References of "Ball, Gregory F."
     in
Bookmark and Share    
See detailDynamic and region specific changes in estrogen production induced by reproductive stimuli.
de Bournonville, Catherine ULg; Dickens, Molly J; Ball, Gregory F et al

Poster (2012, May 04)

Detailed reference viewed: 7 (0 ULg)
See detailRegion- and context-specific rapid changes in brain aromatase activity following social interactions
de Bournonville, Catherine ULg; Dickens, Molly J; Ball, Gregory F et al

Poster (2012)

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailRapid control of male typical behaviors by brain-derived estrogens
Cornil, Charlotte ULg; Ball, Gregory F; Balthazart, Jacques ULg

in Frontiers in Neuroendocrinology (2012)

Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance ... [more ▼]

Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanism that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators. [less ▲]

Detailed reference viewed: 47 (7 ULg)
Full Text
Peer Reviewed
See detailOrganizing effects of sex steroids on brain aromatase activity in quail
Cornil, Charlotte ULg; Ball, Gregory F; Balthazart, Jacques ULg et al

in PLoS ONE (2011), 6(4), 19196

Detailed reference viewed: 29 (10 ULg)
Full Text
Peer Reviewed
See detailSEASONAL AND INDIVIDUAL VARIATION IN SINGING BEHAVIOR CORRELATES WITH ALPHA 2-NORADRENERGIC RECEPTOR DENSITY IN BRAIN REGIONS IMPLICATED IN SONG, SEXUAL, AND SOCIAL BEHAVIOR
Heimovics, Sarah A.; Cornil, Charlotte ULg; Hellis, J. M. S. et al

in Neuroscience (2011), 182

In seasonally breeding male songbirds, both the function of song and the stimuli that elicit singing behavior change seasonally. The catecholamine norepinephrine (NE) modulates attention and arousal ... [more ▼]

In seasonally breeding male songbirds, both the function of song and the stimuli that elicit singing behavior change seasonally. The catecholamine norepinephrine (NE) modulates attention and arousal across behavioral states, yet the role of NE in seasonally-appropriate vocal communication has not been well-studied. The present study explored the possibility that seasonal changes in alpha 2-noradrenergic receptors (alpha2-R) within song control regions and brain regions implicated in sexual arousal and social behavior contribute to seasonal changes in song behavior in male European starlings (Sturnus vulgaris). We quantified singing behavior in aviary housed males under spring breeding season conditions and fall conditions. alpha2-R were identified with the selective ligand [3H]RX821002 using autoradiographic methods. The densities of alpha2-R in song control regions (HVC and the robust nucleus of the arcopallium [RA]) and the lateral septum (LS) were lower in Spring Condition males. alpha2-R densities in the caudal portion of the medial preoptic nucleus (POM) related negatively to singing behavior. Testosterone concentrations were highest in Spring Condition males and correlated with alpha2-R in LS and POM. Results link persistent seasonal alterations in the structure or function of male song to seasonal changes in NE alpha2-Rs in HVC, RA, and LS. Individual differences in alpha2-R in the POM may in part explain individual differences in song production irrespective of the context in which a male is singing, perhaps through NE modification of male sexual arousal. [less ▲]

Detailed reference viewed: 23 (8 ULg)
Full Text
Peer Reviewed
See detailRapid changes of aromatase activity in discrete brain regions following social interactions
de Bournonville, Catherine ULg; Ball, Gregory, F.; Balthazart, Jacques ULg et al

in Trabajos del Instituto Cajal (2011), LXXXIII

Detailed reference viewed: 37 (18 ULg)
Full Text
Peer Reviewed
See detailEffects of sex steroids on aromatase mRNA expression in the male and female quail brain.
Voigt, Cornelia; Ball, Gregory F; Balthazart, Jacques ULg

in General and Comparative Endocrinology (2011), 170(1), 180-8

Castrated male quail display intense male-typical copulatory behavior in response to exogenous testosterone but ovariectomized females do not. The behavior of males is largely mediated by the central ... [more ▼]

Castrated male quail display intense male-typical copulatory behavior in response to exogenous testosterone but ovariectomized females do not. The behavior of males is largely mediated by the central aromatization of testosterone into estradiol. The lack of behavioral response in females could result from a lower rate of aromatization. This is probably not the case because although the enzymatic sex difference is clearly present in gonadally intact sexually mature birds, it is not reliably found in gonadectomized birds treated with testosterone, in which the behavioral sex difference is always observed. We previously discovered that the higher aromatase activity in sexually mature males as compared to females is not associated with major differences in aromatase mRNA density. A reverse sex difference (females>males) was even detected in the bed nucleus of the stria terminalis. We analyzed here by in situ hybridization histochemistry the density of aromatase mRNA in gonadectomized male and female quail that were or were not exposed to a steroid profile typical of their sex. Testosterone and ovarian steroids (presumably estradiol) increased aromatase mRNA concentration in males and females respectively but mRNA density was similar in both sexes. A reverse sex difference in aromatase mRNA density (females>males) was detected in the bed nucleus of subjects exposed to sex steroids. Together these data suggest that although the induction of aromatase activity by testosterone corresponds to an increased transcription of the enzyme, the sex difference in enzymatic activity results largely from post-transcriptional controls that remain to be identified. [less ▲]

