References of "Esposito, L W"
     in
Bookmark and Share    
See detailUltraviolet Auroral Pulsations on Saturn from Cassini UVIS
Pryor, Wayne R.; Esposito, L. W.; Jouchoux, A. et al

in AAS/Division for Planetary Sciences Meeting Abstracts (2012, October 01)

Cassini Ultraviolet Imaging Spectrograph (UVIS) observations of Saturn were obtained on 2009 days 278-280 with the UVIS long slit aligned east-west along the northern auroral oval. Bright quasi-periodic ... [more ▼]

Cassini Ultraviolet Imaging Spectrograph (UVIS) observations of Saturn were obtained on 2009 days 278-280 with the UVIS long slit aligned east-west along the northern auroral oval. Bright quasi-periodic localized bursts of UV emission were often observed with 1 hour spacing that slowly moved sub-corotationally along the main auroral arc. We will report on an apparent correlation of the bursts with the locations of Saturn's moons, and a search for other such examples. We will also compare the UVIS results with simultaneous Cassini Imaging Science Subsystem (ISS) auroral images. [less ▲]

Detailed reference viewed: 5 (1 ULg)
See detailCassini UVIS Observations of Titan Ultraviolet Airglow Spectra with Laboratory Modeling from Electron- and Proton-Excited N2 Emission Studies
Ajello, J. M.; West, R. A.; Malone, C. P. et al

Conference (2011, December 01)

Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of ... [more ▼]

Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 & Department of Physics, California State University, Fullerton, CA 92834 Michael H. Stevens Space Science Division, Naval Research Laboratory, Washington, DC 20375 Jacques Gustin Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium A. Ian F. Stewart, Larry W. Esposito, William E. McClintock, Gregory M. Holsclaw Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 E. Todd Bradley Department of Physics, University of Central Florida, Orlando, FL 32816 The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including three eclipse observations from 2009 through 2010. The 77 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions (lifetimes less than ~100 μs), including the Lyman-Birge-Hopfield (LBH) band system, arising from photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2). The altitude of peak UV emission on the limb of Titan during daylight occurred inside the thermosphere/ionosphere (near 1000 km altitude). However, at night on the limb, the same emission features, but much weaker in intensity, arise in the lower atmosphere below 1000 km (lower thermosphere, mesosphere, haze layer) extending downwards to near the surface at ~300 km, possibly resulting from proton- and/or heavier ion-induced emissions as well as secondary-electron-induced emissions. The eclipse observations are unique. UV emissions were observed during only one of the three eclipse events, and no Vegard-Kaplan (VK) or LBH emissions were seen. Through regression analysis using laboratory spectra, we have analyzed the intensity and identified each spectral feature from the limb or disk emission spectrum. The strongest dipole-allowed transitions of N2 occur in the EUV. The electronic transitions proceed from the X 1Σg+ ground-state to about seven closely spaced (~12-15 eV) Rydberg-valence (RV) states, which are the source of the molecular emissions in the EUV observed by spacecraft and have recently been studied in our laboratory at medium-to-high spectral resolution (delta-λ = 0.1 Å FWHM). Three of these RV states (b 1Πu, b' 1Σu+, and c4' 1Σu+) are highly-perturbed, weakly-to-strongly predissociated, and have significant emission cross sections, which will be summarized in this paper. We will also discuss our recently published proton and electron impact emission cross sections for the LBH (a 1Πg - X 1Σg+) band system of N2, and their significance to the modeling of the day and night FUV spectra of the atmospheres of Earth and Titan. [less ▲]

Detailed reference viewed: 7 (2 ULg)
Full Text
Peer Reviewed
See detailMeasurements of the helium 584 Å airglow during the Cassini flyby of Venus
Gérard, Jean-Claude ULg; Gustin, Jacques ULg; Hubert, Benoît ULg et al

in Planetary and Space Science (2011), 59

The helium resonance line at 584 Å has been observed with the UltraViolet Imaging Spectrograph (UVIS) Extreme Ultraviolet channel during the flyby of Venus by Cassini at a period of high solar activity ... [more ▼]

