References of "Castronovo, Vincenzo"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMyoferlin plays a key role in VEGFA secretion and impacts tumor-associated angiogenesis in human pancreas cancer
Fahmy, Karim ULg; Gonzalez, Arnaud; Arafa, Mohammad et al

in International Journal of Cancer = Journal International du Cancer (in press)

Pancreatic ductal adenocarcinoma is one of the most deadly forms of cancers with no satisfactory treatment to date. Recent studies have identified myoferlin, a ferlin family member, in human pancreas ... [more ▼]

Pancreatic ductal adenocarcinoma is one of the most deadly forms of cancers with no satisfactory treatment to date. Recent studies have identified myoferlin, a ferlin family member, in human pancreas adenocarcinoma where its expression was associated to a bad prognosis. However, the function of myoferlin in pancreas adenocarcinoma has not been reported. In other cell types, myoferlin is involved in several key plasma membrane processes such as fusion, repair, endocytosis and tyrosine kinase receptor activity. In this study, we showed that myoferlin silencing in BxPC-3 human pancreatic cancer cells resulted in the inhibition of cell proliferation in vitro and in a significant reduction of the tumor volume in chick chorioallantoic membrane assay. In addition to be smaller, the tumors formed by the myoferlin-silenced cells showed a marked absence of functional blood vessels. We further demonstrated that this effect was due, at least in part, to an inhibition of VEGFA secretion by BxPC-3 myoferlin-silenced cells. Using immunofluorescence and electron microscopy, we linked the decreased VEGFA secretion to an impairment of VEGFA exocytosis. The clinical relevance of our results was further strengthened by a significant correlation between myoferlin expression in a series of human pancreatic malignant lesions and their angiogenic status evaluated by the determination of the blood vessel density. [less ▲]

Detailed reference viewed: 34 (4 ULg)
Full Text
Peer Reviewed
See detailExpel: a novel non-destructive method for mining soluble tumor biomarkers
Costanza, B; Blomme, A; MUTIJIMA NZARAMBA, Eugène ULg et al

in Acta Gastro-Enterologica Belgica (2015, March), 78(1), 13

Detailed reference viewed: 36 (12 ULg)
Full Text
Peer Reviewed
See detailMetabolomic, proteomic and preclinical imaging of patient-derived tumor xenografts for improving treatment of liver metastases patients
Perez Palacios, A; Blomme, A; Boutry, S et al

in Acta Gastro-Enterologica Belgica (2015, March), 78(1), 134

Detailed reference viewed: 30 (10 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2015, February 11)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose and glutamine. Indeed, interference with both glucose and glutamine supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose or glutamine deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 18 (3 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2015, January 31)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose and glutamine. Indeed, interference with both glucose and glutamine supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose or glutamine deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 15 (1 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2015, January 27)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose and glutamine. Indeed, interference with both glucose and glutamine supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose or glutamine deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailTargeting osteopontin suppresses glioblastoma stem-like cell character and tumorigenicity in vivo
Lamour, Virginie; Henry, Aurélie ULg; Kroonen, Jerome et al

in International Journal of Cancer = Journal International du Cancer (2015)

Osteopontin (OPN) is a secreted protein involved in most aspects of tumor progression and metastasis development. Elevated OPN expression has been reported in multiple types of cancer including ... [more ▼]

Osteopontin (OPN) is a secreted protein involved in most aspects of tumor progression and metastasis development. Elevated OPN expression has been reported in multiple types of cancer including glioblastoma (GBM), the highest grade and most aggressive brain tumor. GBMs contain a subpopulation of glioma-initiating cells (GICs) implicated in progression, therapeutic resistance and recurrence. We have previously demonstrated that OPN silencing inhibited GBM cell growth in vitro and in vivo. Moreover, activation of CD44 signaling upon OPN ligation has been recently implicated in the acquisition of a stem cell phenotype by GBM cells. The present study is aimed to explore OPN autocrine function using shRNA silencing strategy in GICs enriched from GBM cell lines and a human primary GBM grown in EGF and bFGF defined medium. The removal of these growth factors and addition of serum induced a significant loss of OPN expression in GICs. We showed that OPN-silenced GICs were unable to grow as spheres and this capacity was restored by exogenous OPN. Importantly, the expression of Sox2, Oct3/4 and Nanog, key stemness transcription factors, was significantly decreased in GICs upon OPN targeting. We identified Akt/mTOR/p70S6K as the main signaling pathway triggered following OPN-mediated EGFR activation in GICs. Finally, in an orthotopic xenograft mouse model, the tumorigenic potential of U87-MG sphere cells was completely abrogated upon OPN silencing. Our demonstration of endogenous OPN major regulatory effects on GICs stemness phenotype and tumorigenicity implies a greater role than anticipated for OPN in GBM pathogenesis from initiation and progression to probable recurrence. [less ▲]

