References of "Aubinet, Marc"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailManagement effects on net ecosystem carbon and GHG budgets at European crop sites
Ceschia, E.; Beziat, P.; Dejoux, J. F. et al

in Agriculture, Ecosystems & Environment (2010), 139

Detailed reference viewed: 47 (6 ULg)
Full Text
Peer Reviewed
See detailThe net biome production of full crop rotations in Europe
Kutsch, W. L.; Aubinet, Marc ULg; Buchmann, N. et al

in Agriculture, Ecosystems & Environment (2010), 139

Detailed reference viewed: 34 (7 ULg)
Full Text
See detailANNUAL SCIENTIFIC REPORT PHASE II "Impact of Phenology and Environmental Conditions on BVOC Emissions from Forest Ecosystems" "IMPECVOC"
Dewulf, Jo; Joó, Eva; Steppe, Kathy et al

Report (2009)

Detailed reference viewed: 10 (5 ULg)
Full Text
See detailEvaluation of the suitability of the land surface model JULES for climate impact studies in Belgian ecosystem
Van Den Hoof, Catherine; Aubinet, Marc ULg; Heinesch, Bernard ULg et al

Conference (2009, October)

Detailed reference viewed: 35 (1 ULg)
Full Text
See detailSensitivity of soil heterotrophic respiration to temperature: short-term impacts.
Buysse, Pauline ULg; Goffin, Stéphanie ULg; Carnol, Monique ULg et al

Poster (2009, September)

Soil respiration is mostly affected by temperature variations but there is still much debate regarding its temperature sensitivity. Especially the difference between short- and long-term responses driven ... [more ▼]

Soil respiration is mostly affected by temperature variations but there is still much debate regarding its temperature sensitivity. Especially the difference between short- and long-term responses driven by changes in microbial activity and population respectively is addressed here. To this end, an incubation experiment is set up with soil samples taken from the surface layer (0-25cm) of a bare area at the Carboeurope agricultural site of Lonzée in Belgium. After homogenization, they are placed into incubators at three different temperatures, namely 5, 15 and 25°C for 2 weeks. Temperature is regulated by Peltier systems that warm up or cool down a bath containing jars with soil samples. All jars are continuously aerated to prevent CO2 from accumulating inside. Moisture levels in the jars are regularly checked and adjusted to ensure that the soil moisture is optimal for soil respiration. Twice a week, short term temperature response is tested by changing incubation temperatures in the range 5 - 35°C. During these cycles, CO2 fluxes are measured at each temperature step with a closed dynamic chamber system. Microbial biomass and hot water-extractable carbon are determined two times during a temperature cycle, allowing a follow up of the evolution of these two variables through a cycle. A comparison between the respiration rates, microbial biomasses and extractable carbon will be presented and would allow a better understanding of the dynamics of the heterotrophic respiration response to temperature in agricultural soils. In the future, other experiments could be derived from this one to focus on substrate availability or soil moisture impacts on soil respiration. [less ▲]

Detailed reference viewed: 88 (5 ULg)
Full Text
See detailParameterization and initialization of a soil organic matter decomposition model in an agricultural soil.
Buysse, Pauline ULg; Le Dantec, Valérie; Mordelet, Patrick et al

Poster (2009, September)

Organic matter decomposition and associated heterotrophic respiration fluxes are widely studied, as these processes could be modified under global warming. Many models have been built at different ... [more ▼]

