References of "Borges, Alberto"
     in
Bookmark and Share    
Full Text
See detailThe influence of biogeochemical processes on the pH dynamics in the seasonally hypoxic saline Lake Grevelingen, The Netherlands
Hagens, M; Slomp, C; Meysman, F et al

Poster (2013, May 07)

Detailed reference viewed: 19 (1 ULg)
See detailBiogeochemistry and carbon mass balance of a coccolithophore bloom in the northern Bay of Biscay (June 2006)
Harlay, Jérôme ULg; Chou, Lei; Van Oostende, Nicolas et al

Poster (2013, May)

Primary production (PP), calcification (CAL), bacterial production (BP) and dark community respiration (DCR) were measured along with a set of various biogeochemical variables, in early June 2006, at ... [more ▼]

Primary production (PP), calcification (CAL), bacterial production (BP) and dark community respiration (DCR) were measured along with a set of various biogeochemical variables, in early June 2006, at several stations at the shelf break of the northern Bay of Biscay. The cruise was carried out after the main spring diatom bloom that, based on the analysis of a time-series of remotely sensed chlorophyll-a (Chl-a), peaked in mid-April. Remotely sensed sea surface temperature (SST) indicated the occurrence of enhanced vertical mixing (due to internal tides) at the continental slope, while adjacent waters on the continental shelf were stratified, as confirmed by vertical profiles of temperature acquired during the cruise. The surface layer of the stratified water masses (on the continental shelf) was depleted of inorganic nutrients. Dissolved silicate (DSi) levels probably did not allow significant diatom development. We hypothesize that mixing at the continental slope allowed the injection of inorganic nutrients that triggered the blooming of mixed phytoplanktonic communities dominated by coccolithophores (Emiliania huxleyi) that were favoured with regards to diatoms due to the low DSi levels. Based on this conceptual frame, we used an indicator of vertical stratification to classify the different sampled stations, and to reconstruct the possible evolution of the bloom from the onset at the continental slope (triggered by vertical mixing) through its development as the water mass was advected on-shelf and stratified. We also established a carbon mass balance at each station by integrating in the photic layer PP, CAL and DCR. This allowed computation at each station of the contribution of PP, CAL and DCR to CO2 fluxes in the photic layer, and how they changed from one station to another along the sequence of bloom development (as traced by the stratification indicator). This also showed a shift from net autotrophy to net heterotrophy as the water mass aged (stratified), and suggested the importance of extracellular production of carbon to sustain the bacterial demand in the photic and aphotic layers. [less ▲]

Detailed reference viewed: 5 (1 ULg)
Full Text
See detailVariability of North Sea pH and CO2 pumping in response to North Atlantic Oscillation forcing
Salt, L; Thomas, H; Prowe, F et al

Poster (2013, April 07)

Detailed reference viewed: 29 (0 ULg)
Full Text
See detailThe influence of biogeochemical processes on the pH dynamics in the seasonally hypoxic saline Lake Grevelingen
Hagens, M; Slomp, C; Meysman, F et al

Poster (2013, April 07)

Detailed reference viewed: 44 (0 ULg)
Full Text
See detailFrom a source to a sink: the role of biological activities on atmospheric CO2 exchange along the river-ocean continuum
Gypens, N; Passy, P; Lancelot, C et al

Poster (2013, April 07)

Detailed reference viewed: 28 (0 ULg)
Full Text
Peer Reviewed
See detailCarbon dioxide dynamics and fluxes in coastal waters influenced by river plumes
Cai, W.-J.; Chen, C.-T.A.; Borges, Alberto ULg

in Bianchi, TS; Allison, MA; Cai, WJ (Eds.) Biogeochemical Dynamics at Large River-Coastal Interfaces: Linkages with Global Climate Change (2013)

Detailed reference viewed: 2 (1 ULg)
Full Text
See detailSeagrass production: linking individual, community and ecosystem carbon fluxes
Santos, R; Silva, J; Olivé, I et al

Conference (2013)

Detailed reference viewed: 17 (1 ULg)
Full Text
See detailGeochemistry of continental rivers of the Virunga Volcanic Province, East Africa
Balagizi, C; Darchambeau, François ULg; Kasereka, M et al

Conference (2013)

Detailed reference viewed: 16 (0 ULg)
Full Text
See detailModelling ocean acidification in marginal seas: the North Western European shelf case study
Artioli, Y; Blackford, JC; Butenschön, M et al

Conference (2013)

Detailed reference viewed: 13 (0 ULg)
Full Text
See detailPhotoferrotrophy and Fe-cycling in a freshwater column
Llirós, M; Crowe, SA; García-Armisen, T et al

Conference (2013)

Detailed reference viewed: 8 (0 ULg)
Full Text
See detailPhotoferrotrophy and Fe-cycling in a freshwater column
Llirós, M; Crowe, SA; García-Armisen, T et al

Poster (2013)

Detailed reference viewed: 28 (0 ULg)
Full Text
Peer Reviewed
See detailVariability of North Sea pH and CO2 in response to North Atlantic Oscillation forcing
Salt, L.A.; Thomas, H.; Prowe, A.E.F. et al

in Journal of Geophysical Research. Biogeosciences (2013), 118(1-9),

High biological activity causes a distinct seasonality of surface water pH in the North Sea, which is a strong sink for atmospheric CO 2 via an effective shelf pump. The intimate connection between the ... [more ▼]

High biological activity causes a distinct seasonality of surface water pH in the North Sea, which is a strong sink for atmospheric CO 2 via an effective shelf pump. The intimate connection between the North Sea and the North Atlantic Ocean suggests that the variability of the CO 2 system of the North Atlantic Ocean may, in part, be responsible for the observed variability of pH and CO 2 in the North Sea. In this work, we demonstrate the role of the North Atlantic Oscillation (NAO), the dominant climate mode for the North Atlantic, in governing this variability. Based on three extensive observational records covering the relevant levels of the NAO index, we provide evidence that the North Sea pH and CO 2 system strongly responds to external and internal expressions of the NAO. Under positive NAO, the higher rates of in fl ow of water from the North Atlantic Ocean and the Baltic out fl ow lead to a strengthened north-south biogeochemical divide. The limited mixing between the north and south leads to a steeper gradient in pH and partial pressure of CO 2 (pCO 2 ) between the two regions in the productive period. This is exacerbated further when coinciding with higher sea surface temperature, which concentrates the net community production in the north through shallower strati fi cation. These effects can be obscured by changing properties of the constituent North Sea water masses, which are also in fl uenced by NAO. Our results highlight the importance of examining interannual trends in the North Sea CO 2 system with consideration of the NAO state [less ▲]

Detailed reference viewed: 10 (1 ULg)