Detailed reference viewed: 43 (19 ULg)
Full Text
Peer Reviewed
See detailIdentification of Cytotoxic and Antioxidant Compounds from Allium gramineum Flowers
Mskhiladze, Lasha; Chincharadze, David; Tits, Monique ULg et al

in International Journal of Pharmaceutical Sciences and Drug Research (2015), 7

The present study evaluates the in vitro anticancer, antiplasmodial and antioxidant activity of the ethanolic crude extract from the flowers of Allium gramineum growing in Georgia and of one flavonol and ... [more ▼]

The present study evaluates the in vitro anticancer, antiplasmodial and antioxidant activity of the ethanolic crude extract from the flowers of Allium gramineum growing in Georgia and of one flavonol and two steroidal glycosides which were isolated from this plant. The flowers were extracted with ethanol and this total extract was subjected to successive bioguided fractionations to provide glycosides 1-3. Their structures were elucidated on the basis of NMR and ESI-MS spectrometric data in comparison with the existing literature and have been identified as: isorhamnetin-3-O-β-D-glucopyranoside (1), diosgenin-3-O-α-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (Prosapogenin A of dioscin) (2), diosgenin-3-O-α-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-]-β-D-glucopyranoside (Deltonine) (3). The ethanolic extract has been shown to strongly inhibit the growth of breast adenocarcinoma cell lines, with an IC50 of 4.5 ± 0.7μg/mL for MDAMB-231 and 4.8 ± 0.9μg/mL for MCF-7 cells. The cytotoxic activity was related to 2 and 3 which exhibited potent cytotoxicity, with an IC50 of ± 3μM. Concerning antiplasmodial activities, only weak activities were observed using the ethanolic extract and the two saponins. The flavonoid was almost inactive. Finally, the radical-scavenging activity of the ethanolic extract was tested in presence of ABTS·+ solution. A decrease of the absorbance intensity was observed, with an IC50 value of 22.1 ± 0.6μg/mLwhile trolox, used as Standard drug, showed a pronounced activity (IC50 = 12.7±0.5μM). The glycoside 1 showed the lowest IC50 value of 20.1 ± 0.8μM while both 2 and 3 exhibited very weak radical scavenging activity. [less ▲]

Detailed reference viewed: 28 (2 ULg)
Full Text
Peer Reviewed
See detailIntratumoral heterogeneity and consequences for targeted therapies
Turtoi, Andrei ULg; Blomme, Arnaud ULg; Castronovo, Vincenzo ULg

in Bulletin du Cancer (2015), 102(1), 17-23

According to the clonal model and Darwinian evolution, cancer cell evolves through new mutations helping it to proliferate, migrate, invade and metastasize. Recent genetic studies have clearly shown that ... [more ▼]

According to the clonal model and Darwinian evolution, cancer cell evolves through new mutations helping it to proliferate, migrate, invade and metastasize. Recent genetic studies have clearly shown that tumors, when diagnosed, consist of a large number of mutations distributed in different cells. This heterogeneity translates in substantial genetic plasticity enabling cancer cells to adapt to any hostile environment. As targeted therapy focuses only on one pathway or protein, there will always be a cell with the "right" genetic background to survive the treatment and cause tumor relapse. Because today's targeted therapies never took tumor heterogeneity into account, nearly all novel drugs fail to provide patients with a considerable improvement of the survival. However, emerging proteomic studies guided by the idea that Darwinian selection is governed by the phenotype and not genotype, show that heterogeneity at the protein level is much less complex, then it could be expected from genetic studies. This information together with the recent trend to switch from functional to cytotoxic targeting may offer an entirely new strategy to efficiently combat cancer. [less ▲]

Detailed reference viewed: 22 (3 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Conference (2014, September 30)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 16 (0 ULg)
See detailHDAC5 Depletion in Cancer Cells Induces an Oxidative Stress and Leads to a Metabolic Reprogramming toward Glucose and Glutamine Metabolism
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, September 25)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailTriple negative tumors accumulate significantly less methylglyoxal specific adducts than other human breast cancer subtypes
Chiavarina, Barbara ULg; Nokin, Marie-Julie; Durieux, Florence ULg et al

in Oncotarget (2014)

