References of "Bahri, Mohamed Ali"
     in
Bookmark and Share    
Full Text
See detailEVALUATING THE SPECIFICITY OF [18F]UCB-H FOR THE ISOFORM SV2A, COMPARED WITH ISOFORMS SV2B AND SV2C
Serrano Navacerrada, Maria Elisa ULiege; Aerts, Joël ULiege; Bahri, Mohamed Ali ULiege et al

Poster (2016, November 18)

Background: SV2A is the most studied isoform of the Synaptic Vesicle 2 proteins, which are involved in the synaptic vesicle trafficking, being important in normal and pathological process, like the ... [more ▼]

Background: SV2A is the most studied isoform of the Synaptic Vesicle 2 proteins, which are involved in the synaptic vesicle trafficking, being important in normal and pathological process, like the epilepsy (1, 2). [18F]UCB-H was developed like a tool to study the role of this isoform with neuroimaging techniques (3, 4). The objective of this study was to evaluate its specificity to this isoform comparing with the others, through a competition assay in rats with ex-vivo autoradiography and mPET imaging. Methods: Forty male Sprague-Dawley were used in ex-vivo autoradiography experiments (N=20) and in microPET imaging (N=20). Animals were pre-treated 30 minutes before the injection of [18F]UCB-H with a dose IP either of vehicle, Keppra (SV2A ligand), UCB068 (SV2B ligand) or UCB054 (SV2C ligand). Ex-vivo autoradiography was carried out 5 minutes after radiotracer injection while mPET images were acquiring with a dynamic scanner of 1 hour. Data were expressed in Standard Uptake Value and then, the area under the curve was calculated for the total process. Results: In ex-vivo autoradiography, ANOVA of two-ways showed statistical significant differences in brain uptake of [18F]UCB-H among the groups pretreated with Keppra or the ligand for SV2B and the control group. Regarding mPET data, statistical significant differences were found between the group injected with keppra and the rest of groups. Conclusion: Even if a considerable affinity between the ligands UCB068 and UCB054, and the receptor for the isoform SV2A exists, it is only detected during the first 5 minutes (ex-vivo technique), being certainly due to a nonspecific binding. This binding is not strong enough to show a direct competition with the radiotracer during a mPET acquisition. These results allow us to conclude that [18F]UCB-H is a suitable radiotracer for the imaging of the isoform SV2A in vivo, allowing us the clinical study about the molecular base of a disease with a high population impact, like the epilepsy. [less ▲]

Detailed reference viewed: 46 (6 ULiège)
Full Text
Peer Reviewed
See detailResting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers
BONHOMME, Vincent ULiege; VANHAUDENHUYSE, Audrey ULiege; Demertzi, Athina ULiege et al

in Anesthesiology (2016), 125(5), 873-878

Background: Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control ... [more ▼]

Background: Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity. Methods: Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]). Results: Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]: W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortex: W1 = −0.07 [−0.09 to −0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculum: W1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected. Conclusions: Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness. [less ▲]

Detailed reference viewed: 79 (19 ULiège)
Full Text
Peer Reviewed
See detailEnabling efficient PET imaging of Synaptic Vesicle glycoprotein 2A (SV2A) with a robust and one-step radiosynthesis of a highly potent 18F-labelled ligand ([18F]UCB-H)
Warnier, Corentin ULiege; Lemaire, Christian ULiege; Becker, Guillaume ULiege et al

in Journal of Medicinal Chemistry (2016), 59

We herein describe the straightforward synthesis of a stable pyridyl(4- methoxyphenyl)iodonium salt and its [18F]radiolabelling within a one-step, fully automated and cGMP compliant radiosynthesis of [18F ... [more ▼]

