References of "Brouyère, Serge"
     in
Bookmark and Share    
See detailAssessing the impacts of technical uncertainty on coupled surface/subsurface flow model predictions using a complex synthetic case
Wildemeersch, Samuel ULg; Goderniaux, Pascal ULg; Orban, Philippe ULg et al

Poster (2011, September)

According to the EU Water Framework Directive, Member States have to manage surface water and groundwater at the water body scale and in an integrated way. Flow and transport models constitute useful ... [more ▼]

According to the EU Water Framework Directive, Member States have to manage surface water and groundwater at the water body scale and in an integrated way. Flow and transport models constitute useful management tools in this context since they can predict system responses to future stresses. However, numerical modelling at such a scale faces specific issues linked to (1) the representation of the geological and hydrogeological complexity, (2) the uneven level of characterisation knowledge, (3) the representativity of measured parameters and variables in the field, and (4) the CPU time needed for solving the numerical problem. Assumptions and simplifications made for dealing with these issues can lead to a series of models differing by their complexity and by the reliability of their predictions. Consequently, modellers have to find a compromise between complexity and reliability. The main objective of this research is to estimate the impacts of technical uncertainty, which is the uncertainty related to the numerical implementation, on groundwater flow model predictions. To reach that objective, the methodology consists in comparing reference predictions (hydraulic heads and flow rates) of a complex and close to reality synthetic case with the predictions provided by a series of simplified models (coarse spatial discretisation, coarse time discretisation, simplified law in the unsaturated zone). The synthetic case reflects the main characteristics found in groundwater bodies of South Belgium (Condroz region of Wallonia), characterised by a succession of limestone synclines and sandstone anticlines. The numerical model is developed with the fully-integrated surface/subsurface flow and transport code HydroGeoSphere using a mesh refined along the surface water network (153027 nodes and 269872 elements). A 5-year reference transient simulation, with daily stress factors is performed. The simulated hydraulic heads and flow rates constitute the reference observations and predictions for the comparison with the simplified models. The simplified models tested differ by their horizontal (500 m vs. 1000 m element size) and vertical (8 layers vs. 3 layers) spatial discretisations, their time discretisation (daily vs. monthly stress factors), and the type of constitutive law used for simulating the unsaturated flow (linear vs. van Genuchten). The models are run with the same parameter values than those used in the reference model to evaluate the deterioration in model predictions due to technical uncertainty. Additionally, some of the models are calibrated with the inverse modelling code PEST to distinguish how far a model calibration can possibly compensate for technical uncertainty. Then, predictions from each simplified model are compared with the reference predictions of the synthetic case. Then, the simplified models are ranked using several model performance criteria. Results of this research provide guidelines for the numerical implementation of groundwater flow models at the water body scale with respect to specific groundwater management objectives. [less ▲]

Detailed reference viewed: 36 (13 ULg)
See detailRegional scale groundwater flow and transport modelling: from conceptual challenges to pragmatic numerical solutions
Wildemeersch, Samuel ULg; Goderniaux, Pascal ULg; Leroy, Mathieu et al

Conference (2011, July 05)

National and international regulations require the management of groundwater resources at the regional scale, considering the physical limits of hydrogeological systems. Physically-based, spatially ... [more ▼]

National and international regulations require the management of groundwater resources at the regional scale, considering the physical limits of hydrogeological systems. Physically-based, spatially-distributed groundwater flow and transport models allow representing in a realistic and reliable way the dynamics of regional groundwater systems and processes and accounting for negative or positive feedbacks induced by a changed stress factors or particular measures set up in the basin such as increase in pumping, use of fertilizers or artificial recharge. Such models are complex and their development and implementation are challenging for several reasons related to numerical difficulties but also to data acquisition and management, conceptualization, calibration and validation. Variably-saturated, regional flow and transport models have been developed using two finite element simulators SUFT3D and HydroGeoSphere specifically suited to regional-scale applications. A complex synthetic case has been used as a reference model to test the impact on predictions made and computing times of various conceptual and technical choices such as spatial and time discretization, simplified unsaturated laws or boundary conditions. Real cases have been developed for regional groundwater bodies (from 500 to 1700 km²) to deliver relevant information such as the estimation and evolution with time of groundwater reserves, under different stress conditions such as climate changes and for the evaluation of regional groundwater quality status and nitrate trend assessment under alternative management scenarios and mitigation measures. Results provide guidelines for the conceptualisation, the calibration and the use of regional-scale groundwater flow and transport models for decision making. [less ▲]