Metabolic syndrome and type 2 diabetes are associated with increased risk of breast cancer development and progression. Methylglyoxal (MG), a glycolysis by- product, is generated through a non-enzymatic ... [more ▼]

Metabolic syndrome and type 2 diabetes are associated with increased risk of breast cancer development and progression. Methylglyoxal (MG), a glycolysis by- product, is generated through a non-enzymatic reaction from triose-phosphate intermediates. This dicarbonyl compound is highly reactive and contributes to the accumulation of advanced glycation end products. In this study, we analyzed the accumulation of Arg-pyrimidine, a MG-arginine adduct, in human breast adenocarcinoma and we observed a consistent increase of Arg-pyrimidine in cancer cells when compared with the non-tumoral counterpart. Further immunohistochemical comparative analysis of breast cancer subtypes revealed that triple negative lesions exhibited low accumulation of Arg-pyrimidine compared with other subtypes. Interestingly, the activity of glyoxalase 1 (Glo-1), an enzyme that detoxifies MG, was significantly higher in triple negative than in other subtype lesions, suggesting that these aggressive tumors are able to develop an efficient response against dicarbonyl stress. Using breast cancer cell lines, we substantiated these clinical observations by showing that, in contrast to triple positive, triple negative cells induced Glo-1 expression and activity in response to MG treatment. This is the first report that Arg- pyrimidine adduct accumulation is a consistent event in human breast cancer with a differential detection between triple negative and other breast cancer subtypes. [less ▲]

Detailed reference viewed: 55 (11 ULg)
See detailGlucose-dependent metabolic reprogramming in HDAC5-depleted cancer cells
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, May 19)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1 The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. Presenting author e-mail: elodie.hendrick@student.ulg.ac.be [less ▲]

Detailed reference viewed: 15 (0 ULg)
See detailGlucose-dependent metabolic reprogramming in HDAC5-depleted cancer cells
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, April 25)

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum ... [more ▼]

Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival (PEIXOTO et al., 2012). The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of subunits of the complex I of the mitochondrial respiratory chain (NDUFB5-NDUFA3) as well as anti-oxydant proteins (Ferritin, Metalothionein,¿) through modulation of mRNA stability. Therefore, HDAC5 depletion causes a significant increase of ROS production inducing both apoptosis and mechanisms of mitochondria quality control (mitophagy and mitobiogenesis). This HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glycolysis and glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Our study demonstrated for the first time that specific HDAC5 inhibition induces metabolic reprogramming and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. Acknowledgements This work fiancially suppoted by a grant of F.R.S .-FNRS (contract n° 7.4515.12F). E Hendrick is recipient of a Televie fellowship. References PEIXOTO et al., (2012) Cell Death and Differentiation. 7:1239-52. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailOrganized proteomic heterogeneity in colorectal liver metastases and implications for therapies
Turtoi, Andrei ULg; Blomme, Arnaud ULg; Debois, Delphine ULg et al

in Acta Gastro-Enterologica Belgica (2014, March), 77(1), 07

Introduction : Tumor heterogeneity is a major obstacle for developing effective anti-cancer treatments. Recent studies have pointed at large stochastic genetic heterogeneity within cancer lesions, where ... [more ▼]

Introduction : Tumor heterogeneity is a major obstacle for developing effective anti-cancer treatments. Recent studies have pointed at large stochastic genetic heterogeneity within cancer lesions, where no pattern seems to exist that would enable a more structured targeted therapy approach. Aim : Because to date no similar information is available at the protein (phenotype) level, we aimed at characterising the proteomic heterogeneity in human colorectal carcinoma (CRC) liver metastases. Methods & Results : We employed MALDI imaging-guided proteomics and explored the heterogeneity of extracellular distribution of over 1000 proteins we found unexpectedly that all liver metastasis lesions displayed a reproducible, zon- ally delineated, pattern of functional and therapeutic biomarker heterogeneity. Peritumoral region featured elevated lipid metabolism and protein synthesis, the rim of the metastasis displayed increased cellular growth, movement and drug metabolism whereas the center of the lesion was characterized by elevated carbohydrate metabolism and DNA- repair activity. From the aspect of therapeutic targeting zonal expression of known and novel biomarkers was evident, reinforcing the need to select several targets in order to achieve optimal coverage of the lesion. Finally we highlight two novel antigens, LTBP2 and TGFBI, whose expression is a consistent feature of CRC liver metastasis. Conclusions : proteome heterogeneity has a distinct, organized, pattern. This particular hallmark can now be used as a part of the strategy for developing rational therapies based on multiple sets of targetable antigens. [less ▲]

