Références de "Noels-Grötsch, Arlette"
     dans
Bookmark and Share    
Full Text
Peer Reviewed
Voir détailDetermining the metallicity of the solar envelope using seismic inversion techniques
Buldgen, Gaël ULiege; Salmon, Sébastien ULiege; Noels-Grötsch, Arlette ULiege et al

in Monthly Notices of the Royal Astronomical Society (2017), 472(1), 751-764

The solar metallicity issue is a long-lasting problem of astrophysics, impacting multi- ple fields and still subject to debate and uncertainties. While spectroscopy has mostly been used to determine the ... [plus ▼]

The solar metallicity issue is a long-lasting problem of astrophysics, impacting multi- ple fields and still subject to debate and uncertainties. While spectroscopy has mostly been used to determine the solar heavy elements abundance, helioseismologists at- tempted providing a seismic determination of the metallicity in the solar convective enveloppe. However, the puzzle remains since two independent groups prodived two radically different values for this crucial astrophysical parameter. We aim at provid- ing an independent seismic measurement of the solar metallicity in the convective enveloppe. Our main goal is to help provide new information to break the current stalemate amongst seismic determinations of the solar heavy element abundance. We start by presenting the kernels, the inversion technique and the target function of the inversion we have developed. We then test our approach in multiple hare-and-hounds exercises to assess its reliability and accuracy. We then apply our technique to solar data using calibrated solar models and determine an interval of seismic measurements for the solar metallicity. We show that our inversion can indeed be used to estimate the solar metallicity thanks to our hare-and-hounds exercises. However, we also show that further dependencies in the physical ingredients of solar models lead to a low accuracy. Nevertheless, using various physical ingredients for our solar models, we determine metallicity values between 0.008 and 0.014. [moins ▲]

Visualisation de la référence détaillée: 23 (3 ULiège)
Full Text
Peer Reviewed
Voir détailInversions of the Ledoux discriminant: a closer look at the tachocline
Buldgen, Gaël ULiege; Salmon, Sébastien ULiege; Godart, Mélanie ULiege et al

in Monthly Notices of the Royal Astronomical Society : Letters (2017), 472(1), 70-74

Modelling the base of the solar convective envelope is a tedious problem. Since the first rotation inversions, solar modellers are confronted with the fact that a region of very limited extent has an ... [plus ▼]

Modelling the base of the solar convective envelope is a tedious problem. Since the first rotation inversions, solar modellers are confronted with the fact that a region of very limited extent has an enormous physical impact on the Sun. Indeed, it is the transition region from differential to solid body rotation, the tachocline, which furthermore is influenced by turbulence and is also supposed to be the seat of the solar magnetic dynamo. Moreover, solar models show significant disagreement with the sound speed profile in this region. In this paper, we show how helioseismology can provide further constraints on this region by carrying out an inversion of the Ledoux discriminant. We compare these inversions for Standard Solar Models built using various opacity tables and chemical abundances and discuss the origins of the discrepancies between Solar Models and the Sun. [moins ▲]

Visualisation de la référence détaillée: 28 (7 ULiège)
Full Text
Peer Reviewed
Voir détailThe IACOB project. IV. New predictions for high-degree non-radial mode instability domains in massive stars and their connection with macroturbulent broadening
Godart, Mélanie ULiege; Simón-Díaz, S.; Herrero, A. et al

in Astronomy and Astrophysics (2016), 597

Context. Asteroseismology is a powerful tool to access the internal structure of stars. Apart from the important impact of theoretical developments, progress in this field has been commonly associated ... [plus ▼]

