References of "Absil, Olivier"
     in
Bookmark and Share    
Full Text
See detailObserving the Sun with micro-interferometric devices: a didactic experiment
Defrere, Denis ULiege; Absil, Olivier ULiege; Hanot, C. et al

in Surdej, Jean; Le Coroller, Hervé; Arnold, Luc (Eds.) Improving the Performances of Current Optical Interferometers & Future Designs (2014, April 01)

Measuring the angular diameter of celestial bodies has long been the main purpose of stellar interferometry and was its historical motivation. Nowadays, stellar interferometry is widely used for various ... [more ▼]

Measuring the angular diameter of celestial bodies has long been the main purpose of stellar interferometry and was its historical motivation. Nowadays, stellar interferometry is widely used for various other scientific purposes that require very high angular resolution measurements. In terms of angular spatial scales probed, o [less ▲]

Detailed reference viewed: 114 (6 ULiège)
Full Text
See detailPIONIER : A Four Telescope VLTI Instrument
Lazareff, B.; Le Bouquin, J.-L.; Berger, J.-P. et al

in Surdej, Jean; Le Coroller, Hervé; Arnold, Luc (Eds.) Improving the Performances of Current Optical Interferometers & Future Designs (2014, April 01)

Pionier is a guest instrument, the first four-telescope recombiner at ESO's VLTI. We discuss salient design features and illustrate selected scientific results from the fi

Detailed reference viewed: 15 (1 ULiège)
Full Text
See detailMaking the most of the LBTI nulling interferometry observations using a statistical data reduction method
Marion, Lindsay ULiege; Mennesson, Bertrand; Defrere, Denis ULiege et al

Poster (2014, March 20)

A unique and completely new statistical reduction method was recently proposed by Hanot et al. (2011) to improve the accuracy on interferometric null measurements. The main idea behind this method is to ... [more ▼]

A unique and completely new statistical reduction method was recently proposed by Hanot et al. (2011) to improve the accuracy on interferometric null measurements. The main idea behind this method is to consider the full statistical distribution of the measured null depth and to reproduce it as the sum of three terms: (i) the astrophysical null, (ii) the background-related null, and (iii) a random contribution related to all instrumental imperfections (phase difference, intensity mismatch, polarisation errors, etc). For the latter two terms, we assume that we can directly inject the distributions of the measurable quantities (individual beam intensities and background) in the model, and that the phase difference can be modeled by a Gaussian distribution, from which we create random phase sequences. This results in three free parameters in our model: the astrophysical null, the mean phase difference and its standard deviation. We explore a certain range of values for these parameters and for each triplet, we build several random theoretical null histograms that we compare to the observed one using a least squares method. Finally, the best estimators for the three parameters are obtained by minimizing the chi square. In this talk, we will show how this statistical method has been used at the Palomar Fiber Nuller to gain a factor of 10 in the accuracy on the measured astrophysical null, compared to classical data reduction / calibration methods. We will then explain how we plan to adapt it to the LBTI/NOMIC nulling interferometer to reach unprecedented sensitivity levels in terms of detectable exozodiacal disks. First results based on LBTI/NOMIC data will be presented. [less ▲]

Detailed reference viewed: 24 (2 ULiège)
Full Text
See detailA survey of hot exozodiacal disks with the VLTI
Absil, Olivier ULiege

Conference (2014, March 12)

Detailed reference viewed: 6 (1 ULiège)
Full Text
See detailThe Hunt for Observable Signatures of Terrestrial Planetary Systems (HOSTS)
Defrere, Denis ULiege; Hinz, P.; Bryden, G. et al

Conference (2014, March)

The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for ... [more ▼]

The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for biosignatures (Roberge et al. 2012). However, it is also considered as a signpost for the presence of terrestrial planets that might be hidden in the dust disk (Stark and Kuchner 2008). Characterizing exozodiacal dust around nearby sequence stars is therefore a crucial step toward one of the main goals of modern astronomy: finding extraterrestrial life. After briefly reviewing the latest results in this field, we present the exozodiacal dust survey on the Large Binocular Telescope Interferometer (LBTI). The survey is called HOSTS and is specifically designed to determine the prevalence and brightness of exozodiacal dust disks with the sensitivity required to prepare for future New Worlds Missions that will image Earth-like exoplanets. To achieve this objective, the LBTI science team has carefully established a balanced list of 50 nearby main-sequence stars that are likely candidates of these missions and/or can be observed with the best instrument performance (see companion abstract by Roberge et al.). Exozodiacal dust disk candidates detected by the Keck Interferometer Nuller will also be observed. The first results of the survey will be presented. To precisely detect exozodiacal dust, the LBTI combines the two 8-m primary mirrors of the LBT using N-band nulling interferometry. Interferometric combination provides the required angular resolution (70-90 mas) to resolve the habitable zone of nearby main sequence stars while nulling is used to subtract the stellar light and reach the required contrast of a few 10-4. A Kband fringe tracker ensures the stability of the null. The current performance of the instrument and the first nulling measurements will be presented. [less ▲]