Detailed reference viewed: 41 (3 ULg)
Full Text
Peer Reviewed
See detailTGF-B induced protein IG-H3 is essential for the growth of human liver metastases
Castronovo, Vincenzo ULg; Blomme, Arnaud; Delvenne, Philippe ULg et al

in Acta Gastro-Enterologica Belgica (2014, March), 77(1), 05

Introduction : Transforming growth factor-beta-induced protein ig-h3 (TGFBI) is extracellular matrix component known to be important for cell-collagen interaction. We and others have reported elevated ... [more ▼]

Introduction : Transforming growth factor-beta-induced protein ig-h3 (TGFBI) is extracellular matrix component known to be important for cell-collagen interaction. We and others have reported elevated expression of TGFBI in sev- eral human cancers, where its role remains controversial. Aim Current study aims at clarifying the function of TGFBI to date. Methods &Results : CRC-LM and in liver metastases originating from breast, lung and pancreatic tumors. We have next focused on func- tional aspects and have silenced TGFBI expression in SW1222 human colorectal carcinoma cells. The suppression of TGFBI protein led to a marked decrease in cell migration (-70%) and proliferation (-30%) in vitro. To study the effects in vivo we have developed a novel animal model of colorectal carcinoma based on chicken chorioallantoic membrane (CAM) that mimics human CRC-LM. TGFBI silencing resulted in 50% reduction of tumor volume in the CAM tumor model. Notably, the tumors displayed a marked inhibition of vascularization, suggesting an additional anti-angiogenic effect. Indeed, SW1222 cells silenced for TGFBI expression secreted lower levels of VEGFA in vitro. Finally, we have investigated if TGFBI can be used as systemically reachable target for antibody-drug delivery. For this purpose we have The in vivo data demonstrated that TGFBI is an accessible tumor target. Conclusions : Taken together, the present study shows that TGFBI is essential for promoting the development of CRC- LM and therefore represents a promising target for designing novel therapeutic approaches. [less ▲]

Detailed reference viewed: 53 (9 ULg)
See detailComplex I Mitochondrial Dysfunction in HDAC5-depleted Cancer Cells Induces Glucose-dependent Metabolic Reprogramming
Hendrick, Elodie ULg; Peixoto, Paul ULg; Polese, Catherine ULg et al

Poster (2014, February 01)

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1. Aims : The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Methods and results : Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of NDUFB5, a subunit of the complex I of the mitochondrial respiratory chain through modulation of mRNA stability. HDAC5 depletion-induced NDUFB5 downregulation causes a significant increase of ROS production and induces uncoupled mitochondrial respiration. In addition, this HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusions : Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of NDUFB5 gene expression by altering mRNA stability and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. [less ▲]

Detailed reference viewed: 15 (0 ULg)
See detailComplex I Mitochondrial Dysfunction in HDAC5-depleted Cancer Cells Induces Glucose-dependent Metabolic Reprogramming
Hendrick, Elodie ULg; Peixoto, Paul ULg; Matheus, Nicolas ULg et al

Poster (2014, January 27)

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure ... [more ▼]

Introduction : Histone deacetylases (HDAC) is a family of eighteen enzymes, which modulates the acetylation level of histones and non-histone proteins to regulate gene expression and chromatin structure. Broad-spectrum inhibitors of these enzymes such as SAHA can inhibit tumor growth both in vitro and in vivo and are currently used as anti-cancer agents in clinic. For many years, we are investigating the specific role of individual HDAC members in cancer biology and we have recently demonstrated that specific depletion of HDAC5 using siRNA technology reduced cancer cells proliferation and survival1. Aims : The goal of this study is to further understand the molecular mechanisms of action of HDAC5 in cancer cells. Methods and results : Screening transcriptomic study demonstrated that HDAC5 depletion induces a down-regulation of NDUFB5, a subunit of the complex I of the mitochondrial respiratory chain through modulation of mRNA stability. HDAC5 depletion-induced NDUFB5 downregulation causes a significant increase of ROS production and induces uncoupled mitochondrial respiration. In addition, this HDAC5 depletion-induced mitochondrial dysfunction provokes metabolic adaptation associated with increased importance of glucose. Indeed, interference with glucose supply in HDAC5-depleted cancer cells significantly increases apoptotic cell death suggesting that glucose deprivation might be combined to HDAC5 inhibition as a therapeutic strategy to kill cancer cells. Conclusions : Our study demonstrated for the first time that specific HDAC5 inhibition induces alteration of NDUFB5 gene expression by altering mRNA stability and provides insight into a valuable experimental strategy for manipulation of specific HDAC5 inhibition and glucose metabolism in therapy against cancer. 1.Peixoto, P. et al. HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell death and differentiation, 2012; 1-14. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailDeltaNp63 isoform-mediated beta-defensin family up-regulation is associated with (lymph)angiogenesis and poor prognosis in patients with squamous cell carcinoma.
Suarez-Carmona, Meggy ULg; Hubert, Pascale ULg; Gonzalez, Arnaud ULg et al