The helium resonance line at 584 Å has been observed with the UltraViolet Imaging Spectrograph (UVIS) Extreme Ultraviolet channel during the flyby of Venus by Cassini at a period of high solar activity. The brightness was measured along the disk from the morning terminator up to the bright limb near local noon. The mean disk intensity was ˜320 R, reaching ˜700 R at the bright limb. These values are slightly higher than those determined from previous observations. The sensitivity of the 584 Å intensity to the helium abundance is analyzed using recent cross-sections and solar irradiance measurements at 584 Å. The intensity distribution along the UVIS footprint on the disk is best reproduced using the EUVAC solar flux model and the helium density distribution from the VTS3 empirical model. It corresponds to a helium density of 8×10[SUP]6[/SUP] cm[SUP]-3[/SUP] at the level of where the CO[SUB]2[/SUB] is 2×10[SUP]10[/SUP] cm[SUP]-3[/SUP]. [less ▲]

Detailed reference viewed: 16 (4 ULg)
Full Text
Peer Reviewed
See detailEUV spectroscopy of the Venus dayglow with UVIS on Cassini
Gérard, Jean-Claude ULg; Hubert, Benoît ULg; Gustin, Jacques ULg et al

in Icarus: International Journal of Solar System Studies (2011), 211

We analyze EUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus on 24 June 1999, a period of high solar activity level. Emissions ... [more ▼]

We analyze EUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus on 24 June 1999, a period of high solar activity level. Emissions from OI, OII, NI, CI and CII and CO have been identified and their disc average intensity has been determined. They are generally somewhat brighter than those determined from the observations made with the HUT spectrograph at a lower activity level, We present the brightness distribution along the foot track of the UVIS slit of the OII 83.4 nm, OI 98.9 nm, Lyman-ß + OI 102.5 nm and NI 120.0 nm multiplets, and the CO C-X and B-X Hopfield-Birge bands. We make a detailed comparison of the intensities of the 834 nm, 989 nm, 120.0 nm multiplets and CO B-X band measured along the slit foot track on the disc with those predicted by an airglow model previously used to analyze Venus and Mars ultraviolet spectra. This model includes the treatment of multiple scattering for the optically thick OI, OII and NI multiplets. It is found that the observed intensity of the OII emission at 83.4 nm is higher than predicted by the model. An increase of the O[SUP]+[/SUP] ion density relative to the densities usually measured by Pioneer Venus brings the observations and the modeled values into better agreement. The calculated intensity variation of the CO B-X emission along the track of the UVIS slit is in fair agreement with the observations. The intensity of the OI 98.9 nm emission is well predicted by the model if resonance scattering of solar radiation by O atoms is included as a source. The calculated brightness of the NI 120 nm multiplet is larger than observed by a factor of ˜2-3 if photons from all sources encounter multiple scattering. The discrepancy reduces to 30-80% if the photon electron impact and photodissociation of N[SUB]2[/SUB] sources of N([SUP]4[/SUP]S) atoms are considered as optically thin. Overall, we find that the O, N[SUB]2[/SUB] and CO densities from the empirical VTS3 model provide satisfactory agreement between the calculated and the observed EUV airglow emissions. [less ▲]

Detailed reference viewed: 22 (7 ULg)
See detailThe Production of Titan's Ultraviolet Nitrogen Airglow
Stevens, Michael H.; Gustin, Jacques ULg; Ajello, J. M. et al

in AAS/Division for Planetary Sciences Meeting Abstracts #42 (2010, October 01)

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb on 22 June, 2009, obtaining high quality extreme ultraviolet (EUV) and far ultraviolet (FUV) spectra from a distance of ... [more ▼]

