References of "Bahri, Mohamed Ali"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPerformance evaluation and X-ray dose quantification for various scanning protocols of the GE eXplore 120 micro-CT
Bretin, Florian ULg; Warnock, Geoffrey; Luxen, André ULg et al

in IEEE Transactions on Nuclear Science (2013), 60(5), 3235-3241

The aim of this study was to evaluate the performance of the General Electric eXplore 120 micro-CT regarding image quality and delivered dose of several protocols. Image quality (resolution, linearity ... [more ▼]

The aim of this study was to evaluate the performance of the General Electric eXplore 120 micro-CT regarding image quality and delivered dose of several protocols. Image quality (resolution, linearity, uniformity and geometric accuracy) was assessed using the vmCT phantom developed for the GE eXplore Ultra, the QRM low contrast and the QRM Bar Pattern Phantom. All dose measurements were performed using a mobileMOSFET dose verification system and the CTDI100 and the MSAD were determined with a custom built PMMA phantom. Additionally, in vivo scans in sacrificed rats with different weights were acquired to assess dose, contrast and resolution variation due to X-ray absorption in surrounding tissue. The spatial resolution was determined as between 95 and 138 μm with a geometric accuracy of 0.1%. The system has a highly linear response to the iodine concentrations (0.937 to 30 mg/ml) for all protocols. The calculated CTDI100 ranged from 20.15 to 56.79 mGy and the MSAD from 27.98 to 77.45 mGy. The results were confirmed by in vivo scans in rats with different weights and no impact of body weight on delivered dose could be observed. However, body weight had a slight impact on image contrast and resolution. [less ▲]

Detailed reference viewed: 40 (19 ULg)
Full Text
Peer Reviewed
See detailIn vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: A new tool for oncology and radiotracer development.
Warnock, Geoffrey; Turtoi, Andrei ULg; Blomme, Arnaud ULg et al

in Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine (2013), 54(10), 1782-1788

For many years the laboratory mouse has been used as the standard model for in vivo oncology research, particularly in the development of novel PET tracers, but the growth of tumors on chicken ... [more ▼]

For many years the laboratory mouse has been used as the standard model for in vivo oncology research, particularly in the development of novel PET tracers, but the growth of tumors on chicken chorioallantoic membrane (CAM) provides a more rapid, low cost and ethically sustainable alternative. For the first time, we demonstrate the feasibility of in vivo PET and CT imaging in a U87 glioblastoma tumor model on chicken chorioallantoic membrane (CAM), with the aim of applying this model for screening of novel PET tracers. Methods: U87 glioblastoma cells were implanted on the CAM at day 11 post-fertilization and imaged at day 18. A small animal imaging cell was used to maintain incubation and allow anesthesia using isoflurane. Radiotracers were injected directly into the exposed CAM vasculature. Sodium [18F]fluoride was used to validate the imaging protocol, demonstrating that image-degrading motion can be removed with anesthesia. Tumor glucose metabolism was imaged using [18F]fluorodeoxyglucose and tumor protein synthesis was imaged using 2-[18F]fluoro-L-tyrosine. Anatomical images were obtained by contrast enhanced CT, facilitating clear delineation of the tumor, delineation of tracer uptake in tumor versus embryo and accurate volume measurements. Results: PET imaging of tumor glucose metabolism and protein synthesis was successfully demonstrated in the CAM U87 glioblastoma model. Catheterization of CAM blood vessels facilitated dynamic imaging of glucose metabolism with [18F]fluorodeoxyglucose and demonstrated the ability to study PET tracer uptake over time in individual tumors, while CT imaging improved the accuracy of tumor volume measurements. Conclusion: In summary, we describe the novel application of PET/CT in the CAM tumor model, with optimization of typical imaging protocols. PET imaging in this valuable tumor model could prove particularly useful for rapid, high-throughput screening of novel radiotracers. [less ▲]

Detailed reference viewed: 87 (31 ULg)
Full Text
Peer Reviewed
See detailBrain metabolic dysfunction in Capgras syndrome during Alzheimer’s disease: a positron emission tomography study
Jedidi, Haroun ULg; Daury, Noémy; Cappa, Rémi et al

Poster (2013, June)