in Oncotarget (2014), 5(7), 1856-1868

Beside a role in normal development/differentiation, high p63 immunoreactivity is also frequently observed in squamous cell carcinoma (SCC). Due to the complexity of the gene, the role of each p63 isotype ... [more ▼]

Beside a role in normal development/differentiation, high p63 immunoreactivity is also frequently observed in squamous cell carcinoma (SCC). Due to the complexity of the gene, the role of each p63 isotype in tumorigenesis is still confusing. Constitutively produced or induced in inflammatory conditions, human beta-defensins (HbetaDs) are cationic peptides involved in host defenses against bacteria, viruses and fungi. Here, we investigated both the role of p63 proteins in the regulation of HbetaDs and the implication of these antimicrobial peptides in tumor (lymph)angiogenesis. Thus, in contrast to TAp63 isotypes, we observed that DeltaNp63 proteins (alpha, beta, gamma) induce HbetaD1, 2 and 4 expression. Similar results were observed in cancer tissues and cell lines. We next demonstrated that DeltaNp63-overexpressing SCC are associated with both a poor prognosis and a high tumor vascularisation and lymphangiogenesis. Moreover, we showed that HbetaDs exert a chemotactic activity for (lymphatic) endothelial cells in a CCR6-dependent manner. The ability of HbetaDs to enhance (lymph)angiogenesis in vivo was also evaluated. We observed that HbetaDs increase the vessel number and induce a significant increase in relative vascular area compared to negative control. Taken together, the results of this study suggest that DeltaNp63-regulated HbetaD could promote tumor (lymph)angiogenesis in SCC microenvironment. [less ▲]

Detailed reference viewed: 100 (11 ULg)
Full Text
Peer Reviewed
See detailAccessibilome of human glioblastoma: collagen-VI-alpha-1 is a new target and a marker of poor outcome
Turtoi, Andrei ULg; Blomme, Arnaud ULg; BIANCHI, Elettra ULg et al

in Journal of Proteome Research (2014), 13(12), 5660-5669

Functional targeted therapy has unfortunately failed to improve the outcome of glioblastoma patients. Success stories evidenced by the use of antibody-drug conjugates in other tumor types are encouraging ... [more ▼]

Functional targeted therapy has unfortunately failed to improve the outcome of glioblastoma patients. Success stories evidenced by the use of antibody-drug conjugates in other tumor types are encouraging, but targets specific to glioblastoma and accessible through the bloodstream remain scarce. In the current work, we have identified and characterized novel and accessible proteins using an innovative proteomic approach on six human glioblastomas; the corresponding data have been deposited in the PRIDE database identifier PXD001398. Among several clusters of uniquely expressed proteins, we highlight collagen-VI-alpha-1 (COL6A1) as a highly expressed tumor biomarker with low levels in most normal tissues. Immunohistochemical analysis of glioma samples from 61 patients demonstrated that COL6A1 is a significant and consistent feature of high-grade glioma. Deposits of COL6A1 were evidenced in the perivascular regions of the tumor-associated vasculature and in glioma cells found in pseudopalisade structures. Retrospective analysis of public gene-expression data sets from over 300 glioma patients demonstrated a significant correlation of poor patient outcome and high COL6A1 expression. In a proof-of-concept study, we use chicken chorioallantoic membrane in vivo model to show that COL6A1 is a reachable target for IV-injected antibodies. The present data warrant further development of human COL6A1 antibodies for assessing the quantitative biodistribution in the preclinical tumor models. [less ▲]

Detailed reference viewed: 15 (2 ULg)