References of "Kussé, Caroline"
     in
Bookmark and Share    
Peer Reviewed
See detailFunctional neuroimaging of human REM sleep
Meyer, Christelle ULg; Jedidi, Zayd ULg; Muto, Vincenzo ULg et al

in Nofzinger, Eric; Maquet, Pierre; Thorpy, Michael J. (Eds.) Neuroimaging of sleep and sleep disorders (2013)

Detailed reference viewed: 67 (29 ULg)
Peer Reviewed
See detailIncrease in cortico-thalamo-cortical connectivity during human sleep slow wave activity
Kussé, Caroline ULg; Lehembre, Rémy; Foret, Ariane et al

Poster (2012, October 27)

Detailed reference viewed: 9 (1 ULg)
Peer Reviewed
See detailDifference in neural correlates of discrimination during sleep deprivation in PER3 homozygous
Shaffii-Le Bourdiec, Anahita; Muto, Vincenzo ULg; Jaspar, Mathieu ULg et al

Poster (2012, September 07)

Detailed reference viewed: 27 (8 ULg)
Peer Reviewed
See detailIncrease in cortico-thalamo-cortical connectivity during human sleep slow wave activity
Kussé, Caroline ULg; Lehembre, Rémy; Foret, Ariane et al

Poster (2012, September 05)

Detailed reference viewed: 11 (1 ULg)
Peer Reviewed
See detailIncrease in cortico-thalamo-cortical connectivity during human sleep slow wave activity
Kussé, Caroline ULg; Lehembre, Rémy; Foret, Ariane et al

Poster (2012, September 04)

Detailed reference viewed: 6 (1 ULg)
See detailInfluence of sleep homeostasis and circadian rhythm on waking EEG oscillations during a constant routine
Muto, Vincenzo ULg; Meyer, Christelle ULg; Jaspar, Mathieu ULg et al

Poster (2012, September)

Introduction & Objectives Human sleep and wake EEG oscillations are modulated by complex non-additive interaction between homeostatic and circadian processes. Quantitative analysis of EEG data, during ... [more ▼]

