References of "Brouyère, Serge"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMulti-species measurements of nitrogen isotopic composition r 1 eveal the spatial constraints and 2 biological drivers of ammonium attenuation across a highly contaminated groundwater system
Wells, Naomi S.; Hakoun, Vivien ULg; Brouyère, Serge ULg et al

in Water Research (2016), 98

Groundwater under industrial sites is characterised by heterogeneous chemical mixtures, making it difficult to assess the fate and transport of individual contaminants. Quantifying the in-situ biological ... [more ▼]

Groundwater under industrial sites is characterised by heterogeneous chemical mixtures, making it difficult to assess the fate and transport of individual contaminants. Quantifying the in-situ biological removal (attenuation) of nitrogen (N) is particularly difficult due to its reactivity and ubiquity. Here a multi-isotope approach is developed to distinguish N sources and sinks within groundwater affected by complex industrial pollution. Samples were collected from 70 wells across the two aquifers underlying a historic industrial area in Belgium. Below the industrial site the groundwater contained up to 1000 mg Nl-1 ammonium (NH4 +) and 300 mg N l-1 nitrate (NO3-), while downgradient concentrations decreased to ~1 mg l-1 DIN ([DIN] = [NH4+-N] + [NO3--N] + [NO2--N]). Mean δ1534 N-DIN increased from ~2‰ to +20‰ over this flow path, broadly confirming that biological N attenuation drove the measured concentration decrease. Multi-variate analysis of water chemistry identified two distinct NH4+ sources (δ15N-NH4+ from -14‰ and +5‰) within the contaminated zone of both aquifers. Nitrate dual isotopes co-varied (δ15 N: -3‰ - +60‰; δ18O: 0‰ - +50‰) within the range expected for coupled nitrification and denitrification of the identified sources. The fact that δ15N-NO2- values were 50‰ to 20‰ less than δ15N-NH4+ values in 40 the majority of wells confirmed that nitrification controlled N turnover across the site. However, the fact that δ15N-NO2- was greater than δ15N-NH4+ in wells with the highest [NH4+] shows that an autotrophic NO2- reduction pathway (anaerobic NH4+ oxidation or nitrifier-denitrification) drove N attenuation closest to the contaminant plume. This direct empirical evidence that both autotrophic and heterotrophic biogeochemical processes drive N attenuation in contaminated aquifers demonstrates the power of multiple N isotopes to untangle N cycling in highly complex systems. [less ▲]

Detailed reference viewed: 18 (4 ULg)
Full Text
Peer Reviewed
See detailHeat tracer test in an alluvial aquifer: field experiment and inverse modelling
Klepikova, Maria; Wildemeersch, Samuel; Jamin, Pierre ULg et al

Poster (2016, April 20)

Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow ... [more ▼]

Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in monitoring wells. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells distributed throughout the field site (space-filling arrangement) were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume was explained by the groundwater flow gradient on the site and heterogeneity of hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with the pilot point inverse approach, main preferential flow paths were delineated. [less ▲]

Detailed reference viewed: 41 (12 ULg)
Full Text
See detailRessources en eau au Bénin: Problématique, enjeux et défis d’une gestion durable
Tossou, Yao ULg; Orban, Philippe ULg; Ruthy, Ingrid ULg et al

Scientific conference (2016, March 12)

Detailed reference viewed: 20 (1 ULg)
Full Text
Peer Reviewed
See detailUse of dual carbon-chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater
Palau, Jordi; Jamin, Pierre ULg; Badin, Alice et al

in Water Research (2016)

Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These ... [more ▼]

Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ13C/Δδ37Cl) previously determined in the laboratory for dehydrohalogenation / hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r2 = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field. [less ▲]

Detailed reference viewed: 40 (7 ULg)
Full Text
See detailHow heterogeneity of the K-field influences a heat plume in a shallow alluvial aquifer: responses from a heat tracer test
Klepikova, Maria; Jamin, Pierre ULg; Orban, Philippe ULg et al

in Abstract book (2016, January 26)

Simultaneous solute and heat tracer test provides essential information for a reliable assessment of low temperature geothermal systems. The actual efficiency of ‘open systems’, including heat storage ... [more ▼]

