References of "Cardol, Pierre"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRespiratory-deficient mutants of the unicellular green alga Chlamydomonas: A review.
Salinas, Thalia; Larosa, Véronique ULg; Cardol, Pierre ULg et al

in Biochimie (2013)

Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random ... [more ▼]

Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes. [less ▲]

Detailed reference viewed: 23 (4 ULg)
Full Text
See detailInduction of photosynthetic electron transfer upon anoxia in Chlamydomonas: role of hydrogenase activity and PSI-cyclic electron flow
Godaux, Damien ULg; Berne, Nicolas ULg; Remacle, Claire ULg et al

Poster (2013)

In Chlamydomonas reinhardtii, anoxic environment leads to the expression of various fermentative/anaerobic pathways. Among them, oxygen-sensitive hydrogenases catalyze the reduction of protons from ... [more ▼]

In Chlamydomonas reinhardtii, anoxic environment leads to the expression of various fermentative/anaerobic pathways. Among them, oxygen-sensitive hydrogenases catalyze the reduction of protons from reduced ferredoxin resulting in the production of molecular hydrogen. A possible role of chloroplast hydrogenase in the anaerobic induction of photosynthesis has been suggested forty years ago (Kessler, 1973) but never further explored. H2 evolution is a minor and transient phenomenon which is often considered as a safety mechanism to protect photosynthetic chain from overreduction (Melis and Happe, 2001; Hemschemeier et al., 2009). Recent data about hydrogen production in a pgrl1 (Proton Gradient Regulation like1) mutant with limited capacity for PSI-cyclic electron flow (CEF) also suggested a participation of CEF in photosynthesis reactivation after short dark-anoxic periods (Tolleter et al., 2011). Because H2 evolution is improved in pgrl1 mutant, authors came to the conclusion that H+ gradient generated by CEF strongly prevents electron supply to the hydrogenase and is thus a limitating factor for hydrogen production. The aim of our work is to further study the role of hydrogenase and CEF in the photosynthesis reactivation process after short (~1h) or long (>18h) dark-anoxic periods. We take advantage of the availability of hydrogenase-deficient mutants (hydEF, hydG) (Posewitz et al., 2005; Godaux et al., 2013) and above-mentioned CEF-deficient pgrl1 mutant. Light-induced photosynthetic electron transfer is studied by measuring hydrogen and oxygen evolution, as well as by following kinetics of chlorophyll fluorescence emission and P700 oxidoreduction. Firstly, we show that during the induction of photosynthesis after long dark-anoxic periods, there is a linear relationship between hydrogen evolution, PSI and PSII activities, meaning that an hydrogenase- dependent photosynthetic linear electron flow (LEF) mainly operates. Moreover, PSI and PSII photochemical yield are almost null in hydrogenase-deficient mutants. We conclude that hydrogenase is the main sink for photosynthetic electrons upon illumination after prolonged anoxia. Similarly, a linear correlation can be established between hydrogen evolution, hydrogenase expression/activity, and PSI or PSII photochemical yields upon adaptation to anoxia. In the next part of our work, we focus our attention on the role of PSI-CEF in the induction of photosynthesis upon anoxia. Combined measurements of PSI/PSII activities and O2/H2 evolution show that induction of photosynthesis is delayed in a Pgrl1-deficient strain. In absence of Pgrl1 protein, the H+ gradient is also lower and we thus propose that a lack of ATP is responsible for the delayed Calvin cycle reactivation, so that hydrogen production can be achieved for a longer time without inactivation of hydrogenase activity by evolved O2. These results are in good agreement with other results obtained by our group, demonstrating that state transition is a critical process for induction of photosynthesis in anoxia (Ghysels et al., accepted). In conclusion, a Pgrl1-dependent CEF seems to be in first importance to photosynthesis induction after one hour of dark-anaerobiosis adaptation, acting together with an hydrogenase dependant LEF to set favourable conditions for Calvin cycle activation. [less ▲]

