References of "Bunce, E J"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCassini nightside observations of the oscillatory motion of Saturn's northern auroral oval
Bunce, E. J.; Grodent, Denis ULg; Jinks, S. L. et al

in Journal of Geophysical Research. Space Physics (2014), 119

recent years we have benefitted greatly from the first in-orbit multi-wavelength images of Saturn's polar atmosphere from the Cassini spacecraft. Specifically, images obtained from the Cassini UltraViolet ... [more ▼]

recent years we have benefitted greatly from the first in-orbit multi-wavelength images of Saturn's polar atmosphere from the Cassini spacecraft. Specifically, images obtained from the Cassini UltraViolet Imaging Spectrograph (UVIS) provide an excellent view of the planet's auroral emissions, which in turn give an account of the large-scale magnetosphere-ionosphere coupling and dynamics within the system. However, obtaining near-simultaneous views of the auroral regions with in situ measurements of magnetic field and plasma populations at high latitudes is more difficult to routinely achieve. Here we present an unusual case, during Revolution 99 in January 2009, where UVIS observes the entire northern UV auroral oval during a 2 h interval while Cassini traverses the magnetic flux tubes connecting to the auroral regions near 21 LT, sampling the related magnetic field, particle, and radio and plasma wave signatures. The motion of the auroral oval evident from the UVIS images requires a careful interpretation of the associated latitudinally "oscillating" magnetic field and auroral field-aligned current signatures, whereas previous interpretations have assumed a static current system. Concurrent observations of the auroral hiss (typically generated in regions of downward directed field-aligned current) support this revised interpretation of an oscillating current system. The nature of the motion of the auroral oval evident in the UVIS image sequence, and the simultaneous measured motion of the field-aligned currents (and related plasma boundary) in this interval, is shown to be related to the northern hemisphere magnetosphere oscillation phase. This is in agreement with previous observations of the auroral oval oscillatory motion. [less ▲]

Detailed reference viewed: 13 (3 ULg)
Full Text
Peer Reviewed
See detailDynamic auroral storms on Saturn as observed by the Hubble Space Telescope
Nichols, J. D.; Badman, S. V.; Baines, K. H. et al

in Geophysical Research Letters (2014), 41

We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission ... [more ▼]

We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ˜330% rigid corotation from near ˜01 h LT toward ˜08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current. [less ▲]

Detailed reference viewed: 13 (8 ULg)
See detailAuroral counterpart of magnetic field dipolarizations in Saturn's tail
Jackman, C. M.; Achilleos, N.; Bunce, E. J. et al

in American Geophysical Union, Fall Meeting 2011, abstract #SM14A-07 (2011, December 01)

Following magnetic reconnection in a planetary magnetotail, newly closed field lines can be rapidly accelerated back towards the planet, becoming "dipolarized" in the process. At Saturn, dipolarizations ... [more ▼]

Following magnetic reconnection in a planetary magnetotail, newly closed field lines can be rapidly accelerated back towards the planet, becoming "dipolarized" in the process. At Saturn, dipolarizations can be initially identified from the magnetometer data by looking for a southward turning of the magnetic field, indicating the transition from a radially stretched configuration to a more dipolar field topology. The highly stretched geometry of the kronian magnetotail lobes gives rise to a tail current which flows eastward (dusk to dawn) in the near equatorial plane across the centre of the tail. During reconnection and associated dipolarization of the field, the inner edge of this tail current can be diverted through the ionosphere, in a situation analogous to the substorm current wedge picture at Earth [McPherron et al. 1973]. We present a picture of the current circuit arising from this tail reconfiguration, and outline the equations which govern the field-current relationship. We show a number of examples of dipolarizations as identified in the Cassini magnetometer data and use this formalism to calculate limits for the ionospheric current density that would arise for these examples. In addition to the magnetometer data, we also present data from the Cassini VIMS and UVIS instruments which have observed small 'spots' of auroral emission lying near the main oval - features thought to be associated with dipolarizations in the tail. We compare the auroral intensities as predicted from our calculation with the observed spot sizes and intensities. [less ▲]

Detailed reference viewed: 18 (1 ULg)
See detailA Far-UV Imager for the Jupiter Ganymede Orbiter
Bunce, E. J.; Molyneux, P.; Bannister, N. et al

Poster (2010, May 17)