Introduction & Objectives Human sleep and wake EEG oscillations are modulated by complex non-additive interaction between homeostatic and circadian processes. Quantitative analysis of EEG data, during extended wakefulness, indicate that its frequency-specificity is influenced by both factors, such that low-frequencies (<8Hz) increase with time spent awake (1), thus more homeostatically-driven, while alpha activity undergoes a clear circadian modulation (2). Interindividual differences in sleep-wake regulation in young volunteers are associated with the variable-number tandem-repeat (VNTR) polymorphism in the coding region of the circadian clock gene PERIOD3 (PER3). Individuals homozygous for the longer allele of PER3 (PER35/5) were reported to generate more slow wave activity during NREM sleep and theta activity during wakefulness, relative to individuals with the shorter allele (PER34/4). However, the phase and amplitude of circadian markers do not differ between these genotypes (3). Here we tested the hypothesis if fluctuations in the dynamics of waking EEG frequency-specificity are modulated by a polymorphism in the clock gene PER3, under 42h of sustained wakefulness. Materials and Methods Population. A total of 400 young men and women were recruited, from whom DNA samples and questionnaire data were collected. On the basis of their PER3 polymorphism, 35 healthy young volunteers (age: 19-26 y; 17 females) were recruited, out of which twelve were PER35/5 and twenty-three PER34/4 homozygotes, and matched by age, gender, level of education, chronotype and IQ at the group level. Study protocol. The laboratory part of this study began in the evening of day 1 until day 5 (Fig. 1). During the first 2 nights (habituation and baseline), volunteers followed one out of two possible sleep-wake schedules (00:00-08:00 or 01:00-09:00). Thereafter, participants underwent approximately 42 hours of sustained wakefulness under constant routine (CR) conditions (semi-recumbent position, dim light <5 lux, no time-of-day information), and a subsequent recovery sleep episode. EEG recordings. Continuous EEG measurements with 9 EEG channels (F3, Fz, F4, C3, Cz, C4, Pz, O1, O2) were performed throughout the CR. Waking EEG was recorded every 2-h, during a modified version of the Karolinska Drowsiness Test (KDT) (4). Data presented here pertain to the last 60-sec of KDT, during which subjects were instructed to relax, to fixate a dot displayed on a screen ca. 75cm and to try to suppress blinks. After re-referencing to mean mastoids, recordings were scored using Rechtschaffen criteria. The 1-min EEGs during the KDT were manually and visually scored for artifacts (eye blinks, body movements, and slow eye movements) offline by 2 independent observers. The absolute EEG power density was then calculated for artifact-free 2-s epochs in the frequency range of 0.5 to 20 Hz , overlapping by 1 second using the pwelch function in MATLAB (7.5.0). For data reduction, power density of artifact-free 2-s epochs was averaged over 20-s epochs. Statistics. Waking EEG delta (0.75-4.5Hz), theta (4.75-7.75Hz) and alpha (8-12.0Hz) power density computed on Central derivation (Cz) were analyzed with a mixed-model analysis of variance (PROC Mixed), with main factors “elapsed time awake” and “genotype” (PER34/4 and PER35/5), and the interaction of these two factors. All p-values derived from r-ANOVAs were based on Huynh-Feldt's (H-F) corrected degrees of freedom (p<0.05). Multiple comparisons were performed using Tukey-Kramer test. Theoretical coefficients for the homeostatic sleep pressure (derived from a quasi-linear function) and the circadian oscillation (24-hour period sine wave) were used in a multiple regression model to predict delta, theta and alpha activity during the CR. Prior to multiple regression analysis, data were normalized according to PROC Transreg, in order to derive the best normalization method for linear and non-linear datasets. Results. Delta activity Analysis of delta activity yielded a significant main effect of “elapsed time awake” (F=5.31; p < 0.0001), albeit no significant effects for “genotype” (F=0.01; p = 0.94) nor for the interaction of these factors (F=0.85; p = 0.65). The multiple regression model revealed a significant regression (R² = 0.0433 Adj. R² = 0.0404; F = 15.24; p <0.0001), for the homeostat (p < 0.0001 ) and circadian (p = 0.0006) coefficients. Theta activity Analysis of theta activity yielded a significant main effect of “elapsed time awake” (F= 12.2; p < 0.0001), although no significant effects for “genotype” (F= 0.1; p = 0.70) nor for the interaction of these factors (F= 0.67; p = 0.86). The multiple regression model revealed a significant regression (R²= 0.072 Adj. R² =0.069; F= 26.36; p <0.0001), for the homeostat (p < 0.0001 ) and circadian (p < 0.0001 ) coefficients. Alpha activity Analysis of alpha activity yielded a significant main effect of “elapsed time awake”(F=3.43; p < 0.0001), although no significant effects for “genotype” (F = 0.01; p = 0.92) nor for the interaction of these factors (F= 1.23; p = 0.22). The multiple regression model revealed a significant regression (R²=0.052; Adj. R²=0.05; F =18.63; p <0.0001), for the homeostat (p = 0.0012) and for the circadian (p < 0.0001) coefficients. Conclusion Our results indicate that fluctuations in the dynamics of waking EEG activity are modulated by the circadian and homeostatic processes, although the magnitude of these differences are not underlined by a polymorphism in the clock gene PER3. REFERENCES 1. Cajochen C, Brunner DP, Kräuchi K, Graw P, Wirz-Justice A. Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep. 1995, 10:890-894. 2. Cajochen C, Wyatt JK, Czeisler CA, Dijk DJ.Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulnessNeuroscience. 2002, 114:1047-60. 3. Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, von Schantz M, Dijk DJ PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 2007,17:613–618. 4. Gillberg M, Kecklund G, Akerstedt T. Relations between performance and subjective rating of sleepiness during a night awake. Sleep 1994, 17:236-241. ACKNOWLEDGEMENTS & SPONSORS Cyclotron Research Centre (CRC) ; Belgian National Funds of Scientific Research (FNRS) ; Actions de Recherche Concertées (ARC, ULg) – Fondation Médicale Reine Elisabeth (FMRE) ; Walloon Excellence in Lifesciences and Biotechnology (WELBIO) ; Wellcome Trust ; Biotechnology and Biological Sciences Research Council (BBSRC) [less ▲]

Detailed reference viewed: 114 (16 ULg)
Full Text
Peer Reviewed
See detailDecoding spontaneous brain activity from fMRI using Gaussian Processes: tracking brain reactivation
Schrouff, Jessica ULg; Kussé, Caroline ULg; Wehenkel, Louis ULg et al

in 2012 Second International Workshop on Pattern Recognition in NeuroImaging (PRNI 2012): proceedings (2012, July 03)

While Multi-Variate Pattern Analysis techniques based on machine learning have now been regularly applied to neuroimaging data, decoding brain activity is usually performed in highly controlled ... [more ▼]

While Multi-Variate Pattern Analysis techniques based on machine learning have now been regularly applied to neuroimaging data, decoding brain activity is usually performed in highly controlled experimental paradigms. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets. Moreover, in the case of spontaneous brain activity, the mental states can not be linked to any external or internal stimulation, which makes it a highly difficult condition to decode. This study tests the classification of brain activity, acquired on 14 volunteers using fMRI, during mental imagery, a condition in which the number and duration of mental events were not externally imposed but self-generated. Application of the obtained model on rest sessions allowed classifying spontaneous brain activity linked to the task which, overall, correlated with their behavioural performance to the task. [less ▲]