Detailed reference viewed: 63 (2 ULg)
Full Text
Peer Reviewed
See detailSexual arousal, is it for mammals only?
Ball, Gregory F; Balthazart, Jacques ULg

in Hormones and Behavior (2011), 59(5), 645-55

Sexual arousal has many dimensions and has consequently been defined in various ways. In humans, sexual arousal can be assessed based in part on verbal communication. In male non-human mammalian species ... [more ▼]

Sexual arousal has many dimensions and has consequently been defined in various ways. In humans, sexual arousal can be assessed based in part on verbal communication. In male non-human mammalian species, it has been argued that arousal can only be definitively inferred if the subject exhibits a penile erection in a sexual context. In non-mammalian species that lack an intromittent organ, as is the case for most avian species, the question of how to assess sexual arousal has not been thoroughly addressed. Based on studies performed in male Japanese quail, we argue that several behavioral or physiological characteristics provide suitable measures of sexual arousal in birds and probably also in other tetrapods. These indices include, the performance of appetitive sexual behavior in anticipation of copulation (although anticipation and arousal are not synonymous), the activation of specific brain area as identified by the detection of the expression of immediate early genes (fos, egr-1) or by 2-deoxygucose quantitative autoradiography, and above all, by the release of dopamine in the medial preoptic area as measured by in vivo dialysis. Based on these criteria, it is possible to assess in birds sexual arousal in its broadest sense but meeting the more restrictive definition of arousal proposed for male mammals (erection in an explicit sexual context) is and will probably remain impossible in birds until refinement of in vivo imaging techniques such fMRI allow us to match in different species, with and without an intromittent organ, the brain areas that are activated in the presence of specific stimuli. [less ▲]

Detailed reference viewed: 17 (4 ULg)
Full Text
Peer Reviewed
See detailAndrogens and estrogens synergistically regulate the expression of doublecortin and enhance neuronal recruitment in the song system of adult female canaries.
Yamamura, Takashi; Barker, Jennifer ULg; Balthazart, Jacques ULg et al

in Journal of Neuroscience (2011)

Vocal control nuclei in songbirds display seasonal changes in volume that are regulated by testosterone (T) and its androgenic (5α-dihydrotestosterone; DHT) or estrogenic metabolites (17β-estradiol; E2 ... [more ▼]

Vocal control nuclei in songbirds display seasonal changes in volume that are regulated by testosterone (T) and its androgenic (5α-dihydrotestosterone; DHT) or estrogenic metabolites (17β-estradiol; E2). In male canaries, T regulates expression of the microtubule-associated protein doublecortin (DCX), a marker of neurogenesis. We examined the effect of T and its two metabolites alone or in combination on DCX expression in adult female canaries. Treatment with T or with DHT+E2 increased HVC volume and neuron numbers as well as the total numbers of fusiform (migrating) and round (differentiating) DCX neurons in the nucleus but generally not in adjacent areas. DHT or E2 alone did not increase these measures but increased the density of fusiform DCX cells per section. Similar results were observed in Area X although some effects did not reach significance presumably because plasticity in X is mediated transynaptically and follows HVC changes with some delay. There was no effect of any treatment on the total number of neurons in Area X and no change in DCX cell densities was detected in other parts of the nidopallium nor in LMAN. DHT and E2 by themselves thus increase density of DCX cells migrating through HVC but are not sufficient in isolation to induce the recruitment of these newborn neurons in the nucleus. These effects are generally not observed in the rest of the nidopallium implying that steroids only act on the attraction and recruitment of new neurons in HVC without having any major effects on their production at the ventricle wall. [less ▲]

Detailed reference viewed: 24 (0 ULg)
See detailTestosterone increases cell turnover in song nucleus HVC and increases cell recruitment into Area X of adult female canaries.
Barker, Jennifer ULg; Yamamura, Takashi; Balthazart, Jacques ULg et al

Poster (2010, May)

In songbirds, song control nuclei such as HVC and Area X, show seasonal changes in volume that are regulated, at least in part, by the action of gonadal testosterone (T) and its metabolites. These changes ... [more ▼]