Detailed reference viewed: 58 (9 ULg)
Full Text
See detailStudy of the mitochondrial-respiratory chain complexes from photosynthetic algae
Cardol, Pierre ULg

Scientific conference (2013)

Detailed reference viewed: 8 (1 ULg)
Peer Reviewed
See detailAlternative photosynthetic electron pathways in symbiotic dinoflagellates of reef-building corals
Roberty, Stéphane ULg; Cardol, Pierre ULg; Franck, Fabrice ULg

Conference (2012, July 11)

The high productivity of coral reef ecosystems is largely attributed to the mutualistic symbiosis between reef-building corals and their intracellular dinoflagellate in the genus Symbiodinium. In the ... [more ▼]

The high productivity of coral reef ecosystems is largely attributed to the mutualistic symbiosis between reef-building corals and their intracellular dinoflagellate in the genus Symbiodinium. In the natural environment the holobiont have to cope with significant daily variations in light intensities that sometimes exceed Symbiodinium photosynthetic capacity. Fortunately, photosynthetic organisms possess regulatory features that help to ensure that high light intensities can be endured without the accumulation of photodamage. Thus, the regulation of photosynthesis can be viewed as a dynamic balance between photosynthetic efficiency (photochemical quenching) and photoprotection processes (i.e. non-photochemical quenching). In addition to the linear electron flow (LEF) operating during oxygenic photosynthesis, alternative electron flows (AEF) have been widely described in higher plants and microalgae but not in Symbiodinium. The present study aimed to highlight the existence of the Mehler ascorbate peroxidase pathway (reduction of oxygen by PSI), chlororespiration (oxidation by molecular O2 of the PQ pool) and cyclic electron flow around PSI. We report that the presence of particular AEF and/or their amplitude vary from one clade to another. These processes could play a key role under particular environmental conditions when sinks for photosynthetic electrons are scarce. Indeed, they could sustain significant levels of photosynthetic electron flux by initiating the ΔpH formation and of NPQ, regulating the ratio of ATP/NADPH to match the requirements of carbon reduction and reducing the excitation pressure over the photosynthetic apparatus. [less ▲]

Detailed reference viewed: 69 (12 ULg)
Full Text
See detailLight induced photosynthetic electron transfer upon anaerobiosis in Chlamydomonas: Kinetics, electron sinks and setup of a fluorescence screen to identify new players
Godaux, Damien ULg; Emonds-Alt, Barbara ULg; Alric, Jean et al

Conference (2012, June 15)

In Chlamydomonas reinhardtii, prolonged anaerobiosis leads to the expression of various fermentative pathways. Among them, oxygen-sensitive hydrogenases (hyd) catalyze the reduction of protons from ... [more ▼]

In Chlamydomonas reinhardtii, prolonged anaerobiosis leads to the expression of various fermentative pathways. Among them, oxygen-sensitive hydrogenases (hyd) catalyze the reduction of protons from reduced ferredoxin resulting in the production of molecular hydrogen. In this work, light-induced photosynthetic electron transfer after a prolonged dark-anaerobiosis period was studied by following the kinetics of chlorophyll fluorescence emission, P700 oxidation and proton-motive force formation and consumption during the first 3 seconds of illumination. We show that during the induction of photosynthesis, an hyd-dependent photosynthetic electron transfer operates at a maximal rate of 110 electrons per photosystem per second, that is about half the one measured in aerobiosis. The implication in this process of components of the linear, cyclic and chlororespiratory electron transfer pathways, as well as various electron sinks, are investigated thanks to the availability of mutants. In a next step, we screen an insertional mutant library (~3000 clones) on the basis of the fluorescence induction kinetics upon a shift from dark-anaerobiosis to light. Five mutants display the signature of mutants deficient for NADPH:PQ oxidoreductase or hyd activities. In particular, one is defective for hydrogenase HydG assembly factor. This mutant behaves exactly has the hydEF mutant, thus confirming that in vivo both the assembly factors are required for an efficient hydrogenase activity. [less ▲]

