References of "Boly, Mélanie"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBrain functional integration decreases during propofol-induced loss of consciousness.
Schrouff, Jessica ULg; Perlbarg, Vincent; Boly, Mélanie ULg et al

in NeuroImage (2011), 57(1), 198-205

Consciousness has been related to the amount of integrated information that the brain is able to generate. In this paper, we tested the hypothesis that the loss of consciousness caused by propofol ... [more ▼]

Consciousness has been related to the amount of integrated information that the brain is able to generate. In this paper, we tested the hypothesis that the loss of consciousness caused by propofol anesthesia is associated with a significant reduction in the capacity of the brain to integrate information. To assess the functional structure of the whole brain, functional integration and partial correlations were computed from fMRI data acquired from 18 healthy volunteers during resting wakefulness and propofol-induced deep sedation. Total integration was significantly reduced from wakefulness to deep sedation in the whole brain as well as within and between its constituent networks (or systems). Integration was systematically reduced within each system (i.e., brain or networks), as well as between networks. However, the ventral attentional network maintained interactions with most other networks during deep sedation. Partial correlations further suggested that functional connectivity was particularly affected between parietal areas and frontal or temporal regions during deep sedation. Our findings suggest that the breakdown in brain integration is the neural correlate of the loss of consciousness induced by propofol. They stress the important role played by parietal and frontal areas in the generation of consciousness. [less ▲]

Detailed reference viewed: 81 (33 ULg)
Full Text
Peer Reviewed
See detailPropofol anesthesia and sleep: a high-density EEG study.
Murphy, Michael; Bruno, Marie-Aurélie ULg; Riedner, Brady A et al

in Sleep (2011), 34(3), 283-91

STUDY OBJECTIVES: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical ... [more ▼]

STUDY OBJECTIVES: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. DESIGN: 256-channel EEG recordings in humans during propofol anesthesia. SETTING: Hospital operating room. PATIENTS OR PARTICIPANTS: 8 healthy subjects (4 males) INTERVENTIONS: N/A MEASUREMENTS AND RESULTS: Initially, propofol induced increases in EEG power from 12-25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25-40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. CONCLUSIONS: Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity. CITATION: Murphy M; Bruno MA; Riedner BA; Boveroux P; Noirhomme Q; Landsness EC; Brichant JF; Phillips C; Massimini M; Laureys S; Tononi G; Boly M. Propofol anesthesia and sleep: a high-density EEG study. SLEEP 2011;34(3):283-291. [less ▲]

Detailed reference viewed: 33 (4 ULg)
Peer Reviewed
See detailImagerie fonctionnelle et états de conscience altérée
Vanhaudenhuyse, Audrey ULg; Boly, Mélanie ULg; Bruno, Marie-Aurélie ULg et al

in Schnakers, Caroline; LAUREYS, Steven (Eds.) Coma et états de conscience altérée (2011)

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailLa neuro-imagerie: un outil diagnostique des etats de conscience alteree.
Thonnard, Marie ULg; Boly, Mélanie ULg; Bruno, Marie-Aurelie et al

in Medecine Sciences : M/S (2011), 27(1), 77-81

Vegetative and minimally conscious states diagnosis remained a major clinical challenge. New paradigms such as measurement of the global cerebral metabolism, the structural and functional integrity of ... [more ▼]

Vegetative and minimally conscious states diagnosis remained a major clinical challenge. New paradigms such as measurement of the global cerebral metabolism, the structural and functional integrity of fronto-parietal network, or the spontaneous activity in resting state have been shown to be helpful to disentangle vegetative from minimally conscious patients. Active neuroimagery paradigms also allow detecting voluntary and conscious activity in non-communicative patients. The implementation of these methods in clinical routine could permit to reduce the current high rate of misdiagnosis (40%). [less ▲]

Detailed reference viewed: 19 (5 ULg)
Full Text
Peer Reviewed
See detail"Relevance vector machine" consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients.
Phillips, Christophe ULg; Bruno, Marie-Aurélie ULg; Maquet, Pierre ULg et al

in NeuroImage (2011), 56(2), 797808

The vegetative state is a devastating condition where patients awaken from their coma (i.e., open their eyes) but fail to show any behavioural sign of conscious awareness. Locked-in syndrome patients also ... [more ▼]