Organic matter decomposition and associated heterotrophic respiration fluxes are widely studied, as these processes could be modified under global warming. Many models have been built at different temporal and spatial scales to contribute to a better understanding of the mechanisms involved and to quantify soil carbon fluxes. Yet, agroecosystems have been less investigated so far, despite their considerable importance. In this study, a daily-time step ecosystem model derived from CENTURY is described, parameterized and initialized for the Carboeurope agricultural site of Lonzée in Belgium. At this stage, the model aims at describing soil heterotrophic respiration and carbon dynamics in the soil. Model parameterization was performed on the basis of a literature survey (biochemical parameters) and of data collected at the site itself (soil carbon content and soil texture). In order to set up the carbon repartition between the different pools of the model, an initialization phase was run until equilibrium was reached. For this phase, mean daily climatic data were used and the soil was cultivated with winter wheat, considering that all residues were brought to the soil at harvest. At the end, the repartition was found to be independent from the simulated soil carbon content. Simulations showed a very high sensitivity of the model to the amount of incorporated residues and allowed an estimation of the amount of residues that lead the soil to a stable state. It was compatible with field observations. The model was then run with 2007 climatic data and the above-mentioned carbon repartition to simulate heterotrophic respiration. A comparison between these simulated fluxes and automatic measurements of soil respiration, performed during a 3-month period in spring 2007 on a bare zone of the field, showed a reasonable good agreement. Most of the discrepancies between measured and simulated fluxes corresponded to dry events, attesting of a need to reconsider the relationship between soil heterotrophic respiration and soil moisture in the model. To go further with the assessment of the model reliability, a calibration on data from the French Carboeurope site of Lamasquère will be achieved. Other sites may also be used. This heterotrophic soil respiration model is intended to be part of a more complete soil respiration model focused on agroecosystems and developed at the annual and ecosystem scales. In the end, autotrophic respiration, nitrogen mineralization and crop management would also be included. [less ▲]

Detailed reference viewed: 95 (4 ULg)
Full Text
See detailMeasuring air-ice CO2 fluxes in the Arctic
Heinesch, Bernard ULg; Yernaux, Michel; Aubinet, Marc ULg et al

in FluxLetter: the Newsletter of FLUXNET (2009), 2(2), 9-10

Detailed reference viewed: 55 (17 ULg)
Full Text
See detailShort-term temperature impacts on soil respiration.
Buysse, Pauline ULg; Goffin, Stéphanie ULg; Carnol, Monique ULg et al

Poster (2009, June)

Despite considerable recent work on soil heterotrophic respiration, a mechanistic understanding of this process is still missing. Temperature is one of the most important driving factors. It can influence ... [more ▼]

Despite considerable recent work on soil heterotrophic respiration, a mechanistic understanding of this process is still missing. Temperature is one of the most important driving factors. It can influence the mechanism through multiple ways, whose importance may vary with time. An incubation experiment is set up to study short-term temperature influences on soil microbial respiration and its evolution through time. Soil samples are taken in spring from the surface layer (0-25cm) of a bare agricultural loamy soil situated in Lonzée in Belgium (Hesbaye region) and are homogenized before being placed into incubators at three different temperatures, namely 5, 15 and 25°C. Temperature is regulated by Peltier systems that warm up or cool down a sand bath containing jars with soil samples. Once a week, incubation temperatures are increased and decreased by 5°C-steps, starting from each incubator temperature, to achieve a one-day temperature cycle between 5 and 35°C. CO2 flux measurements are performed at each temperature step by a closed dynamic chamber system, after the temperature has stabilized in the samples. Microbial biomass (C and N) is determined four times during the temperature cycle by the fumigation-extraction technique and soil labile carbon is measured at the beginning of each cycle by the hot-water extraction method. Moisture levels in soil samples are regularly checked and adjusted to keep optimal soil moisture content. Between CO2 flux measurements, jars are left open to ensure that anaerobic conditions do not occur. Further investigations could include an assessment of the importance of substrate availability and depletion on microbial activity, and a model development related to the results provided by this experiment. [less ▲]

Detailed reference viewed: 99 (9 ULg)
Full Text
See detailInterannual variability of CO2 fluxes and yield by a winter wheat crop (Triticum aestivum L.)
Dufranne, Delphine ULg; Vancutsem, Françoise ULg; Moureaux, Christine ULg et al