Detailed reference viewed: 39 (14 ULg)
Full Text
Peer Reviewed
See detailUncertainty of climate change impact on groundwater resources considering various uncertainty sources
Goderniaux, Pascal ULg; Brouyère, Serge ULg; Orban, Philippe ULg et al

in Abesser, C.; Nutzmann, G.; Hill, M. (Eds.) et al Conceptual and Modelling Studies of Integrated Groundwater, Surface Water, and Ecological Systems (2011, July)

Many studies have highlighted that climate change will have a negative impact on groundwater. However, in previous studies, the estimation of uncertainty around projections was very limited. In this study ... [more ▼]

Many studies have highlighted that climate change will have a negative impact on groundwater. However, in previous studies, the estimation of uncertainty around projections was very limited. In this study, the impact of climate change on groundwater resources is estimated for the Geer basin using a surface–subsurface integrated model. The uncertainties around impact projections are evaluated from three different sources. The uncertainty linked to the climate model is assessed with six contrasted RCMs and two GCMs. The uncertainty linked to the natural variability of the weather is evaluated thanks to a weather generator which enables production of a large number of equiprobable climatic scenarios. The uncertainty linked to the calibration of the hydrological model is assessed by a coupling with UCODE_2005 and by performing a complete linear uncertainty analysis on predictions. A linear analysis is approximate for this nonlinear system, but provides some measure of uncertainty for this computationally demanding model. Results for this study show that the uncertainty linked to the hydrological model is the most important. [less ▲]

Detailed reference viewed: 76 (19 ULg)
Full Text
See detailQuantification and monitoring of contaminant mass fluxes in heterogeneous subsurface media
Jamin, Pierre ULg; Brouyère, Serge ULg

Poster (2011, May 26)

Since the beginning of the years 2000, a consensus has been growing among the scientific, technical and decision makers community concerning the fact that the characterisation and the management of ... [more ▼]

Since the beginning of the years 2000, a consensus has been growing among the scientific, technical and decision makers community concerning the fact that the characterisation and the management of contaminated sites have to be performed in terms of contaminant flux metrics instead of to be based on a simplistic study of pollutant concentration coming from piezometers randomly spread over the site. Contaminant plumes and associated pollutant mass fluxes are extremely variable in space as well as in time. The scientific and technical challenge is to capture this double heterogeneity in order to consider it explicitly or statistically for the management of a contamination issue. This requires (1) the interception of the entire contaminated groundwater flowing section with a control panel; (2) the ability to measure and to calculate accurately groundwater and contaminant fluxes across that panel; and (3) the repetition of the measurement to bring out the spatial and the temporal variation of contaminant fluxes. This research project aims to develop an integrated pollutant flux measurement approach for contaminated groundwater at the scale of the contaminant plume. This approach lays on a triple integration of (1) single well tracing techniques – (2) passive sampling – (3) control panel. Spatial and temporal variability of groundwater fluxes will be quantified by the point dilution tracing method derived from the “FVPDM” technique (Brouyère et al. 2008). In the same time, the amount of pollutant flowing through the same location will be determined by the adequate passive sampling technique (PS). The integration of these two measures in an interpretation schema based on mathematical and numerical modelling will allow quantifying contaminant fluxes and their variability over time. The adaptation at the scale of the contaminant plume will be based on a logging-type use of techniques, repeated along the vertical axis of the monitoring wells and repeated from one well to an other of a control panel implanted to intercept the plume. All the research results and developed techniques will then be integrated into a complete measurement system (PS-FVPDM), mobile and easily usable on field. The whole development and testing will take place on several pilot contaminated test site located in various hydrogeological context. [less ▲]