The vegetative state is a devastating condition where patients awaken from their coma (i.e., open their eyes) but fail to show any behavioural sign of conscious awareness. Locked-in syndrome patients also awaken from their coma and are unable to show any motor response to command (except for small eye movements or blinks) but recover full conscious awareness of self and environment. Bedside evaluation of residual cognitive function in coma survivors often is difficult because motor responses may be very limited or inconsistent. We here aimed to disentangle vegetative from "locked-in" patients by an automatic procedure based on machine learning using fluorodeoxyglucose PET data obtained in 37 healthy controls and in 13 patients in a vegetative state. Next, the trained machine was tested on brain scans obtained in 8 patients with locked-in syndrome. We used a sparse probabilistic Bayesian learning framework called "relevance vector machine" (RVM) to classify the scans. The trained RVM classifier, applied on an input scan, returns a probability value (p-value) of being in one class or the other, here being "conscious" or not. Training on the control and vegetative state groups was assessed with a leave-one-out cross-validation procedure, leading to 100% classification accuracy. When applied on the locked-in patients, all scans were classified as "conscious" with a mean p-value of .95 (min .85). In conclusion, even with this relatively limited data set, we could train a classifier distinguishing between normal consciousness (i.e., wakeful conscious awareness) and the vegetative state (i.e., wakeful unawareness). Cross-validation also indicated that the clinical classification and the one predicted by the automatic RVM classifier were in accordance. Moreover, when applied on a third group of "locked-in" consciously aware patients, they all had a strong probability of being similar to the normal controls, as expected. Therefore, RVM classification of cerebral metabolic images obtained in coma survivors could become a useful tool for the automated PET-based diagnosis of altered states of consciousness. [less ▲]

Detailed reference viewed: 48 (13 ULg)
Full Text
Peer Reviewed
See detailElectrophysiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state.
Landsness, Eric; Bruno, Marie-Aurélie ULg; Noirhomme, Quentin ULg et al

in Brain : A Journal of Neurology (2011), 134(Pt 8), 2222-32

The existence of normal sleep in patients in a vegetative state is still a matter of debate. Previous electrophysiological sleep studies in patients with disorders of consciousness did not differentiate ... [more ▼]

The existence of normal sleep in patients in a vegetative state is still a matter of debate. Previous electrophysiological sleep studies in patients with disorders of consciousness did not differentiate patients in a vegetative state from patients in a minimally conscious state. Using high-density electroencephalographic sleep recordings, 11 patients with disorders of consciousness (six in a minimally conscious state, five in a vegetative state) were studied to correlate the electrophysiological changes associated with sleep to behavioural changes in vigilance (sustained eye closure and muscle inactivity). All minimally conscious patients showed clear electroencephalographic changes associated with decreases in behavioural vigilance. In the five minimally conscious patients showing sustained behavioural sleep periods, we identified several electrophysiological characteristics typical of normal sleep. In particular, all minimally conscious patients showed an alternating non-rapid eye movement/rapid eye movement sleep pattern and a homoeostatic decline of electroencephalographic slow wave activity through the night. In contrast, for most patients in a vegetative state, while preserved behavioural sleep was observed, the electroencephalographic patterns remained virtually unchanged during periods with the eyes closed compared to periods of behavioural wakefulness (eyes open and muscle activity). No slow wave sleep or rapid eye movement sleep stages could be identified and no homoeostatic regulation of sleep-related slow wave activity was observed over the night-time period. In conclusion, we observed behavioural, but no electrophysiological, sleep wake patterns in patients in a vegetative state, while there were near-to-normal patterns of sleep in patients in a minimally conscious state. These results shed light on the relationship between sleep electrophysiology and the level of consciousness in severely brain-damaged patients. We suggest that the study of sleep and homoeostatic regulation of slow wave activity may provide a complementary tool for the assessment of brain function in minimally conscious state and vegetative state patients. [less ▲]

Detailed reference viewed: 24 (1 ULg)
Full Text
Peer Reviewed
See detailPreserved feedforward but impaired top-down processes in the vegetative state.
Boly, Mélanie ULg; Garrido, Marta Isabel; Gosseries, Olivia ULg et al

in Science (2011), 332(6031), 858-62

Frontoparietal cortex is involved in the explicit processing (awareness) of stimuli. Frontoparietal activation has also been found in studies of subliminal stimulus processing. We hypothesized that an ... [more ▼]