Detailed reference viewed: 20 (3 ULg)
Full Text
Peer Reviewed
See detailSaturn's equinoctial auroras
Nichols, J. D.; Badman, S. V.; Bunce, E. J. et al

in Geophysical Research Letters (2009), 36

We present the first images of Saturn's conjugate equinoctial auroras, obtained in early 2009 using the Hubble Space Telescope. We show that the radius of the northern auroral oval is similar to 1.5 ... [more ▼]

We present the first images of Saturn's conjugate equinoctial auroras, obtained in early 2009 using the Hubble Space Telescope. We show that the radius of the northern auroral oval is similar to 1.5 degrees smaller than the southern, indicating that Saturn's polar ionospheric magnetic field, measured for the first time in the ionosphere, is similar to 17% larger in the north than the south. Despite this, the total emitted UV power is on average similar to 17% larger in the north than the south, suggesting that field-aligned currents (FACs) are responsible for the emission. Finally, we show that individual auroral features can exhibit distinct hemispheric asymmetries. These observations will provide important context for Cassini observations as Saturn moves from southern to northern summer. Citation: Nichols, J. D., et al. (2009), Saturn's equinoctial auroras, Geophys. Res. Lett., 36, L24102, doi: 10.1029/2009GL041491. [less ▲]

Detailed reference viewed: 31 (4 ULg)
Full Text
See detailAuroral Processes
Kurth, W. S.; Bunce, E. J.; Clarke, J. T. et al

in Dougherty, M. K.; Esposito, L. W.; Krimigis, S. M. (Eds.) Saturn from Cassini-Huygens (2009)

Cassini has afforded a number of unique opportunities to understand auroral processes at Saturn and to highlight both differences and similarities with auroral physics at both Earth and Jupiter. A number ... [more ▼]

Cassini has afforded a number of unique opportunities to understand auroral processes at Saturn and to highlight both differences and similarities with auroral physics at both Earth and Jupiter. A number of campaigns were coordinated with the Hubble Space Telescope such that Cassini could provide either ground truth on the impinging solar wind or in situ measurements of magnetospheric conditions leading to qualitative and sometimes quantitative relationships between the solar wind influence on the intensity, the morphology and evolution of the auroras, and magnetospheric dynamics. The Hubble UV images are enhanced by Cassini’s own remote sensing of the auroras. Cassini’s in situ studies of the structure and dynamics of the magnetosphere discussed in other chapters of this book provide the context for understanding the primary drivers of Saturn’s auroras and the role of magnetospheric dynamics in their variations. Finally, Cassini’s three dimensional prime mission survey of the magnetosphere culminates in high inclination orbits placing it at relatively small radial distances while on auroral field lines, providing the first such in situ observations of auroral particles and fields at a planet other than Earth. The new observations have spawned a number of efforts to model the interaction of the solar wind with the magnetosphere and how such dynamics influence the auroras. [less ▲]

Detailed reference viewed: 9 (0 ULg)
See detailCoordinated measurements of auroral processes at Saturn from the Cassini spacecraft and HST
Mitchell, D. G.; Kurth, William; Hospodarsky, G. B. et al

Conference (2008, December 01)

One of the primary Cassini mission objectives at Saturn is to characterize Saturn's aurora-its spatial morphology, associated particle energization, radio wave generation, and magnetospheric currents ... [more ▼]

One of the primary Cassini mission objectives at Saturn is to characterize Saturn's aurora-its spatial morphology, associated particle energization, radio wave generation, and magnetospheric currents, relationship with solar wind pressure and magnetic field, and its large scale mapping to the magnetosphere. By design, the Cassini orbital tour included high inclination and low periapsis orbits late in the prime mission specifically to address many of these topics. In this presentation, we will provide a snapshot of the current state of our investigation into the relationship between magnetospheric measurements of particles and fields, and the aurora. For in situ data, we will show measurements of upward traveling light ion conics (~30 keV to 200 keV), often accompanied by electron beams (<20 keV to ~1 MeV) and enhanced broadband noise (10 Hz to a few kHz), throughout the outer magnetosphere on field lines that nominally map from well into the polar cap (dipole L > 50) to well into the closed field region (dipole L < 10). Sometimes the particle phenomena and the broadband noise occur in pulses of roughly five-minute duration, separated by tens of minutes. At other times they are relatively steady over an hour or more. Magnetic signatures associated with some of the pulsed events are consistent with field aligned current structures. Correlative observations of solar wind (Cassini) and aurora (HST) have established a strong relationship between solar wind pressure and auroral activity (brightness) (Crary et al., Nature, 2005; Clarke et al., JGR, 2008). A similar correspondence between bright auroral arcs and ring current ion acceleration will be shown here. So while some auroral forms seem to be associated with the open/closed field boundary (i.e. in the cusp-Bunce et al., JGR, 2008), we also demonstrate that under some magnetospheric conditions for which protons and oxygen ions are accelerated once per Saturn magnetosphere rotation at a preferred local time between midnight and dawn, simultaneous auroral observations by the HST reveal a close correlation between these dynamical magnetospheric events and dawn-side transient auroral brightenings. Likewise, many of the recurrent energetic neutral atom enhancements coincide closely with bursts of Saturn kilometric radiation, again suggesting a linkage with high latitude auroral processes. Finally, we will show some intriguing results of auroral movie sequences from the Cassini UVIS instrument with corresponding ring current movies from the Magnetospheric Imaging Instrument Ion and Neutral Camera (MIMI/INCA). [less ▲]