Detailed reference viewed: 48 (16 ULg)
Full Text
Peer Reviewed
See detailPreclinical radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H
Bretin, Florian ULg; Warnock, Geoffrey; Bahri, Mohamed Ali ULg et al

in European Journal of Nuclear Medicine and Molecular Imaging Research (2013), 3(1), 35

Background: [18F]UCB-H was developed as a novel radiotracer with a high affinity for synaptic vesicle protein 2A, the binding site for the antiepileptic levetiracetam. The objectives of this study were to ... [more ▼]

Background: [18F]UCB-H was developed as a novel radiotracer with a high affinity for synaptic vesicle protein 2A, the binding site for the antiepileptic levetiracetam. The objectives of this study were to evaluate the radiation dosimetry of [18F]UCB-H in a preclinical trial and to determine the maximum injectable dose according to guidelines for human biomedical research. The radiation dosimetry was derived by organ harvesting and dynamic micro positron emission tomography (PET) imaging in mice, and the results of both methods were compared. Methods: Twenty-four male C57BL-6 mice were injected with 6.96 ± 0.81 MBq of [18F]UCB-H, and the biodistribution was determined by organ harvesting at 2, 5, 10, 30, 60, and 120 min (n = 4 for each time point). Dynamic microPET imaging was performed on five male C57BL-6 mice after the injection of 9.19 ± 3.40 MBq of [18F]UCB-H. A theoretical dynamic bladder model was applied to simulate urinary excretion. Human radiation dose estimates were derived from animal data using the International Commission on Radiological Protection 103 tissue weighting factors. Results: Based on organ harvesting, the urinary bladder wall, liver and brain received the highest radiation dose with a resulting effective dose of 1.88E-02 mSv/MBq. Based on dynamic imaging an effective dose of 1.86E-02 mSv/MBq was calculated, with the urinary bladder wall and liver (brain was not in the imaging field of view) receiving the highest radiation. Conclusions: This first preclinical dosimetry study of [18F]UCB-H showed that the tracer meets the standard criteria for radiation exposure in clinical studies. The dose-limiting organ based on US Food and Drug Administration (FDA) and European guidelines was the urinary bladder wall for FDA and the effective dose for Europe with a maximum injectable single dose of approximately 325 MBq was calculated. Although microPET imaging showed significant deviations from organ harvesting, the Pearson’s correlation coefficient between radiation dosimetry derived by either method was 0.9666. [less ▲]

Detailed reference viewed: 50 (16 ULg)
Full Text
Peer Reviewed
See detailBrain dead yet mind alive: A positron emission tomography case study of brain metabolism in Cotard’s syndrome
Charland-Verville, Vanessa ULg; Bruno, Marie-Aurélie ULg; Bahri, Mohamed Ali ULg et al

in Cortex : A Journal Devoted to the Study of the Nervous System & Behavior (2013), 49(7), 1997-1999

Detailed reference viewed: 40 (9 ULg)
Peer Reviewed
See detailImpairment of two memory cerebral networks in Alzheimer's disease
Bastin, Christine ULg; Bahri, Mohamed Ali ULg; Collette, Fabienne ULg et al

in Proceedings of the Annual Meeting of the Belgian Association for Psychological Sciences (2013)

Detailed reference viewed: 8 (3 ULg)
See detailRadiosynthesis and first small animal microPET imaging of [18F]UCB-H, a new fluorine-18 labelled tracer targeting synaptic vesicle protein 2A (SV2A)
Aerts, Joël ULg; Otabashi, Muhamed; Giacomelli, Fabrice ULg et al

Conference (2013)

Aim. We report the radiosynthesis and first rat microPET imaging of a new fluorine-18 tracer targeting the synaptic vesicle protein 2A, SV2A, identified as the binding site of the antiepileptic drug ... [more ▼]