Detailed reference viewed: 21 (4 ULiège)
Full Text
See detailL'-band AGPM vector vortex coronagraph's first light on LBTI/LMIRCAM
Defrere, Denis ULiege; Absil, Olivier ULiege; Hinz, P. et al

Poster (2014, March)

We present the first science observations obtained with the L'-band AGPM coronagraph recently installed on LBTI/LMIRCAM. The AGPM (Annular Groove Phase Mask) is a vector vortex coronagraph made from ... [more ▼]

We present the first science observations obtained with the L'-band AGPM coronagraph recently installed on LBTI/LMIRCAM. The AGPM (Annular Groove Phase Mask) is a vector vortex coronagraph made from diamond sub-wavelength gratings tuned to the L'-band. It is designed to improve the sensitivity and dynamic range of high-resolution imaging at very small inner working a [less ▲]

Detailed reference viewed: 54 (10 ULiège)
Full Text
See detailThe VORTEX project
Absil, Olivier ULiege

Poster (2014, February 05)

Detailed reference viewed: 6 (2 ULiège)
Full Text
Peer Reviewed
See detailAlignment in star-debris disc systems seen by Herschel
Greaves, J. S.; Kennedy, G. M.; Thureau, N. et al

in Monthly Notices of the Royal Astronomical Society : Letters (2014), 438

Many nearby main-sequence stars have been searched for debris using the far-infrared Herschel satellite, within the DEBRIS, DUNES and Guaranteed-Time Key Projects. We discuss here 11 stars of spectral ... [more ▼]

Many nearby main-sequence stars have been searched for debris using the far-infrared Herschel satellite, within the DEBRIS, DUNES and Guaranteed-Time Key Projects. We discuss here 11 stars of spectral types A-M where the stellar inclination is known and can be compared to that of the spatially resolved dust belts. The discs are found to be well aligned with the stellar equators, as in the case of the Sun's Kuiper belt, and unlike many close-in planets seen in transit surveys. The ensemble of stars here can be fitted with a star-disc tilt of ≲ 10°. These results suggest that proposed mechanisms for tilting the star or disc in fact operate rarely. A few systems also host imaged planets, whose orbits at tens of au are aligned with the debris discs, contrary to what might be expected in models where external perturbers induce tilts. [less ▲]

Detailed reference viewed: 24 (1 ULiège)
Full Text
See detailHigh-contrast companions: the PIONIER view
Absil, Olivier ULiege

Conference (2014, January 13)

Detailed reference viewed: 3 (1 ULiège)
Full Text
See detailUnraveling the Mystery of Exozodiacal Dust
Ertel, S.; Augereau, J.-C.; Thébault, P. et al

in Booth, Mark; Matthews, Brenda; Graham, James (Eds.) Exploring the Formation and Evolution of Planetary Systems (2014, January 01)

Exozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary ... [more ▼]

Exozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary systems, including the Habitable Zone. Furthermore, the mere presence of the dust may result in major obstacles for direct imaging of earth-like planets. Our EXOZODI project aims to detect and study exozodiacal dust and to explain its origin. We are carrying out the first large, near-infrared interferometric survey in the northern (CHARA/FLUOR) and southern (VLTI/PIONIER) hemispheres. Preliminary results suggest a detection rate of up to 30% around A to K type stars and interesting trends with spectral type and age. We focus here on presenting the observational work carried out by our team. [less ▲]

Detailed reference viewed: 19 (0 ULiège)
Full Text
See detailCompanion search around β Pictoris with the newly commissioned L'-band vector vortex coronagraph on VLT/NACO
Mawet, D.; Absil, Olivier ULiege; Milli, J. et al

in Booth, Mark; Matthews, Brenda; Graham, James (Eds.) Exploring the Formation and Evolution of Planetary Systems (2014, January 01)

Here we present the installation and successful commissioning of an L'-band Annular Groove Phase Mask (AGPM) coronagraph on VLT/NACO. The AGPM is a vector vortex coronagraph made from diamond ... [more ▼]