Detailed reference viewed: 31 (13 ULg)
Full Text
Peer Reviewed
See detailNeural Correlates of Human Sleep and Sleep-Dependent Memory Processing
Meyer, Christelle ULg; Muto, Vincenzo ULg; Jaspar, Mathieu ULg et al

in Frank, Marcos (Ed.) Sleep and Brain Activity (2012)

Wakefulness and sleep are associated with distinct patterns of neural activity and neuromodulation. In humans, functional neuroimaging was used to characterize the related changes in regional brain ... [more ▼]

Wakefulness and sleep are associated with distinct patterns of neural activity and neuromodulation. In humans, functional neuroimaging was used to characterize the related changes in regional brain metabolism and hemodynamics. Recent data combining EEG and fMRI described the transient responses associated with spindles and slow waves, as well as the changes in functional integration during NREM sleep. It was also shown that regional brain activity during sleep is influenced by the experience acquired during the preceding waking period. These data are currently interpreted in the framework of two theories. First, the use-dependent increase in slow oscillation during NREM sleep is associated with local synaptic homeostasis. Second, reactivations of memory traces during NREM sleep would reorganize declarative memories in hippocampal-neocortical networks, a systems-level memory consolidation which can be hindered by sleep deprivation. Collectively, these data reveal the dynamical changes in brain activity during sleep which support normal human cognition. [less ▲]

Detailed reference viewed: 83 (40 ULg)
Peer Reviewed
See detailIncrease in cortico-thalamo-cortical connectivity during human sleep slow wave activity
Kussé, Caroline ULg; Lehembre, Rémy; Foret, Ariane et al

Poster (2012, June 10)

Detailed reference viewed: 16 (2 ULg)
See detailFunctional Neuroimaging during Human Sleep
Kussé, Caroline ULg; Maquet, Pierre ULg

in Barrett, Deirdre; McNamara, Patrick (Eds.) Encyclopedia of sleep and dreams (2 volumes): the evolution, function, nature and mysteries of slumber (2012)

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailDecoding Semi-Constrained Brain Activity from fMRI Using Support Vector Machines and Gaussian Processes
Schrouff, Jessica ULg; Kussé, Caroline ULg; Wehenkel, Louis ULg et al

in PLoS ONE (2012), 7(4),

Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental ... [more ▼]

Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental paradigms characterized by a series of distinct states induced by a temporally constrained experimental design. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets. This study tests the classification of brain activity, acquired on 16 volunteers using fMRI, during mental imagery, a condition in which the number and duration of mental events were not externally imposed but self-generated. To deal with these issues, two classification techniques were considered (Support Vector Machines, SVM, and Gaussian Processes, GP), as well as different feature extraction methods (General Linear Model, GLM and SVM). These techniques were combined in order to identify the procedures leading to the highest accuracy measures. Our results showed that 12 data sets out of 16 could be significantly modeled by either SVM or GP. Model accuracies tended to be related to the degree of imbalance between classes and to task performance of the volunteers. We also conclude that the GP technique tends to be more robust than SVM to model unbalanced data sets. [less ▲]

Detailed reference viewed: 48 (16 ULg)
See detailSleep, memory and the hippocampus
Foret, Ariane; Mascetti, Laura ULg; Kussé, Caroline ULg et al

in Clinical Neurobiology of the Hippocampus (2012)

Detailed reference viewed: 26 (10 ULg)
See detailDecoding semi-constrained brain activity from fMRI using SVM and GP
Schrouff, Jessica ULg; Kussé, Caroline ULg; Wehenkel, Louis ULg et al

Scientific conference (2011, November 22)

Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental ... [more ▼]

Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental paradigms characterized by a series of distinct states induced by a temporally constrained experimental design. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets. This study tests the classification of brain activity, acquired on 16 volunteers using fMRI, during mental imagery, a condition in which the number and duration of mental events were not externally imposed but self-generated. To deal with these issues, two classification techniques were considered (Support Vector Machines, SVM, and Gaussian Processes, GP), as well as different feature extraction methods (General Linear Model, GLM and SVM). These techniques were combined in order to identify the procedures leading to the highest accuracy measures. Our results showed that 12 data sets out of 16 could be significantly modeled by either SVM or GP. Model accuracies tended to be related to the degree of imbalance between classes and to task performance of the volunteers. We also conclude that the GP technique tends to be more robust than SVM to model unbalanced data sets. [less ▲]

