function to target for future drug development. [less ▲]

Detailed reference viewed: 74 (10 ULg)
Full Text
Peer Reviewed
See detailSelected Protein Monitoring in Histological Sections by Targeted MALDI-FTICR in-source decay Imaging.
Calligaris, David ULg; Longuespée, Rémi ULg; Debois, Delphine ULg et al

in Analytical Chemistry (2013), 85(4), 2117-26

MALDI mass spectrometry imaging (MALDI MSI) is a rapidly growing method in biomedical research allowing molecular mapping of proteins on histological sections. The images can be analyzed in terms of ... [more ▼]

MALDI mass spectrometry imaging (MALDI MSI) is a rapidly growing method in biomedical research allowing molecular mapping of proteins on histological sections. The images can be analyzed in terms of spectral pattern to define regions of interest. However, the identification and the differential quantitative analysis of proteins require off line or in situ proteomic methods using enzymatic digestion. The rapid identification of biomarkers holds great promise for diagnostic research but the major obstacle is the absence of rapid and direct method to detect and identify with a sufficient dynamic range a set of specific biomarkers. In the current work, we present a proof of concept for a method allowing identifying simultaneously a set of selected biomarkers on histological slices with minimal sample treatment using in-source decay (ISD) MSI and MALDI-Fourier transform ion cyclotron resonance (FTICR). In the proposed method, known biomarkers are spotted next to the tissue of interest, the whole MALDI plate being coated with 1,5-DAN matrix. The latter enhances MALDI radical-induced ISD, providing large tags of the amino acid sequences. Comparative analysis of ISD fragments between the reference spots and the specimen in imaging mode allows for unambiguous identification of the selected biomarker while preserving full spatial resolution. Moreover, the high resolution/high mass accuracy provided by FTICR mass spectrometry allows the identification of proteins. Well-resolved peaks and precise measurements of masses and mass differences allow the construction of reliable sequence tags for proteins identification. The method will allow the use MALDI-FTICR MSI as method for rapid targeted biomarker detection in complement to classical histology. [less ▲]

Detailed reference viewed: 75 (16 ULg)
See detailRole of HDAC5 depletion induced autophagy on cancer cell death
Hendrick, Elodie ULg; Peixoto, Paul ULg; Mathéus, Nicolas et al

Poster (2012, December 10)

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction: Histone deacetylases (HDAC) is a family of eighteen enzymes which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad spectrum inhibitors of these enzymes can inhibit tumor growth both in vitro and in vivo and are currently used in clinic as anti-cancer agents. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that depletion of HDAC5 using siRNA technology triggered cancer cells to both autophagy and apoptosis. The study of autophagy in cancer is a new research field that has recently generated tremendous attention due to the recognition that autophagy can have either pro-survival or pro-death functions depending on its level of activation. In addition, more and more studies indicate that a complex relationship exists between autophagy and apoptosis, and that the interplay between these two processes determines whether a cell will live or die. - Aims: The aim of this study is to further understand the role of autophagy induced by HDAC5 depletion. Current investigations include determining the molecular mechanisms of HDAC5 depletion-mediated autophagy and exploring regulatory relationships between autophagy and apoptosis on cancer cell death in absence of HDAC5. - Methods and results : The set up of the autophagy in absence of HDAC5 occurs trough a non-canonical pathway which depends on the JNK activation. This activation could be induced by an inappropriate ROS production. Indeed, a transcriptomic analysis performed in HDAC5 depleted Hela cells highlighted a deregulation of a set of genes implicated in ROS detoxification. This deregulation has been validated by FACS analysis. - Conclusion: Through this study we determined the molecular mechanism implicated in the autophagy induction after HDAC5 silencing. This phenomenon appears dependent of an accumulation of ROS into the cells that activates JNK and mediate cell death by autophagy and apoptosis. Now, in we hope to determine whether manipulation of autophagy may provide a useful way to increase the efficacy of treatments with HDAC inhibitors, and limit tumor progression. [less ▲]

Detailed reference viewed: 3 (0 ULg)
Full Text
Peer Reviewed
See detailIn Ovo PET Imaging Of A Human Colorectal Carcinoma Model In Chicken Chorioallantoic Membrane
Warnock, Geoffrey ULg; Turtoi, Andrei ULg; Blomme, Arnaud ULg et al

Poster (2012, October)

Aim. The objective of this study was to use in vivo PET/CT imaging as a validation tool for a novel human colorectal carcinoma model being developed in chicken chorioallantoic membrane (CAM). For this ... [more ▼]