Here we present the installation and successful commissioning of an L'-band Annular Groove Phase Mask (AGPM) coronagraph on VLT/NACO. The AGPM is a vector vortex coronagraph made from diamond subwavelength gratings tuned to the L' band. The vector vortex coronagraph enables high contrast imaging at very small inner working angle (here 0''.09, the diffraction limit of the VLT at L'), potentially being the key to a new parameter space. During technical and science verification runs, we discovered a late-type companion at two beamwidths from an F0V star (Mawet et al. 2013), and imaged the inner regions of β Pictoris down to the previously unexplored projected radius of 1.75 AU. The circumstellar disk was also resolved from ~= 1'' to 5'' (see J. Milli et al., these proceedings). These results showcase the potential of the NACO L-band AGPM over a wide range of spatial scales. [less ▲]

Detailed reference viewed: 47 (9 ULiège)
Full Text
See detailFirst High-Angular Resolution L' Images of the β Pictoris Debris Disc with the VLT / NaCo
Milli, Julien; Mawet, Dimitri; Absil, Olivier ULiege et al

in Booth, Mark; Matthews, Brenda; Graham, James (Eds.) Exploring the Formation and Evolution of Planetary Systems (2014, January 01)

Imaging debris discs in the L'-band (3.8 μm) is a difficult task. Quasi-static speckles from imperfect optics prevail below 1'' whereas background emission is the dominant noise source beyond that ... [more ▼]

Imaging debris discs in the L'-band (3.8 μm) is a difficult task. Quasi-static speckles from imperfect optics prevail below 1'' whereas background emission is the dominant noise source beyond that separation and is much larger than at shorter wavelengths. We demonstrate here the potential of the newly commissioned AGPM coronograph on VLT/NaCo combined with advanced star and sky subtraction technique based on Principal Component Analysis, and we analyze the morphology of the β Pictoris disc. [less ▲]

Detailed reference viewed: 24 (2 ULiège)
Full Text
See detailThe VLTi/PIONIER survey of southern TTauri disks
Anthonioz, F.; Ménard, F.; Pinte, C. et al

in Booth, Mark; Matthews, Brenda; Graham, James (Eds.) Exploring the Formation and Evolution of Planetary Systems (2014, January 01)

Studying the inner regions of protoplanetary disks (1-10 AU) is of importance to understand the formation of planets and the accretion process feeding the forming central star. Herbig AeBe stars are ... [more ▼]

Studying the inner regions of protoplanetary disks (1-10 AU) is of importance to understand the formation of planets and the accretion process feeding the forming central star. Herbig AeBe stars are bright enough to be routinely observed by Near IR interferometers. The data for the fainter T Tauri stars is much more sparse. In this contribution we present the results of our ongoing survey at the VLTI. We used the PIONIER combiner that allows the simultaneous use of 4 telescopes, yielding 6 baselines and 3 independent closure phases at once. PIONIER's integrated optics technology makes it a sensitive instrument. We have observed 22 T Tauri stars so far, the largest survey for T Tauri stars to this date. Our results demonstrate the very significant contribution of an extended component to the interferometric signal. The extended component is different from source to source and the data, with several baselines, offer a way to improve our knowledge of the disk geometry and/or composition. These results validate an earlier study by Pinte et al. 2008 and show that the dust inner radii of T Tauri disks now appear to be in better agreement with the expected position of the dust sublimation radius, contrary to previous claims. [less ▲]

Detailed reference viewed: 34 (0 ULiège)
Full Text
See detailHitting the diffraction limit: first results of the AGPM-VORTEX project
Absil, Olivier ULiege

Conference (2013, December 10)

During the last 8 years, we have been developing an implementation of the vector vortex coronagraph based on sub-wavelength gratings, referred to as the Annular Groove Phase Mask (AGPM). Science-grade mid ... [more ▼]

During the last 8 years, we have been developing an implementation of the vector vortex coronagraph based on sub-wavelength gratings, referred to as the Annular Groove Phase Mask (AGPM). Science-grade mid-infrared AGPMs were produced in 2012, and three of them have recently been installed on world-leading diffraction-limited infrared cameras (VLT/NACO, VLT/VISIR and LBT/LMIRCam). In this talk, we will present the first results of this endeavor. During science verification observations with our L-band AGPM on VLT/NACO, we observed the beta Pictoris system and obtained unprecedented sensitivity limits to planetary companions down to the diffraction limit (0.1”). We also obtained new images of the beta Pic debris disk at L band, which nicely bridge the gap between images obtained at shorter and longer wavelengths. These results urged us to reconsider the very definition of companion detection limits at very short angles, which will become more and more critical as next-generation high-contrast imaging instruments come online. We will conclude by discussing the future orientations of the AGPM-VORTEX project, including the development of second-generation vector vortex phase masks providing an even deeper and more achromatic starlight cancellation for ELT applications. [less ▲]

Detailed reference viewed: 28 (1 ULiège)
Full Text
Peer Reviewed
See detailExpanding the CHARA/FLUOR hot disk survey
Mennesson, B.; Scott, N.; Ten Brummelaar, T. et al

in Journal of Astronomical Instrumentation (2013), 2(2), 1340010

Little is presently known about the hot (>300 K) dust component of debris disks surrounding main sequence stars, similar to the zodiacal dust cloud found in the inner solar system.While extensive surveys ... [more ▼]