We herein describe the straightforward synthesis of a stable pyridyl(4- methoxyphenyl)iodonium salt and its [18F]radiolabelling within a one-step, fully automated and cGMP compliant radiosynthesis of [18F]UCB-H ([18F]7), a PET tracer for the imaging of Synaptic Vesicle glycoprotein 2A (SV2A). Over the course of one year, 50 automated productions provided 34±2% of injectable [18F]7 from up to 285 GBq (7.7 Ci) of [18F]fluoride in 50 minutes (uncorrected radiochemical yield. Specific Activity = 815±185 GBq/μmol). The successful implementation of our synthetic strategy within routine, high-activity and cGMP productions attests to its practicality and reliability for the production of large doses of [18F]7. In addition to enabling efficient and cost-effective clinical research on a range of neurological pathologies through the imaging of SV2A, this work further demonstrates the real value of iodonium salts for the cGMP 18F-PET tracer manufacturing industry, and their ability to fulfill practical and regulatory requirements in that field. [less ▲]

Detailed reference viewed: 66 (15 ULiège)
Full Text
Peer Reviewed
See detailBiodistribution of Novel 68Ga-Radiolabelled HER2 Aptamers in Mice
Gijs, Marlies; Becker, Guillaume ULiege; Plenevaux, Alain ULiege et al

in Journal of Nuclear Medicine and Radiation Therapy (2016), 7(5),

Background: Two novel HER2 aptamers were recently selected with great potential for the in vitro diagnosis of HER2-positive cancer. The goal of this study was to examine the in vivo diagnostic potential ... [more ▼]

Background: Two novel HER2 aptamers were recently selected with great potential for the in vitro diagnosis of HER2-positive cancer. The goal of this study was to examine the in vivo diagnostic potential of these HER2 aptamers. Methods: Both HER2 aptamers were radiolabelled with 68Ga, injected in mice bearing a HER2-positive and HER2-negative tumour and evaluated by PET/MRI. Results: Ex vivo bio distribution analysis revealed high uptake in the blood, tissues and organs, except the brain. Interestingly, this high uptake was explained by the slow blood clearance due to non-specific aptamer binding to blood proteins. We observed accumulation of radioactivity in both tumours in time. Although higher uptake in the HER2-positive tumour compared to the HER2-negative tumour was observed, this was accompanied with more necrosis in the HER2-negative tumour, which was observed by 18FDG PET/CT. Conclusion: This work presents a first step towards the development of 68Ga-labelled aptamers for molecular cancer imaging. [less ▲]

Detailed reference viewed: 89 (15 ULiège)
Full Text
Peer Reviewed
See detailEffects of aging on task- and stimulus-related cerebral attention networks
Kurth, Sophie ULiege; Majerus, Steve ULiege; Bastin, Christine ULiege et al

in Neurobiology of Aging (2016), 44

Interactions between a dorsal attention (DAN) and a ventral attention cerebral network (VAN) have been reported in young participants during attention or short term memory (STM) tasks. Since it remains an ... [more ▼]

Interactions between a dorsal attention (DAN) and a ventral attention cerebral network (VAN) have been reported in young participants during attention or short term memory (STM) tasks. Since it remains an under-investigated question, age effects on DAN and VAN activity and their functional balance were explored during performance of a STM task. Older and young groups showed similar behavioral patterns of results. At the cerebral level, DAN activation increased as a function of increasing STM load in both groups, suggesting preserved activity in DAN during healthy aging. Age-related over-recruitment in regions of the DAN in the higher task load raised the question of compensation attempt versus less efficient use of neural resources in older adults. Lesser decrease of VAN activation with increasing load and decreased stimulus-driven activation in the VAN, especially in the higher load, in older participants suggested age-related reduced response in the VAN. However, functional connectivity measures showed that VAN was still functionally connected to the DAN in older participants. [less ▲]

Detailed reference viewed: 68 (32 ULiège)
Full Text
Peer Reviewed
See detailIn vivo quantification of dopaminergic terminals loss in Parkinson’s Disease rat model: comparison between [18F]FMT and [18F]FDOPA.
Becker, Guillaume ULiege; Bahri, Mohamed Ali ULiege; Michel, Anne et al

in Molecular Imaging & Biology (2016, July), 18(S1), 1744

Objectives: Rat models of Parkinson’s disease (PD), such as unilaterally lesioned rats with 6-hydroxydopamine (6-OHDA), are useful to evaluate novel antiparkinsonian therapies. MicroPET imaging, using L-3 ... [more ▼]