Detailed reference viewed: 72 (18 ULg)
Full Text
See detailMitochondrial Proteomics of a Secondary Green Alga
Perez, Emilie ULg; Degand, Hervé; Morsomme, Pierre et al

Poster (2012, June)

Euglena gracilis is an alga that derives from a secondary endosymbiosis with a green alga. Our general objective is to study the interactions established between the chloroplast and the mitochondrion ... [more ▼]

Euglena gracilis is an alga that derives from a secondary endosymbiosis with a green alga. Our general objective is to study the interactions established between the chloroplast and the mitochondrion during the endosymbiosic event and to determine the phylogenetic origin of the genes encoding the proteins involved in these interactions. As a first step, we performed a high-throughput analysis of the mitochondrial proteome of Euglena gracilis. Our MS/MS experiments mostly recover mitochondrial proteins representing 15 mitochondrial pathways, which indicates that our mitochondrial extracts are relatively pure, but the phylogenetic origins of the corresponding genes are surprisingly diverse. [less ▲]

Detailed reference viewed: 95 (10 ULg)
Full Text
Peer Reviewed
See detailComplexes I in the green lineage.
Remacle, Claire ULg; Hamel, Patrice; Larosa, Véronique ULg et al

in Sazanov, Leonid (Ed.) A structural perspective on complex I. (2012)

Detailed reference viewed: 22 (3 ULg)
Full Text
Peer Reviewed
See detailFinding the bottleneck: a research strategy for improved biomass production
Bassi, Roberto; Cardol, Pierre ULg; Choquet, Yves et al

in Posten, Clemens; Walter, Christian (Eds.) Microalgal Biotechnology: integration and economy (2012)

Detailed reference viewed: 144 (32 ULg)
Full Text
See detailInsertional mutagenesis to select mutants for modified hydrogen photoproduction in Chlamydomonas reinhardtii
Godaux, Damien ULg; Emonds-alt, Barbara; Cardol, Pierre ULg et al

Poster (2011, September 18)

The unicellular green alga Chlamydomonas reinhardtii has evolved the ability to redirect electrons from the photosynthetic chain to drive hydrogen production via chloroplast oxygen-sensitive hydrogenases ... [more ▼]

The unicellular green alga Chlamydomonas reinhardtii has evolved the ability to redirect electrons from the photosynthetic chain to drive hydrogen production via chloroplast oxygen-sensitive hydrogenases. This process occurs under anaerobic conditions and provides a biological basis for solar-driven hydrogen production. Nevertheless, the yield is a major limitation for an economic viability and fundamental knowledge is still needed in order to have a better understanding of the process. In 2000, Melis and co-worker defined a protocol allowing a sustainable hydrogen production in sulfur deprivation condition. By adjustment of an existent protocol called the Winkler test, we are trying to isolate mutants with an attenuated photosynthesis to respiration capacity ratio (P/R ratio). This kind of mutants could be able to reach anoxia needed for hydrogenases activity without the stressful impact of sulfur deprivation. An insertional mutagenesis of Chlamydomonas has been carried out with an hygromycin resistance cassette and about 2500 transformants have generated and screened by the adapted Winkler test. We have isolated several oxygen-consuming mutants and the most promising one is subject to functional, molecular and genetic characterization. [less ▲]

Detailed reference viewed: 49 (12 ULg)
Full Text
See detailInsertional mutagenesis to select mutants for modified hydrogen photoproduction in Chlamydomonas reinhardtii
Godaux, Damien ULg; Emonds-Alt, Barbara ULg; Cardol, Pierre ULg et al

Poster (2011, May 17)

The unicellular green alga Chlamydomonas reinhardtii has evolved the ability to redirect electrons from the photosynthetic chain to drive hydrogen production via chloroplast oxygen-sensitive hydrogenases ... [more ▼]