Frontoparietal cortex is involved in the explicit processing (awareness) of stimuli. Frontoparietal activation has also been found in studies of subliminal stimulus processing. We hypothesized that an impairment of top-down processes, involved in recurrent neuronal message-passing and the generation of long-latency electrophysiological responses, might provide a more reliable correlate of consciousness in severely brain-damaged patients, than frontoparietal responses. We measured effective connectivity during a mismatch negativity paradigm and found that the only significant difference between patients in a vegetative state and controls was an impairment of backward connectivity from frontal to temporal cortices. This result emphasizes the importance of top-down projections in recurrent processing that involve high-order associative cortices for conscious perception. [less ▲]

Detailed reference viewed: 44 (8 ULg)
Full Text
Peer Reviewed
See detailTwo distinct neuronal networks mediate the awareness of environment and of self
Vanhaudenhuyse, Audrey ULg; Demertzi, Athina ULg; Schabus, Manuel et al

in Journal of Cognitive Neuroscience (2011), 23(3), 570-578

Evidence from functional neuroimaging studies on resting state suggests that there are two distinct anticorrelated cortical systems that mediate conscious awareness: an "extrinsic" system that encompasses ... [more ▼]

Evidence from functional neuroimaging studies on resting state suggests that there are two distinct anticorrelated cortical systems that mediate conscious awareness: an "extrinsic" system that encompasses lateral fronto-parietal areas and has been linked with processes of external input (external awareness), and an "intrinsic" system which encompasses mainly medial brain areas and has been associated with internal processes (internal awareness). The aim of our study was to explore the neural correlates of resting state by providing behavioral and neuroimaging data from healthy volunteers. With no a priori assumptions, we first determined behaviorally the relationship between external and internal awareness in 31 subjects. We found a significant anticorrelation between external and internal awareness with a mean switching frequency of 0.05 Hz (range: 0.01-0.1 Hz). Interestingly, this frequency is similar to BOLD fMRI slow oscillations. We then evaluated 22 healthy volunteers in an fMRI paradigm looking for brain areas where BOLD activity correlated with "internal" and "external" scores. Activation of precuneus/posterior cingulate, anterior cingulate/mesiofrontal cortices, and parahippocampal areas ("intrinsic system") was linearly linked to intensity of internal awareness, whereas activation of lateral fronto-parietal cortices ("extrinsic system") was linearly associated with intensity of external awareness. [less ▲]

Detailed reference viewed: 144 (22 ULg)
Full Text
Peer Reviewed
See detailLinking sleep and general anesthesia mechanisms: this is no walkover
BONHOMME, Vincent ULg; BOVEROUX, Pierre ULg; Vanhaudenhuyse, Audrey ULg et al

in Acta Anaesthesiologica Belgica (2011), 62(3), 161-171

Detailed reference viewed: 131 (15 ULg)
Full Text
Peer Reviewed
See detailResponse to comment on "preserved feedforward but impaired top-down processes in the vegetative state".
Boly, Mélanie ULg; Garrido, Marta Isabel; Gosseries, Olivia ULg et al

in Science (2011), 334(6060), 1203

King et al. raise some technical issues about our recent study showing impaired top-down processes in the vegetative state. We welcome the opportunity to provide more details about our methods and results ... [more ▼]

King et al. raise some technical issues about our recent study showing impaired top-down processes in the vegetative state. We welcome the opportunity to provide more details about our methods and results and to resolve their concerns. We substantiate our interpretation of the results and provide a point-by-point response to the issues raised. [less ▲]

Detailed reference viewed: 26 (2 ULg)
Full Text
Peer Reviewed
See detailMultimodal neuroimaging in patients with disorders of consciousness showing "functional hemispherectomy".
Bruno, Marie-Aurélie ULg; Fernandez-Espejo, D.; Lehembre, Remy ULg et al

in Progress in Brain Research (2011), 193

Beside behavioral assessment of patients with disorders of consciousness, neuroimaging modalities may offer objective paraclinical markers important for diagnosis and prognosis. They provide information ... [more ▼]