Objectives: Rat models of Parkinson’s disease (PD), such as unilaterally lesioned rats with 6-hydroxydopamine (6-OHDA), are useful to evaluate novel antiparkinsonian therapies. MicroPET imaging, using L-3,4-dihydroxy-6-[18F]-fluoro-phenylalanine ([18F]FDOPA) allows longitudinal evaluations of DA terminals loss. However, chemical structure of [18F]FDOPA leads to suboptimal PET imaging. 18F-fluoro-m-tyrosine ([18F]FMT) is an effective PET tracer to evaluate DA terminals integrity and L-aromatic amino acid decarboxylase (AAAD) metabolic pathway. So far, there are no available quantitative PET studies comparing the two methods in hemiparkinsonian rats. In this study, we compare imaging data provided by [18F]FMT PET and [18F]FDOPA PET in 6-OHDA-lesioned rats. Methods: 10 µg of 6-OHDA were injected into the right medial forebrain bundle (MFB) of male Sprague-Dawley rats (n=8). As control, sham-treated rats (n=8) were injected with vehicle only but otherwise treated identically. Striatal DA presynaptic activity was assessed by dynamic PET with both [18F]FMT and [18F]FDOPA. Structural T2-weighted brain images were acquired on a 9.4T MRI and were used for co-registration. After normalization on a MRI template, kinetic analysis was performed by “Patlak Reference” model, using PMOD software. Six days after the last PET scan, rats were sacrificed, and striatum were rapidly removed for striatal DA and metabolites quantification. Results: Striatal accumulation was observed for both tracers. However, while the administration of [18F]FDOPA required two peripheral inhibitors (benserazide and entacapone), only benserazide is needed with [18F]FMT. As consequence of the 6-OHDA-lesion, significant decrease of both [18F]FMT and [18F]DOPA accumulation was recorded in the striatum ipsilateral to the lesion. Lesioned rats had dramatically reduced uptake constant Ki in the ipsilateral striatum compared to the contralateral striatum (p<0.001 for [18F]FMT and p<0.05 for [18F]DOPA) and to the ipsilateral striatum of sham-treated rats (p<0.001 for both tracers). The DA content in the ipsilateral striatum was significantly lower (p<0.001) than in the contralateral striatum in the 6-OHDA-injected group, whereas such difference was not measured with the sham group. This indicate that [18F]FMT PET is as effective as [18F]DOPA PET to quantify loss of DA presynaptic function in unilaterally 6-OHDA lesioned rats. Conclusions: Our results are in agreement with data reporting correlation between these two tracers in a Non-human primate model of PD. The sensitivity of the data quantification obtained in this study, confirms the interest to pursue longitudinal investigations with [18F]FMT to monitor dopaminergic dysfunction in a more progressive preclinical model of PD. [less ▲]

Detailed reference viewed: 128 (9 ULiège)
Full Text
Peer Reviewed
See detailFunction–structure connectivity in patients with severe brain injury as measured by MRI-DWI and FDG-PET
Annen, Jitka ULiege; Heine, Lizette ULiege; Ziegler, Erik et al

in Human Brain Mapping (2016), 37(11), 3707-3720

Detailed reference viewed: 74 (26 ULiège)
Peer Reviewed
See detailThe influence of COMT single nucleotide polymorphism (rs4680) on the neural substrates of working memory representations maintenance in healthy aging
Manard, Marine ULiege; François, Sarah ULiege; Bahri, Mohamed Ali ULiege et al

Poster (2016, May 10)

The COMT val108/158met polymorphism was associated to the dopaminergic modulation in the brain, and therefore stimulated research on its influence for cognitive functioning and particularly working memory ... [more ▼]