Poster (2009, April 20)

In this study, two winter wheat (Triticum aestivum L.) cropping seasons were compared at the Lonzée (Belgium) experimental site. The site, crop management, sowing and harvest dates were similar on the two ... [more ▼]

In this study, two winter wheat (Triticum aestivum L.) cropping seasons were compared at the Lonzée (Belgium) experimental site. The site, crop management, sowing and harvest dates were similar on the two years. The main difference between the seasons was due to to climate conditions. Continuous eddy-covariance fluxes, leaf scale photosynthesis measurements and crop development monitoring were performed during the whole vegetation periods. Globally, the two years were characterised by a higher than normal air temperature (9.9 °C and 11.9 °C respectively against 9.4 °C for standard) and lower than normal rainfalls (595.1 mm and 675.1 mm respectively against 772 mm for standard). In addition, the second season (2006-2007) was characterised by an exceptionally mild winter, dry and hot conditions in April and by humid and cloudy conditions during the last vegetation phases. These particular conditions induced earlier growth stages and the comparison of global fluxes gives contrasting results: gross primary productivity (GPP) was larger in 2007 but, on the contrary, net primary productivity (NPP) and crop productivity were lower on this year. The bad yields could be explained, on one hand by the drought in April 2007 that induced abnormally small flag leaves, on the other hand by cloudy and humid conditions from end May to harvest, that induced an assimilation reduction due to low radiation and favoured disease development. The simultaneous higher GPP and lower NPP and productivity in 2006-2007 raise the question of carbon allocation. It suggests that the excess carbon assimilated in 2006-2007 was not stored in grain or straw and thus that it would have been stored in the roots or in vegetation parts that decompose before the harvest. Further biomass measurements (and especially root biomass) are necessary to confirm this hypothesis. [less ▲]

Detailed reference viewed: 38 (5 ULg)
Full Text
See detailExperimental evaluation of flux footprint by natural tracer experiment
Arriga, N.; Aubinet, Marc ULg; Carrara, A. et al

Poster (2009, April)

Detailed reference viewed: 14 (0 ULg)
Full Text
See detailCO2 fluxes exchanged by a 4-year crop rotation cycle
Aubinet, Marc ULg; Moureaux, Christine ULg; Bodson, Bernard ULg et al

Poster (2009, April)

Detailed reference viewed: 40 (19 ULg)
Full Text
See detailLes grandes cultures et le CO2
Bodson, Bernard ULg; Vancutsem, Françoise ULg; Dufranne, Delphine ULg et al

in Livre Blanc Céréales (2009, February 18)

Detailed reference viewed: 17 (4 ULg)
Full Text
See detailSurvey of air-ice ocean carbon dioxyde exchange over arctic sea-ice
Heinesch, Bernard ULg; Aubinet, Marc ULg; Carnat, Gauthier et al

Conference (2009)

Detailed reference viewed: 26 (5 ULg)
Full Text
Peer Reviewed
See detailExceptional Carbon Uptake In European Forests During The Warm Spring Of 2007: A Data-Model Analysis
Delpierre, N.; Soudani, K.; Kostner, B. et al

in Global Change Biology (2009), 15(6), 1455-1474

Temperate and boreal forests undergo drastic functional changes in the springtime, shifting within a few weeks from net carbon (C) sources to net C sinks. Most of these changes are mediated by temperature ... [more ▼]