Aim. We report the radiosynthesis and first rat microPET imaging of a new fluorine-18 tracer targeting the synaptic vesicle protein 2A, SV2A, identified as the binding site of the antiepileptic drug levetiracetam. Materials and Method. Two different nucleophilic radiosynthesis pathways were tested to obtain [18F]UCB-H, a no-carrier-added tracer in the 2-[18F]fluoropyridine family. The methods were automated on FastLab™ synthesizers. PET studies in rodents were carried out using male SD rats, imaged under isoflurane anaesthesia in a Siemens Concorde Focus 120 microPET scanner. Arterial input function was measured using an arteriovenous shunt method and beta microprobe system. All animal protocols were reviewed and accepted by animal ethical committees. Results and conclusion. A radiosynthesis yield of 30% was obtained (uncorrected for decay, 150 minutes of synthesis). Analytical methods were developed and validated to demonstrate that the quality of the tracer solution was compatible with in vivo injection. After intravenous injection, the tracer rapidly entered the brain, followed by rapid washout. PET imaging revealed high uptake of the tracer in the brain and spinal cord, matching the expected SV2A homogeneous distribution. Results indicate that [18F]UCB-H is suitable to quantify SV2A proteins in vivo and to estimate target occupancy of drugs targeting SV2A. Acknowledgments. The authors thank UCB Pharma SA Belgium for collaboration and the Walloon Region Belgium and the FRNS Belgium for financial support. [less ▲]

Detailed reference viewed: 34 (7 ULg)
Full Text
Peer Reviewed
See detailMetabolic and structural connectivity within the default mode network relates to working memory performance in young healthy adults
Yakushev, Igor; Chételat, Gael; Fischer F.U. et al

in NeuroImage (2013), 79

Studies of functional connectivity suggest that the default mode network (DMN) might be relevant for cognitive functions. Here, we examined metabolic and structural connectivity between major DMN nodes ... [more ▼]

Studies of functional connectivity suggest that the default mode network (DMN) might be relevant for cognitive functions. Here, we examined metabolic and structural connectivity between major DMN nodes, the posterior cingulate (PCC) and medial prefrontal cortex (MPFC), in relation to normal working memory (WM). DMN was captured using independent component analysis of [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) data from 35 young healthy adults (27.1±5.1 years). Metabolic connectivity, a correlation between FDG uptake in PCC and MPFC, was examined in groups of subjects with (relative to median) low (n=18) and high (n=17) performance on digit span backward test as an index of verbal WM. In addition, fiber tractography based on PCC and MPFC nodes as way points was performed in a subset of subjects. FDG uptake in the DMN nodes did not differ between high and low performers. However, significantly (p=0.01) lower metabolic connectivity was found in the group of low performers. Furthermore, as compared to high performers, low performers showed lower density of the left superior cingulate bundle. Verbal WM performance is related to metabolic and structural connectivity within the DMN in young healthy adults. Metabolic connectivity as quantified with FDG-PET might be a sensitive marker of the normal variability in some cognitive functions. [less ▲]

Detailed reference viewed: 48 (16 ULg)
Full Text
Peer Reviewed
See detailRelationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity
Chételat, Gael; Landeau, Brigitte; Salmon, Eric ULg et al

in NeuroImage (2013), 76

Normal aging is characterized by brain glucose metabolism decline predominantly in the prefrontal cortex. The goal of the present study was to assess whether this change was associated with age-related ... [more ▼]

Normal aging is characterized by brain glucose metabolism decline predominantly in the prefrontal cortex. The goal of the present study was to assess whether this change was associated with age-related alteration of white matter (WM) structural integrity and/or functional connectivity. FDG-PET data from 40 young and 57 elderly healthy participants from two research centres (n=49/48 in Centre 1/2) were analyzed. WM volume from T1-weighted MRI (Centre 1), fractional anisotropy from diffusion-tensor imaging (Centre 2), and resting-state fMRI data (Centre 1) were also obtained. Group comparisons were performed within each imaging modality. Then, positive correlations were assessed, within the elderly, between metabolism in the most affected region and the other neuroimaging modalities. Metabolism decline in the elderly predominated in the left inferior frontal junction (LIFJ). LIFJ hypometabolism was significantly associated with macrostructural and microstructural WM disturbances in long association fronto-temporo-occipital fibers, while no relationship was found with functional connectivity. The findings offer new perspectives to understand normal aging processes and open avenues for future studies to explore causality between age-related metabolism and connectivity changes. [less ▲]

Detailed reference viewed: 41 (11 ULg)
Full Text
Peer Reviewed
See detailEpisodic autobiographical memory in amnestic Mild Cognitive Impairment: What are the neural correlates?
Bastin, Christine ULg; Feyers, Dorothée ULg; Jedidi, Haroun ULg et al

in Human Brain Mapping (2013), 34

Autobiographical memory in amnestic Mild Cognitive Impairment (aMCI) is characterized by impaired retrieval of episodic memories, but relatively preserved personal semantic knowledge. This study aimed to ... [more ▼]