The COMT val108/158met polymorphism was associated to the dopaminergic modulation in the brain, and therefore stimulated research on its influence for cognitive functioning and particularly working memory. First, a general advantage of carrying the met allele was reported. However, many studies used tasks that did not allow efficiently assessing the contribution of manipulation and maintenance processes in working memory, leading to divergent results, in both young and older populations, resulting in debates about the exact phenotypic effect of the COMT polymorphism. Using fMRI, this study was designed to assess the potential effect of the COMT polymorphism on age-related differences in working memory representations maintenance abilities (Sternberg paradigm). Partial Least Squares method was used to determine the brain-behavior correlations at low, intermediate, and high cognitive demands among young and older groups, homozygous for the val or for the met allele. First, young val/val showed some disadvantages at brain and behavioral level compared to their m/m counterparts. However, in older adults subgroups, the m/m participants tended to show greater age-related difference (when compared to younger adults with similar genotype), suggesting an advantage in carrying the val allele when dopamine signaling is not at optimal efficiency (optimal: young/middle adulthood vs suboptimal: childhood or older ages). These results will be discussed in regard to compensating theories and dopaminergic models accounting for the potential effect of COMT polymorphism on stability/flexibility abilities. [less ▲]

Detailed reference viewed: 135 (14 ULiège)
Full Text
See detailFeasibility study of repetitive diffusion MRI after Neoadjuvant radiotherapy for following tumor microenvironment.
LALLEMAND, François ULiege; Leroi, Natacha ULiege; Bahri, Mohamed Ali ULiege et al

Conference (2016, March 22)

Purpose/Objective. Neoadjuvant radiotherapy (NeoRT) improves tumor local control and tumor resection in many cancers. The timing between the end of the NeoRT and surgery is mostly driven by the occurrence ... [more ▼]

Purpose/Objective. Neoadjuvant radiotherapy (NeoRT) improves tumor local control and tumor resection in many cancers. The timing between the end of the NeoRT and surgery is mostly driven by the occurrence of side effects or the tumor downsizing. We previously demonstrated in an in vivo model that the timing of surgery and the schedule of NeoRT influenced the tumor dissemination. Here, our aim is to evaluate with functional MRI (fMRI) the impact of the radiation treatment on the tumor microenvironment and subsequently to identify non-invasive markers helping to determine the best timing to perform surgery for avoiding tumor spreading. First, we needed to demonstrate the feasibility of repetitive MRI imaging after NeoRT in mice. Material/methods. We used two models of NeoRT we previously developed in mice: MDA-MB 231 and 4T1 cells implanted in the flank of mice. When tumors reached the planned volume, they are irradiated with 2x5 Gy and then surgically removed at different time points after RT. In the mean time between the end of RT and the surgical procedure, mice were imaged in a 9,4T Agilent® MRI. Diffusion Weighted (DW) -MRI was performed every 2 days between RT and surgery. For each tumors we acquired 8 slices of 1 mm thickness and 0.5 mm gap with an “in plane voxel resolution” of 0.5 mm. For DW-MRI, we performed FSEMS (Fast Spin Echo MultiSlice) sequences, with 9 different B-values (from 40 to 1000) and B0, in the 3 main directions. We also performed IVIM (IntraVoxel Incoherent Motion) analysis, in the aim to obtain information on intravascular diffusion, related to perfusion (F: perfusion factor) and subsequently tumor vessels perfusion. Results. As preliminary results, with the MBA-MB 231 we observed a significant increase of F at day 6 after irradiation than a decrease and stabilization until surgery. No other modifications of the MRI signal, ADC, D or D* were observed. We observed similar results with 4T1 cells, F increased at day 3 than returned to initial signal. The difference in the timing of the peak of F can be related to the difference in tumor growth between MBA-MB 231 and 4T1 (four weeks vs one week). Conclusion. For the first time, we demonstrate the feasibility of repetitive fMRI imaging in mice models after NeoRT. With these models, we show a significant peak of the perfusion factor (F) at day 6 or day 3. This change occurs between the two previous time points of surgery demonstrating a difference in the metastatic spreading. Indeed, after a NeoRT of 2X5Gy we observed more metastases in the lung when MDA-MB 231 tumor bearing mice are operated 4 days after RT compared to 11 days. These preliminary results are very promising for identifying noninvasive markers for determining the best timing for surgery. [less ▲]