Little is presently known about the hot (>300 K) dust component of debris disks surrounding main sequence stars, similar to the zodiacal dust cloud found in the inner solar system.While extensive surveys have been carried out from space, the majority of detections have surprisingly come from the ground, where near infrared interferometric observations have recently revealed small (∼1%) resolved excesses around a dozen nearby main sequence stars. Most of these results have come from the CHARA array “FLUOR” instrument (Mt. Wilson, CA), which has demonstrated the best sensitivity worldwide so far for this type of studies, and has carried out an initial survey of ∼40 stars. In order to further understand the origin of this “hot dust phenomenon”, we will extend this initial survey to a larger number of stars and lower excess detection limits, i.e. higher visibility accuracy providing higher contrast measurements. To this end, two major instrumental developments are underway at CHARA. The first one aims at improving FLUOR’s sensitivity to a median K-band magnitude limit of 5 (making 200 targets available). The second development is based on a method that we recently developed for accurate (better than 0.1%) null depth measurements of stars, and that can be extended to regular interferometric visibility measurements. [less ▲]

Detailed reference viewed: 23 (3 ULiège)
Full Text
Peer Reviewed
See detailSearching for companions down to 2 AU from β Pictoris using the L'-band AGPM coronagraph on VLT/NACO
Absil, Olivier ULiege; Milli, J.; Mawet, D. et al

in Astronomy and Astrophysics (2013), 559

Context. The orbit of the giant planet discovered around β Pic is slightly inclined with respect to the outer parts of the debris disc, which creates a warp in the inner debris disc. This inclination ... [more ▼]

Context. The orbit of the giant planet discovered around β Pic is slightly inclined with respect to the outer parts of the debris disc, which creates a warp in the inner debris disc. This inclination might be explained by gravitational interactions with other planets. <BR /> Aims: We aim to search for additional giant planets located at smaller angular separations from the star. <BR /> Methods: We used the new L'-band AGPM coronagraph on VLT/NACO, which provides an exquisite inner working angle. A long observing sequence was obtained on β Pic in pupil-tracking mode. To derive sensitivity limits, the collected images were processed using a principal-component analysis technique specifically tailored to angular differential imaging. <BR /> Results: No additional planet is detected down to an angular separation of 0.''2with a sensitivity better than 5 M[SUB]Jup[/SUB]. Meaningful upper limits (<10 M[SUB]Jup[/SUB]) are derived down to an angular separation of 0.''1, which corresponds to 2 AU at the distance of β Pic. [less ▲]

Detailed reference viewed: 48 (9 ULiège)
Full Text
See detailTaking extrasolar planet imaging to a new level with vector vortex coronagraphy: the VORTEX project
Absil, Olivier ULiege

Scientific conference (2013, November 08)

Detailed reference viewed: 2 (1 ULiège)
Full Text
See detailUnraveling the mystery of hot exozodiacal dust
Absil, Olivier ULiege

Scientific conference (2013, October 29)

Detailed reference viewed: 7 (1 ULiège)
Full Text
See detailTaking extrasolar planet imaging to a new level with vector vortex coronagraphy: the ERC/ARC VORTEX project
Absil, Olivier ULiege

Scientific conference (2013, October 17)

Detailed reference viewed: 6 (1 ULiège)
Full Text
See detailSmall-angle, high-contrast exoplanet imaging with the L-band AGPM vector vortex coronagraph now offered at the VLT
Mawet, Dimitri; Absil, Olivier ULiege; Milli, Julien et al

in Shaklan, Stuart (Ed.) Techniques and Instrumentation for Detection of Exoplanets VI (2013, September 26)

In November 2012, we installed an L-band annular groove phase mask (AGPM) vector vortex coronagraph (VVC) inside NACO, the adaptive optics camera of ESO's Very Large Telescope. The mask, made out of ... [more ▼]

In November 2012, we installed an L-band annular groove phase mask (AGPM) vector vortex coronagraph (VVC) inside NACO, the adaptive optics camera of ESO's Very Large Telescope. The mask, made out of diamond subwavelength gratings has been commissioned, science qualified, and is now offered to the community. Here we report ground-breaking on-sky performance levels in terms of contrast, inner working angle, and discovery space. This new practical demonstration of the VVC, coming a few years after Palomar's and recent record-breaking lab experiments in the visible (E. Serabyn et al. 2013, these proceedings), shows once again that this new-generation coronagraph has reached a high level of maturity. [less ▲]

Detailed reference viewed: 34 (3 ULiège)