Simultaneous solute and heat tracer test provides essential information for a reliable assessment of low temperature geothermal systems. The actual efficiency of ‘open systems’, including heat storage projects, is strongly affected by the heterogeneity of the hydraulic conductivity field (K-field). It could be also useful for assessing the cumulative impacts of numerous projects in urban areas on the groundwater resources. Using field data from a solute and heat tracer test conducted in the alluvial aquifer of the Meuse River (Belgium), an inverse problem of parameter estimation is solved. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in monitoring wells. To get insights in the 3D characteristics of the heat plume, an arrangement of three transects of observation wells was used. The breakthrough curves measured in the recovery well showed that heat transfer in the alluvial aquifer is slower and more dispersive than solute transport. Recovery is very low for heat while in the same time it is measured as relatively high for the solute tracer. This is due to the fact that heat transport is a thermal diffusion dominated process. For conditions corresponding to high Peclet numbers, the hydraulic conductivity is the primary calibration parameter for predicting heat plume distribution. Heat diffusion is larger than molecular diffusion, implying that exchange between groundwater and the porous medium matrix is far more significant for heat than for solute tracers. [less ▲]

Detailed reference viewed: 28 (3 ULg)
Full Text
See detailHeat tracer and solute tests in an alluvial aquifer: field experiment and inverse modelling
Dassargues, Alain ULg; Klepikova, Maria; Jamin, Pierre ULg et al

Poster (2015, December 18)

Using heat as an active tracer in different types of aquifers is a topic of increasing interest. In this study, we investigate the potential interest of using heat tracer tests for characterization of a ... [more ▼]

Using heat as an active tracer in different types of aquifers is a topic of increasing interest. In this study, we investigate the potential interest of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in a piezometer and monitoring the evolution of groundwater temperature and tracer concentration in the recovery well and in monitoring wells. To get insights in the 3D characteristics of the heat transport mechanisms the space-filling arrangement of observation wells was used. The breakthrough curves measured in the recovery well showed that heat transfer in the alluvial aquifer is slower and more dispersive than solute transport. Recovery is very low for heat while in the same time it is measured as relatively high for the solute tracer. This is due to the fact that heat diffusion is larger than molecular diffusion, implying that exchange between groundwater and the porous medium matrix is far more significant for heat than for solute tracers. Temperature breakthrough curves in other piezometers are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume was explained by the groundwater flow gradient on the site and heterogeneities of hydraulic conductivity field. By using numerical model of heat and flow coupled with pilot points inverse approach main preferential paths were characterized. [less ▲]

Detailed reference viewed: 27 (1 ULg)
Full Text
See detailMéthodologie de diagnostic environnemental autour de captages d’eau potabilisable sensibles qualitativement du point de vue nitrate
Vandenberghe, Christophe ULg; Bah, Boubacar Billo ULg; Orban, Philippe ULg et al

Report (2015)

Le projet s’inscrit dans le cadre des « contrats de captages » dont la mise en oeuvre est assurée par la SPGE (Société Publique de Gestion de l’Eau) et ce, conformément au contrat de gestion qui lie cette ... [more ▼]

Le projet s’inscrit dans le cadre des « contrats de captages » dont la mise en oeuvre est assurée par la SPGE (Société Publique de Gestion de l’Eau) et ce, conformément au contrat de gestion qui lie cette dernière avec le Gouvernement wallon. L’objectif se décline en trois phases : 1. établir une méthodologie commune de détermination et priorisation des actions à entreprendre autour de captages en vue d’y préserver ou de restaurer la qualité de l’eau ; 2. tester la méthodologie (définition des actions à entreprendre) sur six situations jugées représentatives sur des captages de la SWDE (Société Wallonne des Eaux) ; 3. proposer et coordonner des actions à mettre en oeuvre sur deux ou trois des six sites pilotes. La méthodologie est traduite en logigrammes d’actions qui proposent des démarches communes de diagnostic et d’actions à entreprendre autour de captages en vue d’y préserver ou de restaurer la qualité de l’eau. [less ▲]

Detailed reference viewed: 26 (4 ULg)
Full Text
See detailUse of dual carbon-chlorine isotope analysis to identify degradation pathways of 1,1,1-trichloroethane in groundwater
Palau, Jordi; Jamin, Pierre ULg; Badin, Alice et al

Conference (2015, September 17)

The high susceptibility of chlorinated aliphatic hydrocarbons (CAHs) like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the ... [more ▼]