Detailed reference viewed: 53 (6 ULg)
Full Text
Peer Reviewed
See detailAuroral current systems in Saturn's magnetosphere: comparison of theoretical models with Cassini and HST observations
Cowley, S. W. H.; Arridge, C. S.; Bunce, E. J. et al

in Annales Geophysicae [= ANGEO] (2008), 26(9), 2613-2630

The first simultaneous observations of fields and plasmas in Saturn's high-latitude magnetosphere and UV images of the conjugate auroral oval were obtained by the Cassini spacecraft and the Hubble Space ... [more ▼]

The first simultaneous observations of fields and plasmas in Saturn's high-latitude magnetosphere and UV images of the conjugate auroral oval were obtained by the Cassini spacecraft and the Hubble Space Telescope (HST) in January 2007. These data have shown that the southern auroral oval near noon maps to the dayside cusp boundary between open and closed field lines, associated with a major layer of upward-directed field-aligned current (Bunce et al., 2008). The results thus support earlier theoretical discussion and quantitative modelling of magnetosphere-ionosphere coupling at Saturn (Cowley et al., 2004), that suggests the oval is produced by electron acceleration in the field-aligned current layer required by rotational flow shear between strongly sub-corotating flow on open field lines and near-corotating flow on closed field lines. Here we quantitatively compare these modelling results (the 'CBO' model) with the Cassini-HST data set. The comparison shows good qualitative agreement between model and data, the principal difference being that the model currents are too small by factors of about five, as determined from the magnetic perturbations observed by Cassini. This is suggested to be principally indicative of a more highly conducting summer southern ionosphere than was assumed in the CBO model. A revised model is therefore proposed in which the height-integrated ionospheric Pedersen conductivity is increased by a factor of four from 1 to 4 mho, together with more minor adjustments to the co-latitude of the boundary, the flow shear across it, the width of the current layer, and the properties of the source electrons. It is shown that the revised model agrees well with the combined Cassini-HST data, requiring downward acceleration of outer magnetosphere electrons through a similar to 10 kV potential in the current layer at the open-closed field line boundary to produce an auroral oval of similar to 1 degrees width with UV emission intensities of a few tens of kR. [less ▲]

Detailed reference viewed: 51 (22 ULg)
Full Text
Peer Reviewed
See detailOrigin of Saturn's aurora: Simultaneous observations by Cassini and the Hubble Space Telescope
Bunce, E. J.; Arridge, C. S.; Clarke, J. T. et al

in Journal of Geophysical Research (2008), 113(A9),

Outer planet auroras have been imaged for more than a decade, yet understanding their physical origin requires simultaneous remote and in situ observations. The first such measurements at Saturn were ... [more ▼]

Outer planet auroras have been imaged for more than a decade, yet understanding their physical origin requires simultaneous remote and in situ observations. The first such measurements at Saturn were obtained in January 2007, when the Hubble Space Telescope imaged the ultraviolet aurora, while the Cassini spacecraft crossed field lines connected to the auroral oval in the high-latitude magnetosphere near noon. The Cassini data indicate that the noon aurora lies in the boundary between open- and closed-field lines, where a layer of upward-directed field-aligned current flows whose density requires downward acceleration of magnetospheric electrons sufficient to produce the aurora. These observations indicate that the quasi-continuous main oval is produced by the magnetosphere-solar wind interaction through the shear in rotational flow across the open-closed-field line boundary. [less ▲]

