References of "KURTH, W"
     in
Bookmark and Share    
See detailRecurrent Energization of Plasma in the Midnight-to-Dawn Quadrant of Saturn's Magnetosphere, and its Relationship to Auroral UV and Radio Emissions
Mitchell, D.; Krimigis, S.; Paranicas, C. et al

Poster (2009, August 11)

Detailed reference viewed: 5 (1 ULg)
See detailCassini UVIS and HST STIS Time-Resolved Jupiter Auroral Data Compared to QP Radio Bursts
Pryor, W.; Hospodarsky, G.; Stewart, I. et al

Poster (2003)

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Jupiter in a 4-sec integration "high time-resolution mode" on Jan 8, 13-14, and 20-21 in 2001. In this mode Extreme-Ultraviolet and Far ... [more ▼]

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Jupiter in a 4-sec integration "high time-resolution mode" on Jan 8, 13-14, and 20-21 in 2001. In this mode Extreme-Ultraviolet and Far-Ultraviolet spectra were obtained with reduced spectral and spatial resolution in order to study rapid variations in H2 band and H Lyman alpha emission. Previous work has shown that the region inside Jupiter's main auroral ovals contains highly variable spots of emission (auroral flares) that persist for typically 1 or 2 minutes. This duration is similar to that in Jupiter's quasi-periodic (QP) radio bursts. We compare UVIS data to simultaneous Galileo Plasma Wave Subsystem (PWS) and Cassini Radio and Plasma Wave Subsystem (RPWS) observations. Jan 8 was an active period for UV variability, that we associate with polar auroral flares. There is a correlation between the radio and UV bursts in this period, suggesting that they are related phenomena. We will also explore coordinated Hubble Space Telescope Imaging Spectrograph (STIS) time-tagged UV images from Dec 14 and Dec 16, 2000, and Jan 13-14, and Jan 20-21, 2001 to study the spatial properties of the auroral flares. The auroral emissions inside the main oval were most prominent in the Dec 14, 2000 HST data. We acknowledge support from the Cassini Project, the Space Telescope Science Institute, and the NASA OSS Minority University Initiative. [less ▲]

Detailed reference viewed: 8 (0 ULg)
See detailCassini UVIS time-resolved Jupiter auroral data compared to QP radio bursts
Pryor, W.; Hospodarsky, G.; Stewart, I. et al

Poster (2003)

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Jupiter in a 4-sec integration "high time-resolution mode" on Jan 8, 13-14, and 20-21 in 2001. In this mode Extreme-Ultraviolet and Far ... [more ▼]

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Jupiter in a 4-sec integration "high time-resolution mode" on Jan 8, 13-14, and 20-21 in 2001. In this mode Extreme-Ultraviolet and Far-Ultraviolet spectra were obtained with reduced spectral and spatial resolution in order to study rapid variations in H2 band and H Lyman alpha emission. Previous work has shown that the region inside Jupiter's main auroral ovals contains highly variable spots of emission (auroral flares) that persist for typically 1 or 2 minutes. This duration is similar to that in Jupiter's quasi-periodic (QP) radio bursts. We compare UVIS data to simultaneous Galileo Plasma Wave Subsystem (PWS) and Cassini Radio PWS (RPWS) observations. Jan 8 was an active period for UV variability, that we associate with polar auroral flares. There is a correlation between the radio and UV bursts in this period, suggesting that they are related phenomena. We will also explore coordinated Hubble Space Telescope Imaging Spectrograph time-tagged UV images from Jan 13-14 and Jan 20-21, 2001 to study the spatial properties of the auroral flares. [less ▲]

Detailed reference viewed: 7 (0 ULg)
See detailCassini UVIS Observations of Jupiter's Auroral Variability
Pryor, W. R.; Stewart, A. F.; Esposito, L. W. et al

Poster (2001, October 27)

In the December 2000 Cassini flyby of the Jupiter system, the Cassini Ultraviolet Imaging Spectrograph (UVIS) monitored Jupiter's auroral emissions from day 275 of 2000 to day 81 of 2001. Much of the ... [more ▼]

In the December 2000 Cassini flyby of the Jupiter system, the Cassini Ultraviolet Imaging Spectrograph (UVIS) monitored Jupiter's auroral emissions from day 275 of 2000 to day 81 of 2001. Much of the auroral variability can be explained simply in terms of the rotation of Jupiter's auroral arcs (measured by Hubble Space Telescope) with the planet. However, several brightening events were seen in which the global auroral output increased by a factor of 2-4. These events persisted over a number of hours and are tied to large solar coronal mass ejection events. The auroral UV emissions from these bursts also correspond to hectometric radio emission increases reported by the Galileo and Cassini Radio and Plasma Wave experiments. The 2 largest events were on 2000 day 280 and on 2000 day 325-326. We will look at these events in some detail, and compare them with corresponding information on the interplanetary magnetic field, solar wind conditions, and energetic particle environment to try to understand the cause of these auroral brightness increases. [less ▲]

Detailed reference viewed: 6 (1 ULg)