Detailed reference viewed: 51 (20 ULiège)
Full Text
Peer Reviewed
See detailEVALUATION OF SV2Alox/Cre TRANSGENIC MICE USING [18F]UCB-H IN VITRO AUTORADIOGRAPHY
Serrano Navacerrada, Maria Elisa ULiege; Becker, Guillaume ULiege; MENTEN, Catherine ULiege et al

Poster (2016, March 09)

Introduction Epilepsy is one of the commonest neurological disorders [1]. Antiepileptic drugs mainly target the SV2A protein [2] but its actual role is still largely unknown. [18F]UCB-H was developed to ... [more ▼]

Introduction Epilepsy is one of the commonest neurological disorders [1]. Antiepileptic drugs mainly target the SV2A protein [2] but its actual role is still largely unknown. [18F]UCB-H was developed to study in vivo SV2A brain proteins [3, 4]. The present pilot study was undertaken to evaluate for the first time in vivo in rats SV2A expression in the Kaïnic Acid (KA) epilepsy model [5]. Although this model is well studied in mice, few reports were devoted to rats. Imaging-wise, rats are very interesting thanks to a bigger brain size (reduction of the partial volume effect). Methods Three male Sprague-Dawley were used, one injected with saline and two with multiple KA injections (3 x 5mg/kg) [6]. 75 days later, when spontaneous seizures started to appear, microPET (Focus 120 ) was performed under isoflurane anesthesia (2.5-3 % in air) for 1 hour with [18F]UCB-H (41 ± 5 MBq IV tail vein) followed by MRI (9.4T Agilent, anatomical T2). Coregistration was done with PMOD 3.6 software. Data were expressed as SUV and areas under the curve were calculated for the different regions. Results [18F]UCB-H microPET images showed an important reduction (20-30%) for SV2A after KA injections mainly localized in amygdala, hippocampus, lateral parietal association cortex and cingulate cortex. The rest of the brain was globally unchanged. MRI revealed atrophy and inflammation in amygdala and hippocampus. Conclusions These preliminary results obtained in KA treated rats showed that [18F]UCB-H was able to detect important modifications for SV2A in relevant regions for epilepsy and appears as a valuable tool to follow in vivo SV2A through longitudinal studies. KA model in rats deserves for further development and validation as a tool for the study of epilepsy. [less ▲]

Detailed reference viewed: 33 (8 ULiège)
Full Text
Peer Reviewed
See detailIn vivo evaluation of [18F]UCB-H binding at SV2A protein, through a new and efficient radiosynthesis of [18F]UCB-H.
Becker, Guillaume ULiege; Warnier, C; Serrano Navacerrada, Maria Elisa ULiege et al

Poster (2016, March 08)

Background: [18F]UCB-H is a validated radiotracer with a high affinity for the synaptic vesicle glycoprotein 2A (SV2A), known as the binding site of the antiepileptic drug levetiracetam [1, 2]. The major ... [more ▼]

Background: [18F]UCB-H is a validated radiotracer with a high affinity for the synaptic vesicle glycoprotein 2A (SV2A), known as the binding site of the antiepileptic drug levetiracetam [1, 2]. The major drawback of [18F]UCB-H was a long, multi-step radiosynthesis with limited yield of radiotracer [3]. We provide here in vivo evaluation of a new efficient single-step radiosynthesis of [18F]UCB-H, that allows us to highlight the role of the enantio-selectivity while targeting SV2A. Then, we synthetized and radiolabeled the major metabolite, namely [18F]UCB-H-N-oxyde, and investigated its impact on rat brain PET images. Methods: [18F]UCB-H was produced with a simple, one-step production strategy which consisted in radiolabeling an enantiomerically pure (S- or R-) N-heteroaryliodonium precursor [4]. 5 Sprague-Dawley (SD) rats underwent 1 dynamic PET scan (60 minutes) with each enantiomer and a third one with the racemic mixture. We used a population-based input function (PBIF) to quantify [18F]UCB-H binding with Logan graphical analysis. [18F]UCB-H-N-oxyde was produced by a direct oxidation with a large excess of pure m-CPBA in Et2O. 5 SD rats underwent 1 dynamic PET scan (60 minutes) with this radiosynthetic [18F]UCB-H-N-oxyde. Results: The radiosynthesis lasted 60 min and afforded a 34 ± 2% radiochemical yield, non-corrected for decay, with a high specific activity (820 ± 180 GBq/µmol). Time activity curves showed higher values for the [18F]UCB-H compared to both the S-[18F]UCB-H and the racemic. Distribution volume (Vt) of the [18F]UCB-H, measured with the PBIF were consistent with previous study [2]. Analysis of [18F]UCB-H-N-oxyde PET images confirmed the absence of Blood-Brain-Barrier crossing. Conclusions: This new [18F]UCB-H radiosynthesis allows us to reach high specific activities. In vivo results are consistent with previous work and emphasize the need of high enantiomeric purity to reach accurate quantitative values of radiotracer binding. The use of a PBIF to quantify [18F]UCB-H binding in the rat brain is reliable and afford longitudinal study. At the end, our study demonstrated that [18F]UCB-H fulfils an important criterion for PET radiopharmaceuticals with the lack of troublesome brain radiometabolites. [less ▲]