Context. Asteroseismology is a powerful tool to access the internal structure of stars. Apart from the important impact of theoretical developments, progress in this field has been commonly associated with the analysis of time-resolved observations. Recently, the so-called macroturbulent broadening has been proposed as a complementary and less expensive way - in terms of observational time - to investigate pulsations in massive stars. <BR /> Aims: We assess to what extent this ubiquitous non-rotational broadening component which shapes the line profiles of O stars and B supergiants is a spectroscopic signature of pulsation modes driven by a heat mechanism. <BR /> Methods: We compute stellar main-sequence and post-main-sequence models from 3 to 70 M[SUB]⊙[/SUB] with the ATON stellar evolution code, and determine the instability domains for heat-driven modes for degrees ℓ = 1-20 using the adiabatic and non-adiabatic codes LOSC and MAD. We use the observational material compiled in the framework of the IACOB project to investigate possible correlations between the single snapshot line-broadening properties of a sample of ≈260 O and B-type stars and their location inside or outside the various predicted instability domains. <BR /> Results: We present an homogeneous prediction for the non-radial instability domains of massive stars for degree ℓ up to 20. We provide a global picture of what to expect from an observational point of view in terms of the frequency range of excited modes, and we investigate the behavior of the instabilities with respect to stellar evolution and the degree of the mode. Furthermore, our pulsational stability analysis, once compared to the empirical results, indicates that stellar oscillations originated by a heat mechanism cannot explain alone the occurrence of the large non-rotational line-broadening component commonly detected in the O star and B supergiant domain. Based on observations made with the Nordic Optical Telescope, operated by NOTSA, and the Mercator Telescope, operated by the Flemish Community, both at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias. [moins ▲]

Visualisation de la référence détaillée: 15 (2 ULiège)
Full Text
Peer Reviewed
Voir détailApsidal motion in the massive binary HD 152218
Rauw, Grégor ULiege; Rosu, S.; Noels-Grötsch, Arlette ULiege et al

in Astronomy and Astrophysics (2016), 594(A33), 1-12

Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the ... [plus ▼]

Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the eccentric short-period early-type binary HD 152218 in the young open cluster NGC 6231. We reconstructed the spectra of the individual stars using a disentangling code. The individual spectra were then compared with synthetic spectra obtained with the CMFGEN model atmosphere code. We furthermore analysed the light curve of the binary and used it to constrain the orbital inclination and to derive absolute masses of (19.8 ± 1.5) and (15.0 ± 1.1) M⊙. Combining radial velocity measurements from over 60 yr, we show that the system displays apsidal motion at a rate of (2.04 ± .24)°/yr. Solving the Clairaut-Radau equation, we used stellar evolution models, obtained with the CLES code, to compute the internal structure constants and to evaluate the theoretically predicted rate of apsidal motion as a function of stellar age and primary mass. In this way, we determine an age of 5.8 ± 0.6 Myr for HD 152218, which is towards the higher end of, but compatible with, the range of ages of the massive star population of NGC 6231 as determined from isochrone fitting. [moins ▲]

Visualisation de la référence détaillée: 43 (3 ULiège)
Full Text
Peer Reviewed
Voir détailYoung [α/Fe]-enhanced stars discovered by CoRoT and APOGEE: What is their origin?
Chiappini, C.; Anders, F.; Rodrigues, T. S. et al

in Astronomy and Astrophysics (2015), 576

We report the discovery of a group of apparently young CoRoT red-giant stars exhibiting enhanced [α/Fe] abundance ratios (as determined from APOGEE spectra) with respect to solar values. Their existence ... [plus ▼]

We report the discovery of a group of apparently young CoRoT red-giant stars exhibiting enhanced [α/Fe] abundance ratios (as determined from APOGEE spectra) with respect to solar values. Their existence is not explained bystandard chemical evolution models of the Milky Way, and shows that the chemical-enrichment history of the Galactic disc is more complex. We find similar stars in previously published samples for which isochrone-ages could be reliably obtained, although in smaller relative numbers. This might explain why these stars have not previously received attention. The young [α/Fe]-rich stars are much more numerous in the CoRoT-APOGEE (CoRoGEE) inner-field sample than in any other high-resolution sample available at present because only CoRoGEE can explore the inner-disc regions and provide ages for its field stars. The kinematic properties of the young [α/Fe]-rich stars are not clearly thick-disc like, despite their rather large distances from the Galactic mid-plane. Our tentative interpretation of these and previous intriguing observations in the Milky Way is that these stars were formed close to the end of the Galactic bar, near corotation - a region where gas can be kept inert for longer times than in other regions that are more frequently shocked by the passage of spiral arms. Moreover, this is where the mass return from older inner-disc stellar generations is expected to be highest (according to an inside-out disc-formation scenario), which additionally dilutes the in-situ gas. Other possibilities to explain these observations (e.g., a recent gas-accretion event) are also discussed. Appendix A is available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201525865/olm">http://www.aanda.org</A> [moins ▲]