Detailed reference viewed: 26 (2 ULg)
Full Text
See detailRegional scale flow and transport modelling for the management of groundwater and surface water bodies in the framework of the EU Water Directive
Leroy, Mathieu; Orban, Philippe ULg; Brouyère, Serge ULg et al

Conference (2011, May 02)

The Water Framework Directive requires from EU member states to manage water resources at the scale of surface water and groundwater bodies in a sustainable way, without altering the different functions ... [more ▼]

The Water Framework Directive requires from EU member states to manage water resources at the scale of surface water and groundwater bodies in a sustainable way, without altering the different functions provided by the system in natural conditions. Efficient management also requires qualitative tools to assess the evolution of water quality regarding the activities performed in the area of interest. In this context, the objective is to discuss the needs in terms of groundwater flow and transport modelling as a support to the Water Framework Directive and to present a methodological and numerical approach that fits with these requirements. Different variably-saturated models have been implemented for selected case studies ranging between 500 and 1700 km² in the Walloon Region of Belgium. The implementation of such models is challenging because of the scale and the processes that have to be simulated. However, when calibrated and used adequately, they are able to deliver most information required, such as the estimation and evolution with time of groundwater reserves, the calculation of different indicators on groundwater replenishment and exploitation, the base flow to rivers and surface water bodies, under different stress conditions such as pumping, rainfall and climate change. They are also used for the evaluation of regional groundwater quality status and for contaminant trend assessment (e.g. nitrate) under different alternative management scenarios and mitigation measures that could be implemented in the future. This study illustrates perfectly the efficiency and usefulness of regional scale groundwater flow and transport modelling as a tool for the management of groundwater bodies. [less ▲]

Detailed reference viewed: 83 (39 ULg)
Full Text
Peer Reviewed
See detailHydrogeological study of Somes-Szamos transboundary alluvial aquifer
Drobot, Radu; Szucs, Peter; Brouyère, Serge ULg et al

in Ganoulis, Jacques; Aureli, Alice; Fried, Jean (Eds.) Transboundary Water Resources Management: A Multidisciplinary Approach (2011)

Detailed reference viewed: 16 (3 ULg)
Full Text
Peer Reviewed
See detailA regional flux-based risk assessment approach of contaminated sites on groundwater bodies
Brouyère, Serge ULg; Jamin, Pierre ULg; Dollé, Fabien ULg et al

in Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias (Eds.) Groundwater Quality 2010 : Groundwater Quality Management in a Rapidly Changing World (2011)

In the context of the Water Framework Directive, management plans have to be set up about water quality issues in surface and ground water bodies in the EU. In heavily industrialised and urbanised areas ... [more ▼]

In the context of the Water Framework Directive, management plans have to be set up about water quality issues in surface and ground water bodies in the EU. In heavily industrialised and urbanised areas, the cumulative effect of multiple contaminant sources is likely to present a risk which has to be evaluated. In order to propose adequate measures, the calculated risk should be based on criteria reflecting the risk of water quality deterioration, in a cumulative way and at the scale of the whole surface water or groundwater body. An integrated GIS- and flux-based risk assessment approach for groundwater and surface water bodies is described with a regional scale indicator for the evaluation of the quality status of the groundwater body. It is based on the SEQ-ESO currently used in the Walloon Region of Belgium which defines, for different water uses and for a detailed list of groundwater contaminants, a set of threshold values reflecting the levels of water quality and degradation with respect to each contaminant. The methodology is illustrated with a first real scale application on a groundwater body corresponding to a contaminated alluvial aquifer which has been classified at risk of not reaching a good quality status by 2015. [less ▲]