Detailed reference viewed: 26 (3 ULiège)
Full Text
Peer Reviewed
See detailIn vivo quantification of dopaminergic terminals loss in Parkinson’s Disease rat with AAV-induced overexpression of alpha-synuclein: a [18F]FMT microPET study.
Becker, Guillaume ULiege; Bahri, Mohamed Ali ULiege; Michel, Anne et al

Poster (2016, March 08)

Objectives: Rat models of Parkinson’s disease (PD), such as progressive neurodegeneration induced by adeno-associated virus (AAV)-mediated over-expression of human -synuclein (A53T) in midbrain dopamine ... [more ▼]

Objectives: Rat models of Parkinson’s disease (PD), such as progressive neurodegeneration induced by adeno-associated virus (AAV)-mediated over-expression of human -synuclein (A53T) in midbrain dopamine neurons, are useful to evaluate novel antiparkinsonian therapies [1]. In vivo quantitative imaging of dopamine neurotransmission allows longitudinal evaluation of such PD’s rat model [2]. In this study, we investigate DA presynaptic function, with [18F]FMT PET (radiotracer of the L-aromatic amino acid decarboxylase enzyme), in the AAV A53T PD’s rat model, and correlate the results with behavioral measurements. Methods: All animals were injected with 2 µL A53T -synuclein (n=6) or GFP (n=2) AAV2/9 in the right substantia nigra. Striatal DA presynaptic activity was assessed by dynamic PET with [18F]FMT [3] at 18 weeks post-lesion. Kinetic analysis was performed by “Patlak Reference” model, using PMOD software. Rats were monitored for motor behavior and assessed before the lesion, and at 4, 12 and 18 weeks post-lesion. Results: As consequence of AAV-mediated A53T overexpression, significant decrease of [18F]FMT accumulation was recorded in the striatum ipsilateral to the lesion. Lesioned rats had dramatically reduced uptake constant Ki in the ipsilateral striatum compared to the contralateral striatum (p<0.001 for [18F]FMT) and to the ipsilateral striatum of sham-treated rats (p<0.001). Significant deficit in stepping adjustment was observed with the contralateral forepaw at 4, 12 and 18 weeks. Significant reduction of the time spent on the rotarod was also measured at 12 and 18 weeks. Conclusions: Our results report good correlations between [18F]FMT PET outcomes and behavioral results. The sensitivity of the data quantification obtained in this study, confirms the interest to pursue longitudinal investigations with [18F]FMT to monitor dopaminergic dysfunction in this progressive preclinical model of PD. [less ▲]

Detailed reference viewed: 25 (3 ULiège)
Full Text
See detailSleep, Coma, Vegetative and Minimally 4 Conscious States
Di Perri, Carol ULiege; Cavaliere, Carlo; Bodart, Olivier ULiege et al

in Sleep Disorders Medicine (2016)

