References of "Turquety, Solène"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations
Clerbaux, Catherine; George, Maya; Turquety, Solène et al

in Atmospheric Chemistry and Physics (2008), 8

The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO), a good tracer of pollution plumes and atmospheric ... [more ▼]

The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO), a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS). This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006). We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane) observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES) as well as limb-viewing remote sensors (MIPAS, SMR and MLS) were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above). These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km), than 30% in the lower stratosphere (12–30 km), and than 25% from 30 to 100 km. [less ▲]

Detailed reference viewed: 61 (14 ULg)
Full Text
Peer Reviewed
See detailFirst space-based observations of formic acid (HCOOH): Atmospheric Chemistry Experiment austral spring 2004 and 2005 Southern Hemisphere tropical-mid-latitude upper tropospheric measurements
Rinsland, Curtis P.; Boone, Christopher D.; Bernath, Peter F. et al

in Geophysical Research Letters (2006), 33(23),

The first space-based measurements of upper tropospheric ( 110 - 300 hPa) formic acid (HCOOH) are reported from 0.02 cm(-1) resolution Atmospheric Chemistry Experiment (ACE) Fourier transform spectrometer ... [more ▼]

The first space-based measurements of upper tropospheric ( 110 - 300 hPa) formic acid (HCOOH) are reported from 0.02 cm(-1) resolution Atmospheric Chemistry Experiment (ACE) Fourier transform spectrometer solar occultation measurements at 16 degrees S - 43 degrees S latitude during late September to early October in 2004 and 2005. A maximum upper tropospheric HCOOH mixing ratio of 3.13 +/- 0.02 ppbv ( 1 ppbv = 10(-9) per unit volume), 1 sigma, at 10.5 km altitude was measured during 2004 at 29.97 degrees S latitude and a lower maximum HCOOH mixing ratio of 2.03 +/- 0.28 ppbv, at 9.5 km altitude was measured during 2005. Fire counts, back trajectories, and correlations of HCOOH mixing ratios with ACE simultaneous measurements of other fire products confirm the elevated HCOOH mixing ratios originated primarily from tropical fire emissions. A HCOOH emission factor relative to CO of 1.99 +/- 1.34 g kg(-1) during 2004 in upper tropospheric plumes is inferred from a comparison with lower mixing ratios measured during the same time period assuming HITRAN 2004 spectroscopic parameters. [less ▲]

Detailed reference viewed: 63 (11 ULg)