Aim. The objective of this study was to use in vivo PET/CT imaging as a validation tool for a novel human colorectal carcinoma model being developed in chicken chorioallantoic membrane (CAM). For this initial pilot study a cell line modeling colon cancer was selected and imaged using [18F]fluorodeoxyglucose (FDG). <br />Materials and methods. A window was made in the shell of fertilized chicken eggs and 3x106 SW1222 human colorectal carcinoma cells were implanted at day 10 post-fertilization. On day 17 the shell window was enlarged to allow direct injection of FDG (12.2 ± 4.5 MBq/egg) into a CAM blood vessel. During injection the egg was warmed on a heating pad. A mixture of ketamine/medetomidine (50 :1 mg/ml, 0.2 ml/egg) was injected into the albumin in some eggs to assess the effect of anesthesia. After FDG injection the egg was returned to the incubator for a 45 min uptake period before imaging. Imaging was performed on a Siemens Focus 120 microPET with structural CT on a General Electric eXplore CT120. A Minerve cell system allowed reproducible positioning between modalities. PET data was acquired in list mode before histogramming into a single 10 min frame for reconstruction using a 3D maximum a posteriori (MAP) method with all corrections except scatter. A standard 100 µm (theoretical) image resolution protocol (70 kV, 50 mA, 32 ms, 220 views) was used to obtain structural CT data. Image coregistration was performed in PMOD version 3.3. In a separate egg, the influence of added contrast on the CT data was investigated by adding iodinated contrast agent (Iobitridol 35 mgI/ml) to the albumin. <br />Results. FDG uptake was clear in chick and tumor, with notably high uptake at the major joints. Tumors were identified by localization of FDG uptake on the surface of the CAM. A lack of soft tissue contrast between tumor, CAM and albumin made precise structural identification of the tumor difficult. Anesthesia was crucial to image quality in both PET and CT. CT contrast between the soft tissues of the chick and surrounding albumin/structures was improved by addition of contrast agent. <br />Conclusion. For the first time we demonstrate successful imaging of FDG uptake in a human colorectal carcinoma chicken CAM model in ovo. Methods to improve structural data are under investigation and will be used in further studies. With such improvement, this model could be of great value to PET oncology imaging. [less ▲]

Detailed reference viewed: 185 (53 ULg)
See detailImaging Guided Proteomics Unveils Heterogeneity in Colorectal Carcinoma Liver Metastases – Implications for Targeted Therapies
Blomme, Arnaud ULg; Turtoi, Andrei ULg; Castronovo, Vincenzo ULg

Conference (2012, September)

Patients suffering from liver metastases are diagnosed late and have a poor outcome. Targeted therapies are promising treatment options, however the malignant lesions are heterogeneous in nature offering ... [more ▼]

Patients suffering from liver metastases are diagnosed late and have a poor outcome. Targeted therapies are promising treatment options, however the malignant lesions are heterogeneous in nature offering niches for cancer cells to survive and regrow. A rational strategy is needed to select targetable antigens that would overcome this intra-tumoral heterogeneity. MALDI-MS imaging is an emerging tool to study the distribution of biomolecules in tissue samples and is a good base for defining the regions of interest (ROI) that deserve further in-depth analysis. We employed MALDI-MS imaging of colorectal liver metastasis to identify ROI and guide the proteomic analysis for a more in-depth picture of modulated proteins. The focus was laid on cell membrane and extracellular proteins as these have enhanced potential to be used for targeted therapy and clinical imaging applications. Four defined ROI were further analyzed employing 2D-Nano-UPLC-MSe methodology. Over 1500 unique proteins were statistically divided into different patterns of expression, generating a quantitative picture of the proteome heterogeneity in liver metastases. The results offered insight into novel targets but also antigens against which the antibodies are already involved in cancer clinical trials. Following immunohistochemistry based validation experiments, certain proteins demonstrated the potential to homogeneously cover the metastatic lesion and become better targets. Two such antigens, LTBP2 and TGFBI were selected for in vivo functional/ tumor targeting studies in colorectal carcinoma animal model. Importantly, we were able to demonstrate the “targetable” nature of these antigens for homing antibodies injected i.v. Functionally, TGFBI showed an additional potential to target the tumor via it’s ability to affect migration and growth of cancer cells, hence taking the influence on the process of tumorigenesis. In conclusion, liver metastases display a significant heterogeneity in terms of targetable biomarkers and these findings should flow in the future development of targeted therapies aiming to cure the patient. [less ▲]

Detailed reference viewed: 28 (9 ULg)