Detailed reference viewed: 141 (34 ULg)
Full Text
See detailHydrogéologie du bassin du Samson
Gesels, Julie ULg; Goderniaux, Pascal ULg; Jamin, Pierre ULg et al

in Michel, Georges; Thys, Georges; De Broyer, Claude (Eds.) Atlas du Karst Wallon. Bassins du Bocq et du Samson (2011)

Ce chapitre décrit l'hydrogéologie du bassin du Samsonvdans la partie "articles thématiques" de l'Atlas du karst consacré aux bassins du Bocq et du Samson. Après une description générale, la nature et les ... [more ▼]

Ce chapitre décrit l'hydrogéologie du bassin du Samsonvdans la partie "articles thématiques" de l'Atlas du karst consacré aux bassins du Bocq et du Samson. Après une description générale, la nature et les potentialités aquifères du bassin du Samson sont abordées : les unités hydrogéologiques sont décrites, des aspects quantitatifs et des bilans hydrogéologiques sont détaillés et des aspects qualitatifs sont développés. [less ▲]

Detailed reference viewed: 51 (20 ULg)
Full Text
See detailDélivrable 24 (A) : Rapport final de la convention A
Pereira, Benoît; Schneider, Arnaud; Titeux, Hugues et al

Report (2010)

Detailed reference viewed: 7 (1 ULg)
Full Text
Peer Reviewed
See detailInfluence of natural attenuation and river fluctuations on benzene dispersion in an alluvial aquifer subject to strong interactions with surface water
Batlle-Aguilar, Jordi; Brouyère, Serge ULg; Dassargues, Alain ULg et al

in Schirmer, M.; Hoehn, E.; Vogt, T. (Eds.) Groundwater Quality Management in a Rapidly Changing World (GQ'2010) (2010, June)

A contaminated alluvial aquifer, in a former gasworks factory, discharging to an adjacent river was the object of field and laboratory investigations to assess pollutant attenuation and dispersion ... [more ▼]

A contaminated alluvial aquifer, in a former gasworks factory, discharging to an adjacent river was the object of field and laboratory investigations to assess pollutant attenuation and dispersion. Various organic and inorganic compounds were found in the aquifer in concentrations exceeding regulatory values, among them, benzene, which was presenting the major worry for off-site dispersion, mainly due to its mobility and high concentration, i.e. up to 750 mg L-1 in the source zone. However, benzene could never be detected near the river which is about 160 m downgradient the main source. Due to redox conditions of the aquifer, heavy metals were almost immobile, thus not posing a major risk of dispersion off-site the brownfield. Benzene concentrations together with redox conditions in the aquifer, suggested that benzene degradation was mainly occurring within 100 m distance from the contaminant source under anoxic conditions, and most probably with sulphate as main oxidant. A numerical groundwater flow and transport model, calibrated under transient conditions, was used to simulate benzene attenuation in the alluvial aquifer towards the Meuse River. The mean benzene degradation rate used in the model was quantified in situ along the groundwater flow path using compound-specific carbon isotope analysis (CSIA). The results of the solute transport simulations confirmed that benzene concentrations decreased almost five orders of magnitude 70 m downgradient the source. Simulated benzene concentrations were found to be below the detection limit in the zone adjacent to the river and consistent with the absence of benzene in downgradient piezometers located close to the river. In a transient model scenario including groundwater-surface water dynamics, benzene concentrations were observed to be inversely correlated to the river water levels, leading to the hypothesis that benzene dispersion is mainly controlled by natural attenuation and river fluctuations. [less ▲]

Detailed reference viewed: 68 (19 ULg)
Full Text
See detailA regional flux-based risk assessment approach of contaminated sites on groundwater bodies
Brouyère, Serge ULg; Jamin, Pierre ULg; Dollé, Fabien ULg et al

Poster (2010, April 22)