In songbirds, song control nuclei such as HVC and Area X, show seasonal changes in volume that are regulated, at least in part, by the action of gonadal testosterone (T) and its metabolites. These changes in volume are a result of changes in cell size, dendritic branching and, in HVC, the incorporation of newborn neurons. Doublecortin (DCX) is a microtubule-associated protein expressed during development and in adulthood in post-mitotic migrating and differentiating neurons in mammals. Our previous studies in male canaries demonstrated that DCX is expressed in BrdU-positive neurons consistent with DCX being a marker of neurogenesis in adult canaries. Testosterone induces marked increases in song nuclei volume in adult female canaries making these nuclei more male-like. Within the songbird brain, T can be metabolized to 5 alpha-dihydrotestosterone (DHT) and 17 beta-estradiol (E2). We found previously that both these metabolites are required to increase the volume of song nuclei in adult female canaries, but the cellular basis of this adult neuroplasticity is not well understood. Within HVC, the number of DCX-immunoreactive (ir) cells can be increased by photostimulation or treatment with T, but the effects of T and its metabolites on cell death in the songbird brain had not yet been elucidated. We therefore examined the effect of DHT and E2 on DCX expression and cell death in the song nuclei of adult female canaries. Intact female canaries were implanted with Silastic tubing containing crystalline T, DHT, E2, or a combination of DHT+E2. Control animals received empty implants. All birds were kept under early spring-like photoperiodic conditions (11L:13D) for 3 weeks. In HVC, the total number of DCX-ir cells was increased by treatment with T or DHT+E2 as compared to control birds, but was not affected by treatment with DHT or E2 alone. The number of pyknotic cells observed in the HVC was also increased by T but not by its metabolites. In Area X, the total number of DCX-ir cells was increased by treatment with T or DHT+E2, but the number of pyknotic cells was unaffected by hormone treatment. These results suggest that T enhances cellular turnover in the HVC (migration into, and cell death within, HVC), but affects only recruitment of new neurons into Area X. [less ▲]

Detailed reference viewed: 75 (3 ULg)
Full Text
Peer Reviewed
See detailJapanese quail as a model system for studying the neuroendocrine control of reproductive and social behaviors.
Ball, Gregory F; Balthazart, Jacques ULg

in ILAR Journal (2010), 51(4), 310-25

Japanese quail (Coturnix japonica; referred to simply as quail in this article) readily exhibit sexual behavior and related social behaviors in captive conditions and have therefore proven valuable for ... [more ▼]

Japanese quail (Coturnix japonica; referred to simply as quail in this article) readily exhibit sexual behavior and related social behaviors in captive conditions and have therefore proven valuable for studies of how early social experience can shape adult mate preference and sexual behavior. Quail have also been used in sexual conditioning studies illustrating that natural stimuli predict successful reproduction via Pavlovian processes. In addition, they have proven to be a good model to study how variation in photoperiod regulates reproduction and how variation in gonadal steroid hormones controls sexual behavior. For example, studies have shown that testosterone activates male-typical behaviors after being metabolized into estrogenic and androgenic metabolites. A critical site of action for these metabolites is the medial preoptic nucleus (POM), which is larger in males than in females. The enzyme aromatase converts testosterone to estradiol and is enriched in the POM in a male-biased fashion. Quail studies were the first to show that this enzyme is regulated both relatively slowly via genomic actions of steroids and more quickly via phosphorylation. With this base of knowledge and the recent cloning of the entire genome of the closely related chicken, quail will be valuable for future studies connecting gene expression to sexual and social behaviors. [less ▲]

Detailed reference viewed: 23 (2 ULg)
Full Text
Peer Reviewed
See detailBrain aromatase activity and male sexual behavior
Balthazart, Jacques ULg; Cornil, Charlotte ULg; Charlier, Thierry ULg et al

in Annales d'Endocrinologie (2010), 71

Detailed reference viewed: 10 (2 ULg)
Full Text
Peer Reviewed
See detailSeasonal and hormonal modulation of neurotransmitter systems in the song control circuit.
Ball, Gregory F; Balthazart, Jacques ULg

in Journal of Chemical Neuroanatomy (2010), 39(2), 82-95

In the years following the discovery of the song system, it was realized that this specialized circuit controlling learned vocalizations in songbirds (a) constitutes a specific target for sex steroid ... [more ▼]