Beside behavioral assessment of patients with disorders of consciousness, neuroimaging modalities may offer objective paraclinical markers important for diagnosis and prognosis. They provide information on the structural location and extent of brain lesions (e.g., morphometric MRI and diffusion tensor imaging (DTI-MRI) assessing structural connectivity) but also their functional impact (e.g., metabolic FDG-PET, hemodynamic fMRI, and EEG measurements obtained in "resting state" conditions). We here illustrate the role of multimodal imaging in severe brain injury, presenting a patient in unresponsive wakefulness syndrome (UWS; i.e., vegetative state, VS) and in a "fluctuating" minimally conscious state (MCS). In both cases, resting state FDG-PET, fMRI, and EEG showed a functionally preserved right hemisphere, while DTI showed underlying differences in structural connectivity highlighting the complementarities of these neuroimaging methods in the study of disorders of consciousness. [less ▲]

Detailed reference viewed: 42 (4 ULg)
Full Text
See detailDisorders of consciousness: coma, vegetative and minimally conscious states
Gosseries, Olivia ULg; Vanhaudenhuyse, Audrey ULg; Bruno, Marie-Aurélie ULg et al

in D. Cvetkovic & I. Cosic (Ed.) States of Consciousness: Experimental Insights into Meditation, Waking, Sleep and Dreams (2011)

Detailed reference viewed: 40 (3 ULg)
Full Text
Peer Reviewed
See detailInterplay between spontaneous and induced brain activity during human non-rapid eye movement sleep.
Dang Vu, Thien Thanh ULg; Bonjean, Maxime; Schabus, Manuel et al

in Proceedings of the National Academy of Sciences of the United States of America (2011), 108(37), 15438-43

Humans are less responsive to the surrounding environment during sleep. However, the extent to which the human brain responds to external stimuli during sleep is uncertain. We used simultaneous EEG and ... [more ▼]

Humans are less responsive to the surrounding environment during sleep. However, the extent to which the human brain responds to external stimuli during sleep is uncertain. We used simultaneous EEG and functional MRI to characterize brain responses to tones during wakefulness and non-rapid eye movement (NREM) sleep. Sounds during wakefulness elicited responses in the thalamus and primary auditory cortex. These responses persisted in NREM sleep, except throughout spindles, during which they became less consistent. When sounds induced a K complex, activity in the auditory cortex was enhanced and responses in distant frontal areas were elicited, similar to the stereotypical pattern associated with slow oscillations. These data show that sound processing during NREM sleep is constrained by fundamental brain oscillatory modes (slow oscillations and spindles), which result in a complex interplay between spontaneous and induced brain activity. The distortion of sensory information at the thalamic level, especially during spindles, functionally isolates the cortex from the environment and might provide unique conditions favorable for off-line memory processing. [less ▲]

Detailed reference viewed: 39 (12 ULg)
Full Text
Peer Reviewed
See detailNeural precursors of delayed insight
Darsaud, Annabelle ULg; Wagner, Ullrich; Balteau, Evelyne ULg et al

in Journal of Cognitive Neuroscience (2011), 23(8), 1900-1910

The solution of a problem left unresolved in the evening can sometimes pop into mind as a sudden insight after a night of sleep in the following morning. Although favorable effects of sleep on insightful ... [more ▼]

The solution of a problem left unresolved in the evening can sometimes pop into mind as a sudden insight after a night of sleep in the following morning. Although favorable effects of sleep on insightful behavior have been experimentally confirmed, the neural mechanisms determining this delayed insight remain unknown. Here, using functional magnetic resonance imaging (fMRI), we characterize the neural precursors of delayed insight in the number reduction task (NRT), in which a hidden task structure can be learned implicitly, but can also be recognized explicitly in an insightful process, allowing immediate qualitative improvement in task performance. Normal volunteers practiced the NRT during two fMRI sessions (training and retest), taking place 12 hours apart after a night of sleep. After this delay, half of the subjects gained insight into the hidden task structure ("solvers," S), whereas the other half did not ("nonsolvers," NS). Already at training, solvers and nonsolvers differed in their cerebral responses associated with implicit learning. In future solvers, responses were observed in the superior frontal sulcus, posterior parietal cortex, and the insula, three areas mediating controlled processes and supporting early learning and novice performance. In contrast, implicit learning was related to significant responses in the hippocampus in nonsolvers. Moreover, the hippocampus was functionally coupled with the basal ganglia in nonsolvers and with the superior frontal sulcus in solvers, thus potentially biasing participants' strategy towards implicit or controlled processes of memory encoding, respectively. Furthermore, in solvers but not in nonsolvers, response patterns were further transformed overnight, with enhanced responses in ventral medial prefrontal cortex, an area previously implicated in the consolidation of declarative memory. During retest in solvers, before they gain insight into the hidden rule, significant responses were observed in the same medial prefrontal area. After insight, a distributed set of parietal and frontal areas is recruited among which information concerning the hidden rule can be shared in a so-called global workspace. [less ▲]