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb on 22 June, 2009, obtaining high quality extreme ultraviolet (EUV) and far ultraviolet (FUV) spectra from a distance of only 60,000 km (23 Titan radii). The observations reveal the same EUV and FUV emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N[SUB]2[/SUB]) on Earth but with the altitude of peak emission much higher on Titan near 1000 km altitude. In the EUV, emission bands from the photoelectron excited N[SUB]2[/SUB] Carroll-Yoshino c[SUB]4[/SUB]'-X system and N I and N II multiplets arising from photofragmentation of N[SUB]2[/SUB] dominate, with no detectable c[SUB]4[/SUB]'(0,0) emission near 958 Å, contrary to many interpretations of the lower resolution Voyager 1 Ultraviolet Spectrometer data. The FUV is dominated by emission bands from the N[SUB]2[/SUB] Lyman-Birge-Hopfield a-X system and additional N I multiplets. We also identify several N[SUB]2[/SUB] Vegard-Kaplan A-X bands between 1500-1900 Å, two of which are located near 1561 and 1657 Å where C I multiplets were previously identified from a separate UVIS disk observation. We compare these limb emissions to predictions from a terrestrial airglow model adapted to Titan that uses a solar spectrum appropriate for these June, 2009 observations. Volume production rates and limb radiances are calculated, including extinction by methane and allowance for multiple scattering within the readily excited c[SUB]4[/SUB]'(0,v') system, and compared to UVIS observations. We find that for these airglow data only emissions arising from processes involving N[SUB]2[/SUB] are present. [less ▲]

Detailed reference viewed: 5 (1 ULg)
See detailSaturn Auroral Movies from Cassini UVIS
Pryor, W. R.; Stewart, I.; Esposito, L. W. et al

in American Geophysical Union, Fall Meeting 2009 (2009, December 01)

Cassini's Ultraviolet Imaging Spectrograph (UVIS) continues to obtain Saturn auroral data. Two long slit spectral channels are used to obtain EUV data from 56.3-118.2 nm and FUV data from 111.5-191.3 nm ... [more ▼]

Cassini's Ultraviolet Imaging Spectrograph (UVIS) continues to obtain Saturn auroral data. Two long slit spectral channels are used to obtain EUV data from 56.3-118.2 nm and FUV data from 111.5-191.3 nm. 64 spatial pixels along each slit are combined with slit motion to construct spectral images of Saturn. Auroral emissions are seen from electron-excited molecular and atomic hydrogen. In 2007-2009 UVIS obtained data with the spacecraft well out of Saturn's ring plane, permitting UVIS to obtain a number of short movies of the rotating auroral structures. Selected movies will be presented with geometric overlays and in polar projections. In some movies a cusp-like feature is present near noon inside the oval. One movie from 2008 day 201 shows parallel linear features on the day side almost at right angles to the main auroral oval that appear, then lengthen, separate in the middle, and then fade away. Other movies show similar cusp-related structures that resemble the letter "Q" where a dynamical feature at right angles to the oval moves away from the cusp region. The 2008 day 201 movie also shows one bright "polar flare" inside the oval with a spectrally distinct signature indicating the presence of higher energy electrons. A few of the most recent images were obtained at sufficiently close range that 2 spacecraft slews were needed to completely cover the oval. These images provide almost 100 pixels of information across the oval and clearly show multiple arcs of emission on the main oval and scattered emissions inside the oval. Several frames show emissions associated with the footprint of the Enceladus field line. We will discuss these features, their locations, and possible interpretations. [less ▲]

Detailed reference viewed: 5 (1 ULg)
See detailCassini UVIS Observations of Jupiter's Auroral Variability
Pryor, W. R.; Stewart, A. F.; Esposito, L. W. et al

Poster (2001, October 27)

In the December 2000 Cassini flyby of the Jupiter system, the Cassini Ultraviolet Imaging Spectrograph (UVIS) monitored Jupiter's auroral emissions from day 275 of 2000 to day 81 of 2001. Much of the ... [more ▼]

In the December 2000 Cassini flyby of the Jupiter system, the Cassini Ultraviolet Imaging Spectrograph (UVIS) monitored Jupiter's auroral emissions from day 275 of 2000 to day 81 of 2001. Much of the auroral variability can be explained simply in terms of the rotation of Jupiter's auroral arcs (measured by Hubble Space Telescope) with the planet. However, several brightening events were seen in which the global auroral output increased by a factor of 2-4. These events persisted over a number of hours and are tied to large solar coronal mass ejection events. The auroral UV emissions from these bursts also correspond to hectometric radio emission increases reported by the Galileo and Cassini Radio and Plasma Wave experiments. The 2 largest events were on 2000 day 280 and on 2000 day 325-326. We will look at these events in some detail, and compare them with corresponding information on the interplanetary magnetic field, solar wind conditions, and energetic particle environment to try to understand the cause of these auroral brightness increases. [less ▲]

Detailed reference viewed: 5 (1 ULg)