Detailed reference viewed: 50 (5 ULg)
Full Text
Peer Reviewed
See detailDecoding Directed Brain Activity in fMRI using Support Vector Machines and Gaussian Processes
Schrouff, Jessica ULg; Kussé, Caroline ULg; Wehenkel, Louis ULg et al

Poster (2011, June 26)

Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental ... [more ▼]

Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental paradigms characterized by a series of distinct states induced by a temporally constrained experimental design. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets. This study tests the classification of brain activity, acquired on 16 volunteers using fMRI, during mental imagery, a condition in which the number and duration of mental events were not externally imposed but self-generated. To deal with these issues, two classification techniques were considered (Support Vector Machines, SVM, and Gaussian Processes, GP), as well as different feature extraction methods (General Linear Model, GLM and SVM). These techniques were combined in order to identify the procedures leading to the highest accuracy measures. Our results showed that 12 data sets out of 16 could be significantly modeled by either SVM or GP. Model accuracies tended to be related to the degree of imbalance between classes and to task performance of the volunteers. We also conclude that the GP technique tends to be more robust than SVM to model unbalanced data sets. [less ▲]

Detailed reference viewed: 27 (5 ULg)
Peer Reviewed
See detailExperience-dependent induction of hypnagogic images during daytime naps: a combined behavioral and EEG study.
Kussé, Caroline ULg; Shaffii-Le Bourdiec, Anahita; Schrouff, Jessica ULg et al

in Association for the Scientific Study of Consciousness 15, Kyoto, Japan, 9-12 June 2011 (2011, June 09)

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailReciprocal interactions between wakefulness and sleep influence global and regional brain activity
Muto, Vincenzo ULg; Mascetti, Laura ULg; Matarazzo, Luca et al

in Current Topics in Medicinal Chemistry (2011), 11(19), 2403-13

Detailed reference viewed: 21 (11 ULg)
Full Text
Peer Reviewed
See detailFunctional neuroimaging of the reciprocal influences between sleep and wakefulness.
Jedidi, Zayd ULg; Rikir, Estelle ULg; Muto, Vincenzo ULg et al

in Pflugers Archiv : European journal of physiology (2011), 463(1), 103-9

The activity patterns adopted by brain neuronal populations differ dramatically between wakefulness and sleep. However, these vigilance states are not independent and they reciprocally interact. Here, we ... [more ▼]

The activity patterns adopted by brain neuronal populations differ dramatically between wakefulness and sleep. However, these vigilance states are not independent and they reciprocally interact. Here, we provide evidence that in humans, regional brain activity during wakefulness is influenced by sleep regulation, namely by the interaction between sleep homeostasis and circadian signals. We also show that, by contrast, regional brain activity during sleep is influenced by the experience acquired during the preceding waking period. These data reveal the dynamic interactions by which the succession of vigilance states support normal brain function and human cognition. [less ▲]

Detailed reference viewed: 51 (22 ULg)
Full Text
Peer Reviewed
See detailNeural Correlates of Human NREM Sleep Oscillations
Foret, Ariane ULg; Shaffii, Anahita ULg; Muto, Vincenzo ULg et al

in Hutt, Axel (Ed.) Sleep and Anesthesia (2011)

Detailed reference viewed: 26 (13 ULg)
Full Text
Peer Reviewed
See detailSpontaneous neural activity during human non-rapid eye movement sleep.
Mascetti, Laura ULg; Foret, Ariane ULg; Shaffii, Anahita ULg et al

in Progress in Brain Research (2011), 193

Recent neuroimaging studies characterized the neural correlates of slow waves and spindles during human non-rapid eye movement (NREM) sleep. They showed that significant activity was consistently ... [more ▼]

Recent neuroimaging studies characterized the neural correlates of slow waves and spindles during human non-rapid eye movement (NREM) sleep. They showed that significant activity was consistently associated with slow (> 140 muV) and delta waves (75-140 muV) during NREM sleep in several cortical areas including inferior frontal, medial prefrontal, precuneus, and posterior cingulate cortices. Unexpectedly, slow waves were also associated with transient responses in the pontine tegmentum and in the cerebellum. On the other hand, spindles were associated with a transient activity in the thalami, paralimbic areas (anterior cingulate and insular cortices), and superior temporal gyri. Moreover, slow spindles (11-13 Hz) were associated with increased activity in the superior frontal gyrus. In contrast, fast spindles (13-15 Hz) recruited a set of cortical regions involved in sensorimotor processing, as well as the mesial frontal cortex and hippocampus. These findings indicate that human NREM sleep is an active state during which brain activity is temporally organized by spontaneous oscillations (spindles and slow oscillation) in a regionally specific manner. The functional significance of these NREM sleep oscillations is currently interpreted in terms of synaptic homeostasis and memory consolidation. [less ▲]

Detailed reference viewed: 55 (24 ULg)