Detailed reference viewed: 15 (1 ULiège)
Full Text
Peer Reviewed
See detailCorrelation between resting state fMRI total neuronal activity and PET metabolism in healthy controls and patients with disorders of consciousness
Soddu, Andrea ULiege; Gomez, Francisco; Heine, Lizette ULiege et al

in Brain and Behavior (2016), 6(1), 1-15

Introduction: The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure ‘resting state’ cerebral metabolism. This technique made ... [more ▼]

Introduction: The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure ‘resting state’ cerebral metabolism. This technique made it possible to assess changes in metabolic activity in clinical applications, such as the study of severe brain injury and disorders of consciousness. Objective: We assessed the possi- bility of creating functional MRI activity maps, which could estimate the rela- tive levels of activity in FDG-PET cerebral metabolic maps. If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET. It also overcomes the problem of recogniz- ing individual networks of independent component selection in functional mag- netic resonance imaging (fMRI) resting state analysis. Methods: We extracted resting state fMRI functional connectivity maps using independent component analysis and combined only components of neuronal origin. To assess neu- ronality of components a classification based on support vector machine (SVM) was used. We compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients and four locked-in patients. Results: The results show a significant similarity with q = 0.75  0.05 for healthy controls and q = 0.58  0.09 for vegetative state/unresponsive wakefulness syndrome patients between the FDG- PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the conjunction analysis show decreases in frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients produced also consistent maps with healthy controls. Conclusions: The constructed resting state fMRI functional connectivity map points toward the possibility for fMRI resting state to estimate relative levels of activity in a metabolic map. [less ▲]

Detailed reference viewed: 114 (20 ULiège)
Full Text
Peer Reviewed
See detailNeural correlates of consciousness in patients who have emerged from a minimally conscious state: A cross-sectional multimodal imaging study
Di Perri, Carol ULiege; Bahri, Mohamed Ali ULiege; Amico, Enrico ULiege et al

in Lancet Neurology (2016), 15

Background Between pathologically impaired consciousness and normal consciousness exists a scarcely researched transition zone, referred to as emergence from minimally conscious state, in which patients ... [more ▼]

Background Between pathologically impaired consciousness and normal consciousness exists a scarcely researched transition zone, referred to as emergence from minimally conscious state, in which patients regain the capacity for functional communication, object use, or both. We investigated neural correlates of consciousness in these patients compared with patients with disorders of consciousness and healthy controls, by multimodal imaging. Methods In this cross-sectional, multimodal imaging study, patients with unresponsive wakefulness syndrome, patients in a minimally conscious state, and patients who had emerged from a minimally conscious state, diagnosed with the Coma Recovery Scale–Revised, were recruited from the neurology department of the Centre Hospitalier Universitaire de Liège, Belgium. Key exclusion criteria were neuroimaging examination in an acute state, sedation or anaesthesia during scanning, large focal brain damage, motion parameters of more than 3 mm in translation and 3° in rotation, and suboptimal segmentation and normalisation. We acquired resting state functional and structural MRI data and ¹⁸F-fl uorodeoxyglucose (FDG) PET data; we used seed-based functional MRI (fMRI) analysis to investigate positive default mode network connectivity (within-network correlations) and negative default mode network connectivity (between-network anticorrelations). We correlated FDG-PET brain metabolism with fMRI connectivity. We used voxel- based morphometry to test the eff ect of anatomical deformations on functional connectivity. Findings We recruited a convenience sample of 58 patients (21 [36%] with unresponsive wakefulness syndrome, 24 [41%] in a minimally conscious state, and 13 [22%] who had emerged from a minimally conscious state) and 35 healthy controls between Oct 1, 2009, and Oct 31, 2014. We detected consciousness-level-dependent increases (from unresponsive wakefulness syndrome, minimally conscious state, emergence from minimally conscious state, to healthy controls) for positive and negative default mode network connectivity, brain metabolism, and grey matter volume (p<0·05 false discovery rate corrected for multiple comparisons). Positive default mode network connectivity diff ered between patients and controls but not among patient groups (F test p<0·0001). Negative default mode network connectivity was only detected in healthy controls and in those who had emerged from a minimally conscious state; patients with unresponsive wakefulness syndrome or in a minimally conscious state showed pathological between-network positive connectivity (hyperconnectivity; F test p<0·0001). Brain metabolism correlated with positive default mode network connectivity (Spearman’s r=0·50 [95% CI 0·26 to 0·61]; p<0·0001) and negative default mode network connectivity (Spearman’s r=–0·52 [–0·35 to –0·67); p<0·0001). Grey matter volume did not diff er between the studied groups (F test p=0·06). Interpretation Partial preservation of between-network anticorrelations, which are seemingly of neuronal origin and cannot be solely explained by morphological deformations, characterise patients who have emerged from a minimally conscious state. Conversely, patients with disorders of consciousness show pathological between-network correlations. Apart from a deeper understanding of the neural correlates of consciousness, these fi ndings have clinical implications and might be particularly relevant for outcome prediction and could inspire new therapeutic options. [less ▲]