In the context of the water framework directive, management plans have to be set up about water quality in surface and groundwater bodies in the EU. One of the first steps is to evaluate the risk of ... [more ▼]

In the context of the water framework directive, management plans have to be set up about water quality in surface and groundwater bodies in the EU. One of the first steps is to evaluate the risk of contamination of these water resources, and particularly the risk posed by contaminated industrial sites. From the perspective of water resource management, each of these sites taken individually does not necessary constitute a major threat. However, in heavily industrialised and urbanised areas, the cumulative effect of multiple contaminant sources is likely to present a risk. In order to propose adequate but still economically reliable measures, the calculated risk should be based on a so-called megasite approaches using criteria reflecting the water quality deterioration, in a cumulative way, at the scale of the whole surface water or groundwater body. A GIS-based regional risk assessment approach is developed here for groundwater bodies using the SEQ-ESO currently used within the Walloon Region as indicator to reflect the quality status of the groundwater body. The approach is applied on the groundwater body RWM073 “Gravels and alluvial deposits of the Meuse river between Engis and Herstal”, identified at risk of not reaching a good quality status by 2015. The different steps of this methodology consist of an inventory of proved or potential contaminating industrial sites, a numerical modelling of pollutants behaviour at the scale of the groundwater body and the application of the SEQ-ESO that finally gives a global quality status of the whole groundwater body. This analysis also serves as basis for a socio-economic approach intending to provide indications on costs and benefits generated by total or partial remediation of the contaminated groundwater bodies according to the different management scenarios. [less ▲]

Detailed reference viewed: 80 (13 ULg)
Full Text
See detailPhysically-based groundwater vulnerability assessment for groundwater protection and land-use management
Popescu, Ileana-Cristina; Brouyère, Serge ULg; Derouane, Johan et al

Poster (2010, April 22)

Numerous groundwater vulnerability and risk mapping techniques have been developed taking into consideration a variable number of factors. Most common techniques produce maps of indexes based on a ... [more ▼]

Numerous groundwater vulnerability and risk mapping techniques have been developed taking into consideration a variable number of factors. Most common techniques produce maps of indexes based on a relatively empirical combination of weighted factors reflecting the protective effect of underground formations overlying the groundwater resource. The limitation of such methods is related to their use of a qualitative definition of groundwater vulnerability, as opposed to a definition based on a quantitative description of contaminant migration. A physically-based point of view and definition of the vulnerability is proposed and based on three factors describing a pollution event, which are the contaminant transfer time from the hazard location to the 'target', the contamination duration at the 'target' and the level of contaminant concentration reached at the 'target'. This concept allows a clear distinction between conventional aspects and physically-based results in the building of a final vulnerability indicator. This methodology has the further advantage to consider the possible impact of runoff conditions occurring at the land surface and possibly leading to lateral contamination of groundwater through downstream preferential infiltration features, such as karstic features. Practically, this method needs to describe and simulate the pollutant migration in the unsaturated zone and possibly in the saturated zone in order to assess the breakthrough curve at the 'target'. Preliminary application is illustrated on a case-study located in a Néblon limestone basin in Belgium, one of the main groundwater resources for the city of Liège in the Meuse basin. Perspectives are proposed towards a generalisation of the vulnerability concept for risk assessment within a pressure - state - impact framework. [less ▲]

Detailed reference viewed: 161 (15 ULg)
Full Text
See detailDélivrable 16 (A) : Rapport intermédiaire global présentant les travaux réalisés et les résultats acquis à la date du 5 février 2010
Pereira, Benoît; Schneider, Arnaud; Titeux, Hugues et al

Report (2010)

Detailed reference viewed: 35 (11 ULg)
Full Text
See detailMethodology and setup of the adopted groundwater vulnerability assessment method
Beaujean, Jean ULg; Lemieux, Jean-Michel; Brouyère, Serge ULg

Scientific conference (2010, February 04)

Detailed reference viewed: 45 (10 ULg)