The unicellular green alga Chlamydomonas reinhardtii has evolved the ability to redirect electrons from the photosynthetic chain to drive hydrogen production via chloroplast oxygen-sensitive hydrogenases. This process occurs under anaerobic conditions and provides a biological basis for solar-driven hydrogen production. Nevertheless, the yield is a major limitation for an economic viability and fundamental knowledge is still needed in order to have a better understanding of the process. In 2000, Melis and co-worker defined a protocol allowing a sustainable hydrogen production in sulfur deprivation condition. By adjustment of an existent protocol called the Winkler test, we are trying to isolate mutants with an attenuated photosynthesis to respiration capacity ratio (P/R ratio). This kind of mutants could be able to reach anoxia needed for hydrogenases activity without the stressful impact of sulfur deprivation. An insertional mutagenesis of Chlamydomonas has been carried out with an hygromycin resistance cassette and about 2500 transformants have generated and screened by the adapted Winkler test. We have isolated several oxygen-consuming mutants and the most promising one is subject to functional, molecular and genetic characterization. To discover new genes involved in hydrogenases activity, we are also planning to screen the same insertional library for mutants with attenuated levels of hydrogen photoproduction, using sensitive chemochromic sensor films which turn in blue in presence of hydrogen. We are currently making the chemochromic sensor WO3 films by dip-coating which is on the brink of being useable. [less ▲]

Detailed reference viewed: 102 (27 ULg)
Full Text
Peer Reviewed
See detailFunctional analysis of hydrogen photoproduction in respiratory-deficient mutants of Chlamydomonas reinhardtii
Lecler, Renaud ULg; Godaux, Damien ULg; Vigeolas, Hélène ULg et al

in International Journal of Hydrogen Energy (2011), 36

In this paper, mitochondrial mutants of Chlamydomonas reinhardtii defective for respiratory complex I (NADH:ubiquinone oxidoreductase), complex III (ubiquinol cytochrome c oxidoreductase) and both ... [more ▼]

In this paper, mitochondrial mutants of Chlamydomonas reinhardtii defective for respiratory complex I (NADH:ubiquinone oxidoreductase), complex III (ubiquinol cytochrome c oxidoreductase) and both complexes I and III were analyzed for H2 photoproduction. Several parameters were followed during the S-deficiency stage and the anaerobic stage leading to H2 photoproduction. At the early aerobic S-deficiency stage, starch and neutral lipids accumulated in all strains but their amount was significantly decreased in mutants compared to wild type. During the H2 photoproduction process, whereas starch content strongly decreased in all strains, neutral lipid amount remained nearly unchanged, suggesting that starch degraded by glycolysis is the preferential substrate for energy production during anaerobiosis. The mutants displayed a decrease in H2 photoproduction correlating to the number of active mitochondrial proton-pumping sites lost in the strains. Our results thus highlight the critical role of oxidative phosphorylation during the first (aerobic) stage of S-starvation when carbon resources are accumulated. [less ▲]

Detailed reference viewed: 105 (57 ULg)
Full Text
Peer Reviewed
See detailMitochondrial NADH:ubiquinone oxidoreductase (complex I) in eukaryotes: A highly conserved subunit composition highlighted by mining of protein databases
Cardol, Pierre ULg

in Biochimica et Biophysica Acta-Bioenergetics (2011), 11

Complex I (NADH:ubiquinone oxidoreductase) is the largest enzyme of the mitochondrial respiratory chain. Compared to its bacterial counterpart which encompasses 14-17 subunits, mitochondrial complex I has ... [more ▼]