The high susceptibility of chlorinated aliphatic hydrocarbons (CAHs) like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in groundwater. This knowledge is necessary to evaluate contaminant degradation and potential formation of toxic intermediates. Identifying pathways is further complicated in sites contaminated by mixed CAHs because some degradation products of 1,1,1-TCA can be formed from different precursors. Here, identification of pathways based solely on substrate-product concentration relationships may lead to ambiguous interpretations. This study investigates, for the first time, dual C−Cl isotope fractionation as a means of identifying and assessing degradation pathways of 1,1,1-TCA in groundwater. Distinctly different dual isotope trends (L = Δδ13C/Δδ37Cl) were observed for 1,1,1-TCA transformation via oxidation with heat-activated persulfate (L = ∞), reduction with zerovalent iron (L = 1.5 ± 0.1), hydrolysis and dehydrohalogenation (HY/DH, L = 0.33 ± 0.04) in laboratory experiments, illustrating the potential of a dual isotope approach. This approach was evaluated in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. For 1,1,1-TCA, the dual isotope slope determined from field samples (L = 0.6 ± 0.2, r2 = 0.75) was close to the slope observed for HY/DH in the laboratory (L = 0.33 ± 0.04), indicating that HY/DH was the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA was the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field. [less ▲]

Detailed reference viewed: 46 (5 ULg)
Full Text
See detailTowards processes-based groundwater vulnerability assessments
Dassargues, Alain ULg; Popescu, Cristina; Brouyère, Serge ULg

Conference (2015, September 15)

Various groundwater vulnerability methods have recently been developed. Considering groundwater quality issues, the most common techniques are based on calculation of an index expressing the protective ... [more ▼]

Various groundwater vulnerability methods have recently been developed. Considering groundwater quality issues, the most common techniques are based on calculation of an index expressing the protective effect (i.e. in terms of solute contaminant transport) of underground formations overlying the groundwater resource (Gogu & Dassargues, 2000, Gogu et al., 2003)). However, there is a strong need for new methods giving more emphasis on the processes-based calculation of vulnerability indicators. As a first alternative, a method is proposed based on three factors describing a pollution event (Brouyère et al., 2001): (1) the transit time from the source to the target, (2) the duration of the contamination breakthrough at the target, (3) the ratio between the maximum concentration at the target to the released concentration at the contamination source. The method can feature the impact of surface runoff to preferential infiltration points. Practically, the assessment can then be based on the simulated breakthrough curves at the ‘target’ corresponding to Dirac-type solicitations (Popescu et al., 2008). Different vulnerability maps can be built according to the relative importance conventionally given to each of the three factors. This concept allows a clear distinction between conventional aspects and processes-based results in the building of a final vulnerability indicator. A second proposal consists in reframing the groundwater vulnerability assessment in a Pressure-State-Impact causal chain that is familiar to decision makers (Beaujean et al., 2013). The method is here based on the calculation of sensitivity coefficients for a user-defined groundwater state for which several physically-based indicators are proposed. The sensitivity coefficients reflect the easiness with which the groundwater state transmits pressures into impacts. They are converted to vulnerability, using the concept of ‘transgressing a given threshold’ (Luers et al., 2003). While the methodology is general and can be applied in quantity as quality issues, the choice of causal chains has to be made prior to the calculation. The vulnerability is also related to a damaged state and is related to the ‘distance’ between the current state and a given threshold. Here also, the method allows a clear distinction between conventional choices (threshold) and scientific work (Dassargues et al., 2009). [less ▲]

Detailed reference viewed: 35 (1 ULg)
Full Text
Peer Reviewed
See detailA new hybrid approach for modelling groundwater flow in karst aquifers
Willems, Thibault ULg; Hakoun, Vivien ULg; Renard, Philippe et al

Conference (2015, September)

Groundwater flow modelling in karst aquifers represents a real challenge that requires adapted methods. The applicability of an innovative hybrid approach for modelling groundwater flow in karst aquifers ... [more ▼]