Temperate and boreal forests undergo drastic functional changes in the springtime, shifting within a few weeks from net carbon (C) sources to net C sinks. Most of these changes are mediated by temperature. The autumn 2006-winter 2007 record warm period was followed by an exceptionally warm spring in Europe, making spring 2007 a good candidate for advances in the onset of the photosynthetically active period. An analysis of a decade of eddy covariance data from six European forests stands, which encompass a wide range of functional types (broadleaf evergreen, broadleaf deciduous, needleleaf evergreen) and a wide latitudinal band (from 44 degrees to 62 degrees N), revealed exceptional fluxes during spring 2007. Gross primary productivity (GPP) of spring 2007 was the maximum recorded in the decade examined for all sites but a Mediterranean evergreen forest (with a +40 to +130 gC m(-2) anomaly compared with the decadal mean over the January-May period). Total ecosystem respiration (TER) was also promoted during spring 2007, though less anomalous than GPP (with a +17 to +93 gC m(-2) anomaly over 5 months), leading to higher net uptake than the long-term mean at all sites (+12 to +79 gC m(-2) anomaly over 5 months). A correlative analysis relating springtime C fluxes to simple phenological indices suggested spring C uptake and temperatures to be related. The CASTANEA process-based model was used to disentangle the seasonality of climatic drivers (incoming radiation, air and soil temperatures) and biological drivers (canopy dynamics, thermal acclimation of photosynthesis to low temperatures) on spring C fluxes along the latitudinal gradient. A sensitivity analysis of model simulations evidenced the roles of (i) an exceptional early budburst combined with elevated air temperature in deciduous sites, and (ii) an early relief of winter thermal acclimation in coniferous sites for the promotion of 2007 spring assimilation. [less ▲]

Detailed reference viewed: 50 (20 ULg)
Full Text
Peer Reviewed
See detailAvailable energy and energy balance closure at four coniferous forest sites across Europe
Moderow, Uta; Aubinet, Marc ULg; Feigenwinter, Christian et al

in Theoretical & Applied Climatology (2009), 98(3-4), 397-412

The available energy (AE), driving the turbulent fluxes of sensible heat and latent heat at the earth surface, was estimated at four partly complex coniferous forest sites across Europe (Tharandt, Germany ... [more ▼]

The available energy (AE), driving the turbulent fluxes of sensible heat and latent heat at the earth surface, was estimated at four partly complex coniferous forest sites across Europe (Tharandt, Germany; Ritten/Renon, Italy; Wetzstein, Germany; Norunda, Sweden). Existing data of net radiation were used as well as storage change rates calculated from temperature and humidity measurements to finally calculate the AE of all forest sites with uncertainty bounds. Data of the advection experiments MORE II (Tharandt) and ADVEX (Renon, Wetzstein, Norunda) served as the main basis. On-site data for referencing and cross-checking of the available energy were limited. Applied cross checks for net radiation (modelling, referencing to nearby stations and ratio of net radiation to global radiation) did not reveal relevant uncertainties. Heat storage of sensible heat J (H), latent heat J (E), heat storage of biomass J (veg) and heat storage due to photosynthesis J (C) were of minor importance during day but of some importance during night, where J (veg) turned out to be the most important one. Comparisons of calculated storage terms (J (E), J (H)) at different towers of one site showed good agreement indicating that storage change calculated at a single point is representative for the whole canopy at sites with moderate heterogeneity. The uncertainty in AE was assessed on the basis of literature values and the results of the applied cross checks for net radiation. The absolute mean uncertainty of AE was estimated to be between 41 and 52 W m(-2) (10-11 W m(-2) for the sum of the storage terms J and soil heat flux G) during mid-day (approximately 12% of AE). At night, the absolute mean uncertainty of AE varied from 20 to about 30 W m(-2) (approximately 6 W m(-2) for J plus G) resulting in large relative uncertainties as AE itself is small. An inspection of the energy balance showed an improvement of closure when storage terms were included and that the imbalance cannot be attributed to the uncertainties in AE alone. [less ▲]

Detailed reference viewed: 39 (4 ULg)
Full Text
Peer Reviewed
See detailCarbon sequestration by a crop during a four year rotational cycle
Aubinet, Marc ULg; Moureaux, Christine ULg; Bodson, Bernard ULg et al

in Agricultural and Forest Meteorology (2009), 149

Detailed reference viewed: 89 (42 ULg)