Detailed reference viewed: 59 (8 ULg)
Full Text
Peer Reviewed
See detailInfluence of anesthesia on cerebral blood flow, cerebral metabolic rate, and brain functional connectivity.
BONHOMME, Vincent ULg; BOVEROUX, Pierre ULg; HANS, Pol ULg et al

in Current Opinion in Anaesthesiology (2011), 24(5), 474-9

PURPOSE OF REVIEW: To describe recent studies exploring brain function under the influence of hypnotic anesthetic agents, and their implications on the understanding of consciousness physiology and ... [more ▼]

PURPOSE OF REVIEW: To describe recent studies exploring brain function under the influence of hypnotic anesthetic agents, and their implications on the understanding of consciousness physiology and anesthesia-induced alteration of consciousness. RECENT FINDINGS: Cerebral cortex is the primary target of the hypnotic effect of anesthetic agents, and higher-order association areas are more sensitive to this effect than lower-order processing regions. Increasing concentration of anesthetic agents progressively attenuates connectivity in the consciousness networks, while connectivity in lower-order sensory and motor networks is preserved. Alteration of thalamic sub-cortical regulation could compromise the cortical integration of information despite preserved thalamic activation by external stimuli. At concentrations producing unresponsiveness, the activity of consciousness networks becomes anticorrelated with thalamic activity, while connectivity in lower-order sensory networks persists, although with cross-modal interaction alterations. SUMMARY: Accumulating evidence suggests that hypnotic anesthetic agents disrupt large-scale cerebral connectivity. This would result in an inability of the brain to generate and integrate information, while external sensory information is still processed at a lower order of complexity. [less ▲]

Detailed reference viewed: 47 (9 ULg)
Full Text
Peer Reviewed
See detailIdentifying the default-mode component in spatial IC analyses of patients with disorders of consciousness.
Soddu, Andrea ULg; Vanhaudenhuyse, Audrey ULg; Bahri, Mohamed Ali ULg et al

in Human Brain Mapping (2011)

Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers ... [more ▼]

Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2011. (c) 2011 Wiley-Liss, Inc. [less ▲]

Detailed reference viewed: 34 (5 ULg)
Full Text
Peer Reviewed
See detailBrain connectivity in pathological and pharmacological coma
Noirhomme, Quentin ULg; Soddu, Andrea ULg; Lehembre, Remy ULg et al

in Frontiers in Systems Neuroscience [=FNSYS] (2010), 4

Recent studies in patients with disorders of consciousness (DOC) tend to support the view that awareness is not related to activity in a single brain region but to thalamo-cortical connectivity in the ... [more ▼]

Recent studies in patients with disorders of consciousness (DOC) tend to support the view that awareness is not related to activity in a single brain region but to thalamo-cortical connectivity in the frontoparietal network. Functional neuroimaging studies have shown preserved albeit disconnected low-level cortical activation in response to external stimulation in patients in a “vegetative state” or unresponsive wakefulness syndrome. While activation of these “primary” sensory cortices does not necessarily reflect conscious awareness, activation in higher-order associative cortices in minimally conscious state patients seems to herald some residual perceptual awareness. PET studies have identified a metabolic dysfunction in a widespread frontoparietal “global neuronal workspace” in DOC patients including the midline default mode network (“intrinsic” system) and the lateral frontoparietal cortices or “extrinsic system.” Recent studies have investigated the relation of awareness to the functional connectivity within intrinsic and extrinsic networks, and with the thalami in both pathological and pharmacological coma. In brain damaged patients, connectivity in all default network areas was found to be non-linearly correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative, coma, and brain dead patients. Anesthesia-induced loss of consciousness was also shown to correlate with a global decrease in cortico-cortical and thalamo-cortical connectivity in both intrinsic and extrinsic networks, but not in auditory, or visual networks. In anesthesia, unconsciousness was also associated with a loss of cross-modal interactions between networks. These results suggest that conscious awareness critically depends on the functional integrity of thalamo-cortical and cortico-cortical frontoparietal connectivity within and between “intrinsic” and “extrinsic” brain networks. [less ▲]