Detailed reference viewed: 33 (10 ULiège)
Full Text
Peer Reviewed
See detailRelationship between grey matter integrity and executive abilities in aging
Manard, Marine ULiege; Bahri, Mohamed Ali ULiege; Salmon, Eric ULiege et al

in Brain Research (2016), 1642

This cross-sectional study was designed to investigate grey matter changes that occur in healthy aging and the relationship between grey matter characteristics and executive functioning. Thirty-six young ... [more ▼]

This cross-sectional study was designed to investigate grey matter changes that occur in healthy aging and the relationship between grey matter characteristics and executive functioning. Thirty-six young adults (18 to 30 years old) and 43 seniors (60 to 75 years old) were included. A general executive score was derived from a large battery of neuropsychological tests assessing three major aspects of executive functioning (inhibition, updating and shifting). Age-related grey matter changes were investigated by comparing young and older adults using voxel-based morphometry and voxel-based cortical thickness methods. A widespread difference in grey matter volume was found across many brain regions, whereas cortical thinning was mainly restricted to central areas. Multivariate analyses showed age-related changes in relatively similar brain regions to the respective univariate analyses but appeared more limited. Finally, in the older adult sample, a significant relationship between global executive performance and decreased grey matter volume in anterior (i.e. frontal, insular and cingulate cortex) but also some posterior brain areas (i.e. temporal and parietal cortices) as well as subcortical structures was observed. Results of this study highlight the distribution of age-related effects on grey matter volume and show that cortical atrophy does not appear primarily in “frontal” brain regions. From a cognitive viewpoint, age-related executive functioning seems to be related to grey matter volume but not to cortical thickness. Therefore, our results also highlight the influence of methodological aspects (from preprocessing to statistical analysis) on the pattern of results, which could explain the lack of consensus in literature. [less ▲]

Detailed reference viewed: 34 (16 ULiège)
Full Text
Peer Reviewed
See detailDiffusion MRI for following tumor modifications after neoadjuvant radiotherapy.
LALLEMAND, François ULiege; Leroi, Natacha ULiege; Bahri, Mohamed Ali ULiege et al

in Radiotherapy & Oncology (2016), 119

Neoadjuvant radiotherapy (NeoRT) improves tumor local control and tumor resection in many cancers. The timing between the end of the NeoRT and surgery is driven by the occurrence of side effects or the ... [more ▼]

Neoadjuvant radiotherapy (NeoRT) improves tumor local control and tumor resection in many cancers. The timing between the end of the NeoRT and surgery is driven by the occurrence of side effects or the tumor downsizing. Some studies demonstrated that the timing of surgery and the RT schedule could influence tumor dissemination and subsequently patient overall survival. We demonstrated the impact of NeoRT on metastatic spreading in a Scid mice model. After an irradiation of 2x5gy, we show more metastasis in the lung when the mice are operated at day 4 compared to day 11. Here, our aim is to evaluate with functional MRI (fMRI) the impact of the radiation treatment on the tumor microenvironment and subsequently to identify non-invasive markers helping to determine the best timing to perform surgery for avoiding tumor spreading. [less ▲]

Detailed reference viewed: 29 (8 ULiège)