References of "Achilleos, N"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAuroral counterpart of magnetic field dipolarizations in Saturn’s tail
Jackman, C.M.; Achilleos, N.; Cowley, S.W.H. et al

in Planetary and Space Science (2013)

Detailed reference viewed: 17 (4 ULg)
See detailAuroral counterpart of magnetic field dipolarizations in Saturn's tail
Jackman, C. M.; Achilleos, N.; Bunce, E. J. et al

in American Geophysical Union, Fall Meeting 2011, abstract #SM14A-07 (2011, December 01)

Following magnetic reconnection in a planetary magnetotail, newly closed field lines can be rapidly accelerated back towards the planet, becoming "dipolarized" in the process. At Saturn, dipolarizations ... [more ▼]

Following magnetic reconnection in a planetary magnetotail, newly closed field lines can be rapidly accelerated back towards the planet, becoming "dipolarized" in the process. At Saturn, dipolarizations can be initially identified from the magnetometer data by looking for a southward turning of the magnetic field, indicating the transition from a radially stretched configuration to a more dipolar field topology. The highly stretched geometry of the kronian magnetotail lobes gives rise to a tail current which flows eastward (dusk to dawn) in the near equatorial plane across the centre of the tail. During reconnection and associated dipolarization of the field, the inner edge of this tail current can be diverted through the ionosphere, in a situation analogous to the substorm current wedge picture at Earth [McPherron et al. 1973]. We present a picture of the current circuit arising from this tail reconfiguration, and outline the equations which govern the field-current relationship. We show a number of examples of dipolarizations as identified in the Cassini magnetometer data and use this formalism to calculate limits for the ionospheric current density that would arise for these examples. In addition to the magnetometer data, we also present data from the Cassini VIMS and UVIS instruments which have observed small 'spots' of auroral emission lying near the main oval - features thought to be associated with dipolarizations in the tail. We compare the auroral intensities as predicted from our calculation with the observed spot sizes and intensities. [less ▲]

Detailed reference viewed: 16 (1 ULg)