Visualisation de la référence détaillée: 22 (0 ULiège)
Full Text
Voir détailAsteroseismology of Massive Stars: Some Words of Caution
Noels-Grötsch, Arlette ULiege; Godart, M.; Salmon, Sébastien ULiege et al

in Meynet, Georges; Georgy, Cyril; Groh, Jose (Eds.) et al Proceedings of the International Astronomical Union S307 (2015, January 01)

Although playing a key role in the understanding of the supernova phenomenon, the evolution of massive stars still suffers from uncertainties in their structure, even during their ``quiet'' main sequence ... [plus ▼]

Although playing a key role in the understanding of the supernova phenomenon, the evolution of massive stars still suffers from uncertainties in their structure, even during their ``quiet'' main sequence phase and later on during their subgiant and helium burning phases. What is the extent of the mixed central region? In the local mixing length theory (LMLT) frame, are there structural differences using Schwarzschild or Ledoux convection criterion? Where are located the convective zone boundaries? Are there intermediate convection zones during MS and post-MS phase, and what is their extent and location? We discuss these points and show how asteroseismology could bring some light on these questions. [moins ▲]

Visualisation de la référence détaillée: 27 (1 ULiège)
Full Text
Peer Reviewed
Voir détailUncertainties in Models of Stellar Structure and Evolution
Noels-Grötsch, Arlette ULiege; Bragaglia, Angela

in Astrophysics and Space Science Proceedings (2015), 39

Numerous physical aspects of stellar physics have been presented in Session 2 and the underlying uncertainties have been tentatively assessed. We try here to highlight some specific points raised after ... [plus ▼]

Numerous physical aspects of stellar physics have been presented in Session 2 and the underlying uncertainties have been tentatively assessed. We try here to highlight some specific points raised after the talks and during the general discussion at the end of the session and eventually at the end of the workshop. A table of model uncertainties is then drawn with the help of the participants in order to give the state of the art in stellar modeling uncertainties as of July 2013. [moins ▲]

Visualisation de la référence détaillée: 11 (3 ULiège)
Full Text
Peer Reviewed
Voir détailMixed modes in red giants: a window on stellar evolution
Mosser, B.; Benomar, O.; Belkacem, K. et al

in Astronomy and Astrophysics (2014), 572

Context. The detection of oscillations with a mixed character in subgiants and red giants allows us to probe the physical conditions in their cores. <BR /> Aims: With these mixed modes, we aim at ... [plus ▼]

Context. The detection of oscillations with a mixed character in subgiants and red giants allows us to probe the physical conditions in their cores. <BR /> Aims: With these mixed modes, we aim at determining seismic markers of stellar evolution. <BR /> Methods: Kepler asteroseismic data were selected to map various evolutionary stages and stellar masses. Seismic evolutionary tracks were then drawn with the combination of the frequency and period spacings. <BR /> Results: We measured the asymptotic period spacing for 1178 stars at various evolutionary stages. This allows us to monitor stellar evolution from the main sequence to the asymptotic giant branch and draw seismic evolutionary tracks. We present clear quantified asteroseismic definitions that characterize the change in the evolutionary stages, in particular the transition from the subgiant stage to the early red giant branch, and the end of the horizontal branch. <BR /> Conclusions: The seismic information is so precise that clear conclusions can be drawn independently of evolution models. The quantitative seismic information can now be used for stellar modeling, especially for studying the energy transport in the helium-burning core or for specifying the inner properties of stars entering the red or asymptotic giant branches. Modeling will also allow us to study stars that are identified to be in the helium-subflash stage, high-mass stars either arriving or quitting the secondary clump, or stars that could be in the blue-loop stage. Table 1 is only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/L5">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/L5</A> [moins ▲]

Visualisation de la référence détaillée: 14 (2 ULiège)
Full Text
Voir détailWhat can we learn from asteroseismology of β Cephei stars through forward approach modelling?
Salmon, Sébastien ULiege; Montalban, J.; Miglio, A. et al

Poster (2014, December)