Detailed reference viewed: 38 (5 ULg)
Full Text
Peer Reviewed
See detailChanges in functional interactions during anaesthesia-induced loss of consciousness
Schrouff, Jessica ULg; Perlbarg, Vincent; Boly, Mélanie ULg et al

Poster (2010, December 12)

Consciousness has been related to the amount of integrated information that the brain is able to generate. In this paper, we tested the hypothesis that the loss of consciousness caused by propofol ... [more ▼]

Consciousness has been related to the amount of integrated information that the brain is able to generate. In this paper, we tested the hypothesis that the loss of consciousness caused by propofol anesthesia is associated with a significant reduction in the capacity of the brain to integrate information. To assess the functional structure of the whole brain, functional integration and partial correlations were computed from fMRI data acquired from 18 healthy volunteers during resting wakefulness and propofol-induced deep sedation. Total integration was significantly reduced from wakefulness to deep sedation in the whole brain as well as within and between its constituent networks (or systems). Integration was systematically reduced within each system (i.e., brain or networks), as well as between networks. However, the ventral attentional network maintained interactions with most other networks during deep sedation. Partial correlations further suggested that functional connectivity was particularly affected between parietal areas and frontal or temporal regions during deep sedation. Our findings suggest that the breakdown in brain integration is the neural correlate of the loss of consciousness induced by propofol. They stress the important role played by parietal and frontal areas in the generation of consciousness. [less ▲]

Detailed reference viewed: 23 (7 ULg)
Full Text
Peer Reviewed
See detailWillful Modulation of Brain Activity in Disorders of Consciousness
Vanhaudenhuyse, Audrey ULg; Monti, M.; Coleman, M. et al

in New England Journal of Medicine [=NEJM] (2010)

Detailed reference viewed: 81 (13 ULg)
Full Text
Peer Reviewed
See detailDefault network connectivity reflects the level of consciousness in non-communicative brain-damaged patients.
Vanhaudenhuyse, Audrey ULg; Noirhomme, Quentin ULg; Tshibanda, Luaba ULg et al

in Brain : A Journal of Neurology (2010), 133(Pt 1), 161-71

The 'default network' is defined as a set of areas, encompassing posterior-cingulate/precuneus, anterior cingulate/mesiofrontal cortex and temporo-parietal junctions, that show more activity at rest than ... [more ▼]

The 'default network' is defined as a set of areas, encompassing posterior-cingulate/precuneus, anterior cingulate/mesiofrontal cortex and temporo-parietal junctions, that show more activity at rest than during attention-demanding tasks. Recent studies have shown that it is possible to reliably identify this network in the absence of any task, by resting state functional magnetic resonance imaging connectivity analyses in healthy volunteers. However, the functional significance of these spontaneous brain activity fluctuations remains unclear. The aim of this study was to test if the integrity of this resting-state connectivity pattern in the default network would differ in different pathological alterations of consciousness. Fourteen non-communicative brain-damaged patients and 14 healthy controls participated in the study. Connectivity was investigated using probabilistic independent component analysis, and an automated template-matching component selection approach. Connectivity in all default network areas was found to be negatively correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative then coma patients. Furthermore, precuneus connectivity was found to be significantly stronger in minimally conscious patients as compared with unconscious patients. Locked-in syndrome patient's default network connectivity was not significantly different from controls. Our results show that default network connectivity is decreased in severely brain-damaged patients, in proportion to their degree of consciousness impairment. Future prospective studies in a larger patient population are needed in order to evaluate the prognostic value of the presented methodology. [less ▲]

Detailed reference viewed: 84 (22 ULg)