Autobiographical memory in amnestic Mild Cognitive Impairment (aMCI) is characterized by impaired retrieval of episodic memories, but relatively preserved personal semantic knowledge. This study aimed to identify (via FDG-PET) the neural substrates of impaired episodic specificity of autobiographical memories in 35 aMCI patients compared with 24 healthy elderly controls. Significant correlations between regional cerebral activity and the proportion of episodic details in autobiographical memories from two life periods were found in specific regions of an autobiographical brain network. In aMCI patients, more than in controls, specifically episodic memories from early adulthood were associated with metabolic activity in the cuneus and in parietal regions. We hypothesized that variable retrieval of episodic autobiographical memories in our aMCI patients would be related to their variable capacity to reactivate specific sensory-perceptual and contextual details of early adulthood events linked to reduced (occipito-parietal) visual imagery and less efficient (parietal) attentional processes. For recent memories (last year), a correlation emerged between the proportion of episodic details and activity in lateral temporal regions and the temporo-parietal junction. Accordingly, variable episodic memory for recent events may be related to the efficiency of controlled search through general events likely to provide cues for the retrieval of episodic details and to the ability to establish a self perspective favouring recollection. [less ▲]

Detailed reference viewed: 95 (34 ULg)
Full Text
Peer Reviewed
See detailVerbal learning in Alzheimer’s disease and mild cognitive impairment:fine-grained acquisition and short-delay consolidation performance and neural correlates
Genon, Sarah ULg; Collette, Fabienne ULg; Moulin, Chris et al

in Neurobiology of Aging (2013), 34

The aim of this study was to examine correlations between acquisition and short-delay consolidation and brain metabolism at rest measured by fluorodeoxyglucose positron emission tomography (FDG-PET) in 44 ... [more ▼]

The aim of this study was to examine correlations between acquisition and short-delay consolidation and brain metabolism at rest measured by fluorodeoxyglucose positron emission tomography (FDG-PET) in 44 Alzheimer’s disease (AD) patients, 16 patients with mild cognitive impairment (MCI) who progressed to dementia (MCI-AD), 15 MCI patients who remained stable (MCI-S, 4–8 years of follow-up), and 20 healthy older participants. Acquisition and short-delay consolidation were calculated respectively as mean gained (MG) and lost (ML) access to items of the California Verbal Learning Task. MG performance suggests that acquisition is impaired in AD patients even at predementia stage (MCI-AD). ML performance suggests that short-delay consolidation is deficient only in confirmed AD patients. Variations in acquisition performance in control participants are related to metabolic activity in the anterior parietal cortex, an area supporting task-positive attentional processes. In contrast, the acquisition deficit is related to decreased activity in the lateral temporal cortex, an area supporting semantic processes, in patients at an early stage of AD and is related to metabolic activity in the hippocampus, an area supporting associative processes, in confirmed AD patients. [less ▲]

Detailed reference viewed: 67 (15 ULg)
Full Text
Peer Reviewed
See detailPerformance Evaluation of the GE eXplore CT 120 Micro-CT for Various Scanning Protocols
Bahri, Mohamed Ali ULg; Bretin, Florian ULg; Warnock, Geoffrey ULg et al

Poster (2012, November 03)

The aim of this study was to evaluate the performance of the General Electric (GE) eXplore CT 120 micro-CT using the same methodology and image quality assurance vmCT phantom developed for the GE eXplore ... [more ▼]