Detailed reference viewed: 56 (33 ULg)
Full Text
Peer Reviewed
See detailSaturn's auroral morphology and activity during quiet magnetospheric conditions
Gérard, Jean-Claude ULg; Grodent, Denis ULg; Cowley, S. W. H. et al

in Journal of Geophysical Research. Space Physics (2006), 111

We report the results of a coordinated Hubble Space Telescope-Cassini campaign that took place between 26 October and 2 November 2005. During this period, Saturn's magnetosphere was in an expanded state ... [more ▼]

We report the results of a coordinated Hubble Space Telescope-Cassini campaign that took place between 26 October and 2 November 2005. During this period, Saturn's magnetosphere was in an expanded state and the solar wind was quiet, as indicated by the location of the magnetopause, in situ particle measurements, weak auroral SKR emission, and the generally low brightness of the aurora. We describe the morphology and dynamics of the aurora during this period in parallel with concurrent Cassini measurements. We show that the aurora exhibits considerable longitudinal structure and time variations over intervals of a few hours, in spite of the absence of observable external triggers and generally low intensity. In particular, enhancements of the dawn-morning oval are seen while no apparent indication of solar wind activity is observed. These features rotate at a speed corresponding to about 65% of the planet's angular velocity. We also describe energetic neutral atom measurements indicating that an ENA acceleration event occurred in the magnetotail on 26 October without any measured signature of solar wind activation. These observations suggest an intrinsically dynamical magnetosphere where injection of hot plasma occasionally takes place in the night or dawn sector during quiet magnetospheric conditions, possibly connected with either the Dungey or the Vasyliunas convection cycle. [less ▲]

Detailed reference viewed: 14 (4 ULg)
See detailOpen Flux Estimates and Reconnection Rates in Saturn's Magnetosphere, Derived Using HST and Cassini Data
Badman, S. V.; Bunce, E. J.; Clarke, J. T. et al

Conference (2005, December 01)

During January 2004, a sequence of 68 UV images of Saturn's southern aurora was obtained by the Hubble Space Telescope (HST), coordinated with measurements of the upstream interplanetary conditions made ... [more ▼]

During January 2004, a sequence of 68 UV images of Saturn's southern aurora was obtained by the Hubble Space Telescope (HST), coordinated with measurements of the upstream interplanetary conditions made by the Cassini spacecraft. Using the poleward edge of the observed aurora as a proxy for the open-closed field line boundary, the open flux content of the southern polar region has been estimated. It is found to range from 15 to 50 GWb during the interval, such a large variation providing evidence of a significant magnetospheric interaction with the solar wind, in particular with structures associated with corotating interaction regions (CIRs). Cassini measurements of the upstream interplanetary conditions have been used to estimate the rate of open flux production at the magnetopause. By comparison with the open flux values obtained from the images, the rate of open flux closure in Saturn's magnetotail is also estimated. We find that the rate of open flux production is high (200 kV) in the high-field strength intervals following the onset of CIR-related compressions, and elevated (30-40 kV) in an intermediate-field strength rarefaction region. High flux closure rates (100-200 kV) are estimated in association with the onset of solar wind compressions and are intermittently increased (30-60 kV) during a weak-field rarefaction region. The disturbed auroral forms seen in the images are discussed in relation to the estimated reconnection rates. Recent studies have suggested that Saturn Kilometric Radiation emissions are also disturbed by the onset of CIR compressions at Saturn. [less ▲]

Detailed reference viewed: 23 (3 ULg)
See detailOpen flux estimates in Saturn's magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates
Badman, S. V.; Bunce, E. J.; Clarke, J. T. et al

Conference (2005, August 07)

Detailed reference viewed: 14 (6 ULg)
See detailDescription of Saturn’s auroral morphology during Cassini’s approach of the magnetosphere
Grodent, Denis ULg; Gérard, Jean-Claude ULg; Cowley, S. W. et al

Conference (2005, April 24)

Detailed reference viewed: 2 (0 ULg)
See detailOverview of Ionospheric-Magnetospheric Coupling at Jupiter: The Jovian Aurora
Waite, J. H.; Grodent, Denis ULg; Crary, F. et al

Conference (2001, June 25)

Detailed reference viewed: 4 (0 ULg)