Complex I (NADH:ubiquinone oxidoreductase) is the largest enzyme of the mitochondrial respiratory chain. Compared to its bacterial counterpart which encompasses 14-17 subunits, mitochondrial complex I has almost tripled its subunit composition during evolution of eukaryotes, by recruitment of so-called accessory subunits, part of them being specific to distinct evolutionary lineages. The increasing availability of numerous broadly sampled eukaryotic genomes now enables the reconstruction of the evolutionary history of this large protein complex. Here, a combination of profile-based sequence comparisons and basic structural properties analyses at the protein level enabled to pinpoint homology relationships between complex I subunits from fungi, mammals or green plants, previously identified as "lineage-specific" subunits. In addition, homologs of at least 40 mammalian complex I subunits are present in representatives of all major eukaryote assemblages, half of them having not been investigated so far (Excavates, Chromalveolates, Amoebozoa). This analysis revealed that complex I was subject to a phenomenal increase in size that predated the diversification of extant eukaryotes, followed by very few lineage-specific additions/losses of subunits. The implications of this subunit conservation for studies of complex I are discussed. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
See detail3D-reconstruction and overall topology of the dimeric mitochondrial ATP synthase of the colorless alga Polytomella sp
González-Halphen, Diego; Vázquez-Acevedo, Myriam; Cano-Estrada, Araceli et al

in Biochimica et Biophysica Acta (BBA) - Bioenergetics (2010, July), 1797(Supplement 1), 32

Detailed reference viewed: 31 (5 ULg)
Full Text
Peer Reviewed
See detailAtypical subunit composition of the chlorophycean mitochondrial F1FO ATP synthase and role of Asa7 protein in stability and oligomycin resistance of the enzyme.
Lapaille, Marie; Escobar-Ramirez, Adelma; Degand, Hervé et al

in Molecular Biology and Evolution (2010), 27(7), 1630-1644

Background. In yeast, mammals, and land plants, mitochondrial F(1)F(O) ATP synthase (complex V) is a remarkable enzymatic machinery which comprises about 15 conserved subunits. Peculiar among eukaryotes ... [more ▼]

Background. In yeast, mammals, and land plants, mitochondrial F(1)F(O) ATP synthase (complex V) is a remarkable enzymatic machinery which comprises about 15 conserved subunits. Peculiar among eukaryotes, complex V from Chlamydomonadales algae (order of chlorophycean class) has an atypical subunit composition of its peripheral stator and dimerization module, with 9 subunits of unknown evolutionary origin (Asa subunits). In vitro, this enzyme exhibits an increased stability of its dimeric form, and in vivo, Chlamydomonas reinhardtii cells are insensitive to oligomycins, which are potent inhibitors of proton translocation through the F(O) moiety. Methodology/Principal Findings. In this work, we showed that the atypical features of the Chlamydomonadales complex V enzyme are shared by the other chlorophycean orders. By biochemical and in silico analyses, we detected several atypical Asa subunits in Scenedesmus obliquus (Sphaeropleales) and Chlorococcum ellipsoideum (Chlorococcales). In contrast, Complex V has a canonical subunit composition in other classes of Chlorophytes (Trebouxiophyceae, Prasinophyceae, and Ulvophyceae) as well as in Streptophytes (land plants) and in Rhodophytes (red algae). Growth, respiration and ATP levels in Chlorophyceae were also barely affected by oligomycin concentrations that affect representatives of the other classes of Chlorophytes. We finally studied the function of the Asa7 atypical subunit by using RNA interference in C. reinhardtii. Although the loss of Asa7 subunit has no impact on cell bioenergetics or mitochondrial structures, it destabilizes in vitro the enzyme dimeric form and renders growth, respiration and ATP level sensitive to oligomycins. Conclusions/Significance. Altogether, our results suggest that the loss of canonical components of the Complex V stator happened at the root of chlorophycean lineage and was accompanied by the recruitment of novel polypeptides. Such a massive modification of Complex V stator features might have conferred novel properties, including the stabilization of the enzyme dimeric form and the shielding of the proton channel. In these respects, we discuss an evolutionary scenario for F(1)F(O) ATP synthase in the whole green lineage (i.e. Chlorophyta and Streptophyta). [less ▲]

Detailed reference viewed: 54 (18 ULg)