In the years following the discovery of the song system, it was realized that this specialized circuit controlling learned vocalizations in songbirds (a) constitutes a specific target for sex steroid hormone action and expresses androgen and (for some nuclei) estrogen receptors, (b) exhibits a chemical neuroanatomical pattern consisting in a differential expression of various neuropeptides and neurotransmitters receptors as compared to surrounding structures and (c) shows pronounced seasonal variations in volume and physiology based, at least in the case of HVC, on a seasonal change in neuron recruitment and survival. During the past 30 years numerous studies have investigated how seasonal changes, transduced largely but not exclusively through changes in sex steroid concentrations, affect singing frequency and quality by modulating the structure and activity of the song control circuit. These studies showed that testosterone or its metabolite estradiol, control seasonal variation in singing quality by a direct action on song control nuclei. These studies also gave rise to the hypothesis that the probability of song production in response to a given stimulus (i.e. its motivation) is controlled through effects on the medial preoptic area and on catecholaminergic cell groups that project to song control nuclei. Selective pharmacological manipulations confirmed that the noradrenergic system indeed plays a role in the control of singing behavior. More experimental work is, however, needed to identify specific genes related to neurotransmission that are regulated by steroids in functionally defined brain areas to enhance different aspects of song behavior. [less ▲]

Detailed reference viewed: 21 (2 ULg)
Full Text
Peer Reviewed
See detailIntroduction to the chemical neuroanatomy of birdsong.
Ball, Gregory F; Balthazart, Jacques ULg

in Journal of Chemical Neuroanatomy (2010), 39(2), 67-71

Detailed reference viewed: 44 (0 ULg)
Full Text
Peer Reviewed
See detailBehavioral effects of brain-derived estrogens in birds.
Balthazart, Jacques ULg; Taziaux, Mélanie ULg; Holloway, Kevin et al

in Annals of the New York Academy of Sciences (2009), 1163

In birds as in other vertebrates, estrogens produced in the brain by aromatization of testosterone have widespread effects on behavior. Research conducted with male Japanese quail demonstrates that ... [more ▼]

In birds as in other vertebrates, estrogens produced in the brain by aromatization of testosterone have widespread effects on behavior. Research conducted with male Japanese quail demonstrates that effects of brain estrogens on all aspects of sexual behavior, including appetitive and consummatory components as well as learned aspects, can be divided into two main classes based on their time course. First, estrogens via binding to estrogen receptors regulate the transcription of a variety of genes involved primarily in neurotransmission. These neurochemical effects ultimately result in the activation of male copulatory behavior after a latency of a few days. Correlatively, testosterone and its aromatized metabolites increase the transcription of the aromatase mRNA, resulting in an increased concentration and activity of the enzyme that actually precedes behavioral activation. Second, recent studies with quail demonstrate that brain aromatase activity can also be modulated within minutes by phosphorylation processes regulated by changes in intracellular calcium concentration, such as those associated with glutamatergic neurotransmission. The rapid upregulations or downregulations of brain estrogen concentration (presumably resulting from these changes in aromatase activity) affect, by nongenomic mechanisms with relatively short latencies (frequency increases or decreases respectively within 10-15 min), the expression of male sexual behavior in quail and also in rodents. Brain estrogens thus affect behavior on different time scales by genomic and nongenomic mechanisms similar to those of a hormone or a neurotransmitter. [less ▲]

Detailed reference viewed: 25 (3 ULg)
Full Text
Peer Reviewed
See detailEstradiol, a key endocrine signal in the sexual differentiation and activation of reproductive behavior in quail.
Balthazart, Jacques ULg; Cornil, Charlotte ULg; Charlier, Thierry ULg et al

in Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology (2009), 311(5), 323-45

In Japanese quail, estrogen's effects on sexual behavior can be divided into three classes based on the underlying mechanisms and time-course of action and release. During embryonic life, the embryonic ... [more ▼]

In Japanese quail, estrogen's effects on sexual behavior can be divided into three classes based on the underlying mechanisms and time-course of action and release. During embryonic life, the embryonic ovary secretes large amounts of estrogens. In contrast to what is observed in mammals where sexual differentiation essentially proceeds via masculinization of the males, in quail, females are demasculinized by their endogenous ovarian estrogens, an effect that can be blocked by injection of an aromatase inhibitor and mimicked in male embryos by an injection of estradiol. In adulthood, testosterone secreted by the testes is converted into estrogens by the preoptic aromatase. Locally produced estrogens activate male sexual behavior largely through the activation of estrogen receptors resulting in the transcription of a variety of genes, including brain aromatase (genomic effect). Both changes in estrogen production and action are observed within latencies ranging from a few hours to a few days, and are completely reversible. Additionally, brain aromatase activity can be modulated within minutes by calcium-dependent phosphorylations, triggered by variations in glutamatergic neurotransmission. These rapid changes in aromatase activity affect with relatively short latencies (10-15 min) the expression of male sexual behavior in quail and also in mice. Overall, the effects of estrogens on sexual behavior can thus be categorized into three classes: organizational (irreversible genomic action during ontogeny), activational (reversible genomic action during adulthood) and rapid nongenomic effects. Rapid and slower changes in brain aromatase activity match well with the two modes of estrogen action on behavior and provide temporal variations in the estrogens' bioavailability that should be able to support the entire range of established effects for this steroid. [less ▲]

Detailed reference viewed: 20 (9 ULg)