The aim of this study was to evaluate the performance of the General Electric (GE) eXplore CT 120 micro-CT using the same methodology and image quality assurance vmCT phantom developed for the GE eXplore Ultra. In addition, Quality assurance in Radiology and Medicine (QRM) low contrast and bar pattern phantoms were used. The phantoms were imaged using the six protocols regularly used in our laboratory (Fast scan 220 (P1) or 360 (P2): 70 kV, 32 mA, 220 or 360 views; Soft tissue fast scan (P3): 70 kV, 50 mA, 220 views, Soft tissue step & shoot (P4): 80 kV, 32 mA, 220 views; Low Noise (P5): 100 kV, 50 mA, 720 views and In Vivo Bone scan (P6): 100 kV, 50 mA, 360 views). Data were reconstructed with an isotropic voxel size of 100 µm (50 µm when protocol detector-binning was reduced to 2x2). The MTF obtained with the slanted edge and coil methods agreed very well. A 10% modulation transfer function (MTF) was observed in the range 3.6-4.8 mm-1 (P1&2 = 4.2; P3&4 = 4.8; P5 = 3.6 and P6 = 3.8), corresponding to 95-138 µm resolutions. The smallest bars visually observed on the QRM pattern phantom image were 100 µm. The geometric accuracy was better than 0.1%. A highly linear (R2 > 0.999) relationship between measured and expected CT numbers for both the CT number accuracy and linearity sections of the phantom was observed with a voltage dependent slope. A cupping effect was observed on the uniform slices. This effect was clearly highlighted by the uniformity-to-noise ratio (P1 = 0.58, P2&3&4 = 0.75, P5 = 1.35 and P6 = 2.74) especially for the low-noise protocols P5 and P6. The best low contrast discrimination was observed for P2 and P5 protocols. In conclusion the eXplore CT 120 achieved a resolution in the range 95-138 µm. It was found to be linear and geometrically accurate. The major difference between the protocols was the noise level which limits the detectability of low contrasts. [less ▲]

Detailed reference viewed: 221 (18 ULg)
Full Text
Peer Reviewed
See detailDosimetry for 6-[18F]Fluoro-L-DOPA in Humans Based on Biodistribution in Mice
Bretin, Florian ULg; Warnock, Geoffrey ULg; Bahri, Mohamed Ali ULg et al

Poster (2012, October)

Aim. The objective of this work was to estimate human dosimetry for 6-[18F]Fluoro-L-DOPA (F-DOPA) from biodistribution in mice, obtained from organ harvesting at different time points and from a hybrid ... [more ▼]

Aim. The objective of this work was to estimate human dosimetry for 6-[18F]Fluoro-L-DOPA (F-DOPA) from biodistribution in mice, obtained from organ harvesting at different time points and from a hybrid method combining dynamic PET followed by organ harvesting. Materials and methods. The tissue distribution of F-DOPA over time was determined in isoflurane-anaesthetized mice. Radioassay was performed on harvested organs at 2, 5, 10, 30, 60 and 120 minutes post administration (n = 5 at each time point). Dynamic PET images were acquired in list-mode with a Siemens FOCUS 120 microPET for 120 minutes after injection and followed by radioassay of harvested organs (n = 4). List-mode data were histogrammed in 6*5s, 6*10s, 3*20s, 5*30s, 5*60s, 8*150s, 6*300s, 6*600s 3D sinograms. Final images were obtained using filtered backprojection with correction for all physical effects except for scatter. Attenuation correction resulted from a pre-injection transmission scan with a cobalt-57 point source. Organs were manually delineated. The organ time-activity-curves (TACs) from both methods were extrapolated from a simulated 35 g standard mouse to a 70 kg standard male human using a technique based on organ to bodyweight ratios. A bladder voiding scenario was used to simulate excretion every 2 h. The absorbed doses in major human organs were calculated using the extrapolated TACs with the commercially available software OLINDA/EXM (Version 1.1). Results. The extrapolated organ activity curves obtained using the harvesting and imaging methods showed a high correlation (r = 0.94 ± 0.05, p < 0.001). However, TACs from PET alone under- or overestimated the activity in individual organs in contrast to TACs obtained using the cross-calibration of the PET data with the activity in post-scan dissected organs. Those organs in the excretion pathways, comprising bladder wall, kidneys and liver, received the highest organ doses. The total body absorbed dose was 0.0118 mGy/MBq for both the imaging based and harvesting based methods. The effective dose was 0.0193 mSv/MBq for the hybrid imaging-harvesting technique and 0.0189 mSv/MBq for the pure harvesting technique. Conclusion. The doses obtained agreed well with the few results available in the literature. The hybrid technique combining dynamic PET scanning followed by organ harvesting appeared to be a good alternative to the gold standard ex vivo radioassay method. It is much faster and minimizes the effect of some weakness of the pure imaging technique, such as partial volume effect. [less ▲]

Detailed reference viewed: 45 (8 ULg)