Groundwater flow modelling in karst aquifers represents a real challenge that requires adapted methods. The applicability of an innovative hybrid approach for modelling groundwater flow in karst aquifers, namely the Hybrid Finite Element Mixing Cell (HFEMC) method, is evaluated. The hybrid approach consists in combining a classical finite element (FE) model, to model slow flow in the rock matrix, with spatially distributed lumped reservoirs, to model fast flow in the karst conduits network. Water exchanges between the rock matrix and the conduits network are accounted for by means of an internal Fourier boundary conditions (BC). This BC (1st order exchange relation) allows to control the magnitude of water transfers between fast and slow flow domains. We tested the applicability of the HFEMC method on a schematic synthetic domain and on a real karst system. In the synthetic case analysis, we discussed dynamic processes of groundwater storage occurring in the karst system during a recharge pulse. The study focuses on the influence of selected parameters on representative variables such as the discharge curve of the karst system or pressure and mass transfers between conduits and rock matrix sub-domains. In this way, an inversion of the hydraulic gradient between karst conduits and the surrounding rock matrix is shown to occur during the recharge pulse. This phenomenon results in a temporary storage of water from conduits to the rock matrix, which impacts the modelled discharge curve. The first test performed on a real study site, the Noiraigue spring karst system (Jura mountains, Switzerland), exemplify the use of two separated lumped reservoirs for describing the conduits network, which allows to consider two base levels in the karst system. It also points out the challenges to face when modelling a complex natural karst system with the HFEMC approach. The results obtained show that the HFEMC approach is a good candidate to model groundwater flow in karst aquifers. [less ▲]

Detailed reference viewed: 84 (21 ULg)
See detailControlling factors and occurrence of inorganic and organic compounds in groundwater of urban and industrial areas
Gesels, Julie ULg; Dollé, Fabien ULg; Leclercq, Julie et al

Conference (2015, September)

A relatively extensive survey of groundwater contaminants is performed in urban and industrial contexts, at the regional scale (Walloon Region of Belgium), outside spots of contamination related to ... [more ▼]

A relatively extensive survey of groundwater contaminants is performed in urban and industrial contexts, at the regional scale (Walloon Region of Belgium), outside spots of contamination related to contaminated sites. More specifically, the most detected inorganic trace elements and organic contaminants are identified and their levels of occurrence are described statistically. Mechanisms that can explain their occurrence in groundwater are discussed. From a more pragmatic point of view, the data set has been also used to derive upper limits of pollutant background concentrations to be used in decision-making related to the management of contaminated groundwater in urban and industrial environments. The results presented are based on 243 samples from 8 sectors located in different geological contexts and different urban and industrial contexts. Each groundwater sample was analyzed for 19 inorganic trace elements, 61 organic micro-pollutants and 10 major and minor elements. Five physico-chemical parameters were measured in the field, at the time of sampling to determine the environmental conditions prevailing in groundwater. For comparison, existing groundwater analyses in natural context, available for the entire Walloon Region, were compiled from several databases. Cumulative distribution function plots allow comparing the distributions of inorganic trace elements in urban and industrial sectors to those obtained at the scale of the entire Walloon region. Cumulative distribution function plots are also used to compare the distribution of the inorganic trace elements in the different lithologies, in urban and industrial contexts. The composition of groundwater is altered in urban and industrial sectors with increased concentrations for most inorganic trace elements and organic contaminants. Anthropogenic influence is not limited to inputs of pollutants but also to alterations of subsurface environmental conditions, in particular redox conditions, resulting in the mobilization of pollutants. The influence of lithology is also marked in the data set. [less ▲]

Detailed reference viewed: 24 (4 ULg)
Full Text
See detailThe use of the Vadose Zone Experimental Setup as an innovative in situ characterization method for the vadose zone: a case study at an industrial contaminated site in Belgium
Fernandez de Vera, Natalia ULg; Beaujean, Jean ULg; Jamin, Pierre ULg et al

Conference (2015, September)

The development of protection and remediation plans for contaminated soil and groundwater require a detailed understanding of the transport of pollutants in the subsurface. However, such understanding is ... [more ▼]

The development of protection and remediation plans for contaminated soil and groundwater require a detailed understanding of the transport of pollutants in the subsurface. However, such understanding is affected by the lack of spatial and temporal coverage provided by the current in situ characterization technologies. A new system has been developed in order to overcome such limitations. The vadose zone experimental setup is a new development combining cross-hole geophysics and the Vadose Zone Monitoring System (VMS). In cross-hole geophysics, an injection of an electrical current using electrodes installed in vertical boreholes is triggered. From measured potential differences, spatial patterns related with subsurface heterogeneities, water content and solute concentrations are inferred. The VMS allows continuous measurements of water content at different depths of the vadose zone, as well as water sampling. The system is formed by a flexible sleeve containing monitoring units along its depth which is installed in a slanted borehole. The system was installed at a former industrial site in Belgium, where soil and groundwater are contaminated with BTEX, PAH, and heavy metals. Two VMS were installed in two slanted boreholes on site, together with four vertical boreholes containing electrodes for geophysical measurements. The site was initially monitored under natural recharge conditions. Water content sensors located along the VMS registered fast wetting and draining reactions to rainfall events followed by the activation of water transport through fractures. Results from soil water samples show continuous evolution of water chemistry with depth, due to disequilibrium between infiltrated water and the hydrochemical conditions in the unsaturated zone. Subsequently, a saline tracer was injected in the surface. The transport of the tracer in the subsurface was monitored via cross-hole and surface geophysics. Results from imaging reflect the evolution of a plume through vertical and lateral transport and dilution. [less ▲]

Detailed reference viewed: 110 (14 ULg)
Full Text
See detailRegional occurence of greenhouses gases in groundwater: Initial results in shallow Belgian aquifers.
Hakoun, Vivien ULg; Gesels, Julie ULg; Tseng, Jean Hsiao-Chun et al

Poster (2015, September)

Currently, the lack of robust, context-distributed subsurface greenhouses gases (GHG) concentrations data is a key bottleneck to reduce the uncertainty range of GHG groundwater input to continental ... [more ▼]

Currently, the lack of robust, context-distributed subsurface greenhouses gases (GHG) concentrations data is a key bottleneck to reduce the uncertainty range of GHG groundwater input to continental surface water bodies such as rivers or lakes estimates. Carbon dioxyde (CO2), methane (CH4) and nitrous oxyde (N2O) are likely to be indirectly transferred to the atmosphere through groundwater discharge into continental surface water bodies. We aim to extend regional-scale estimates of indirect GHG emissions by screening, in numerous hydrogeological (such as alluvial, sandstone, chalk and limestone aquifers) and land use contexts (such as industrial and agricultural), the occurence of these gases. Here, we report and discuss CO2, CH4 and N2O concentrations from an initial survey conducted over selected sites (n= 40) within shallow (0-100 m depth) aquifers in Wallonia (Belgium) for the first time. The preliminary results obtained in this study show that the range of GHG concentrations varies between 5160 and 47544 ppm, 0 and 1064 nmol.L-1, as well as 1 and 5637 nmol.L-1 for the partial pressure of CO2, CH4 and N2O respectively. This new and unique regional dataset provides a first step in developping a refined understanding of favorable contexts for GHG occurence in groundwater which may be used to reduce the uncertainties related to indirect emissions of GHG through groundwater-surface water transfers. [less ▲]

Detailed reference viewed: 85 (16 ULg)
Full Text
Peer Reviewed
See detailAssessment of climate change effects on groundwater resource in transient conditions
Goderniaux, Pascal; Wildemeersch, Samuel; Brouyère, Serge ULg et al

Conference (2015, June 27)

A sophisticated transient weather generator (WG) in combination with an integrated surface-subsurface hydrological model (HydroGeoSphere) are used for producing a stochastic generation of large numbers of ... [more ▼]

A sophisticated transient weather generator (WG) in combination with an integrated surface-subsurface hydrological model (HydroGeoSphere) are used for producing a stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and assess impacts on groundwater resources in a probabilistic way. The modelling approach, involving the catchment-scale fully integrated surface-subsurface model, is described in Goderniaux et al. [2009]. Biased-corrected climate change scenarios are applied as input of the hydrological model to quantify their impact on groundwater resources. In Goderniaux et al. [2011], the integrated model is used in combination with a stochastic daily weather generator (WG). This WG allowed generating a large number of equiprobable climate change scenarios representative of a full transient climate between 2010 and 2085. These scenarios enabled to account for the transient nature of the future climate change, and to assess the uncertainty related to the weather natural variability. The downscaling method considers changes in the climatic means, but also in the distribution of wet and dry days. This new methodology is applied for the unconfined chalky aquifer of the Geer catchment in Belgium. A general decrease of the mean groundwater piezometric heads, has been calculated. The approach allowed also to assess different uncertainty sources: (1) the uncertainty linked to the calibration of the hydrological model, using 'UCODE_2005'; (2) the uncertainty linked to the global and regional climatic models (GCMs and RCMs), by using a multi-model ensemble; (3) the uncertainty linked to the natural variability of the weather, by using stochastic climate change scenarios. 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of 6 different RCMs. Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. The WG ability to simulate transient climate change enabled the assessment of the likely timescale and associated uncertainty of a specific impact. This methodology constitutes a real improvement in the field of groundwater projections under transient climate change conditions as it enables water managers to analyse risks and take decisions with full knowledge of projected impact and their degree of confidence. [less ▲]

Detailed reference viewed: 75 (1 ULg)