The beta Cephei pulsating stars present a unique opportunity to test and probe our knowledge on the interior of massive stars. The information we can obtain depends on the quality and number of ... [plus ▼]

The beta Cephei pulsating stars present a unique opportunity to test and probe our knowledge on the interior of massive stars. The information we can obtain depends on the quality and number of observational constraints, both seismic and classical ones. The asteroseismology of beta Cephei stars proceeds by a forward approach, which often result in multiple solutions, without clear indication on the level of confidence. We seek a method to derive confidence intervals on stellar parameters obtained by forward approach and investigate how these latter behave depending the seismic data accessible to the observer. We realise forward modelling with help of a grid of pre-computed models and use Monte-Carlo simulations to build confidence intervals on the inferred stellar parameters. We apply and test this method in a series of hare and hound exercises on a subset of theoretical models simulating observed stars. Results show that a set of 5 frequencies (with knowledge of their associated angular degree) yields good seismic constraints. In particular, presence of mixed modes provides a strong diagnosis on the evolutionary state of the star. Significant errors on the determinination of the extent of the central mixed region appear when the theoretical models do not present the same chemical mixture as the observed star. [moins ▲]

Visualisation de la référence détaillée: 20 (2 ULiège)
Full Text
Peer Reviewed
Voir détailVizieR Online Data Catalog: Mixed modes in red giants (Mosser+, 2014)
Mosser, B.; Benomar, O.; Belkacem, K. et al

in VizieR Online Data Catalog (2014), 357

Seismic global parameters of the stars listed in the paper. Each star is identified with its KIC number (Kepler Input Catalog). The asymptotic frequency and period spacing are derived from the fit of the ... [plus ▼]

Seismic global parameters of the stars listed in the paper. Each star is identified with its KIC number (Kepler Input Catalog). The asymptotic frequency and period spacing are derived from the fit of the radial and dipole oscillation modes. The stellar mass is derived from the seismic scaling relations. The evolutionary status is derived according to the location of the star in the DPi1 - Dnu diagram (Fig. 1) (1 data file). [moins ▲]

Visualisation de la référence détaillée: 15 (0 ULiège)
Full Text
Peer Reviewed
Voir détailProper use of Schwarzschild Ledoux criteria in stellar evolution computations
Gabriel, Maurice; Noels-Grötsch, Arlette ULiege; Montalbán, J. et al

in Astronomy and Astrophysics (2014), 569

The era of detailed asteroseismic analyses opened by space missions such as CoRoT and Kepler has highlighted the need for stellar models devoid of numerical inaccuracies, in order to be able to diagnose ... [plus ▼]

The era of detailed asteroseismic analyses opened by space missions such as CoRoT and Kepler has highlighted the need for stellar models devoid of numerical inaccuracies, in order to be able to diagnose which physical aspects are being ignored or poorly treated in standard stellar modeling. We tackle here the important problem of fixing convective zone boundaries in the frame of the local mixing length theory. First we show that the only correct way to locate a convective zone boundary is to find, at each iteration step, through interpolations or extrapolations from points within the convective zone, the mass where the radiative luminosity is equal to the total luminosity. We then discuss two misuses of the boundary condition and the ways they affect stellar modeling and stellar evolution. The first consists in applying the neutrality condition for convective instability on the radiative side of the convective boundary. The second way of misusing the boundary condition comes from the process of fixing the convective boundary through the search for a change of sign of a possibly discontinuous function. We show that these misuses can lead to completely wrong estimates of convective core sizes with important consequences for the following evolutionary phases. We point out the advantages of using a double mesh point at each convective zone boundary. The specific problem of a convective shell is discussed and some remarks concerning overshooting are given. [moins ▲]

Visualisation de la référence détaillée: 12 (3 ULiège)
Full Text
Peer Reviewed
Voir détailTesting Convective-core Overshooting Using Period Spacings of Dipole Modes in Red Giants
Montalbán, J.; Miglio, A.; Noels-Grötsch, Arlette ULiege et al

in Astrophysical Journal (2013), 766

Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We ... [plus ▼]

Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We propose a test of the extension of extra-mixing in two relevant evolutionary phases based on period spacing (ΔP) of solar-like oscillating giants. From stellar models and their corresponding adiabatic frequencies (respectively, computed with ATON and LOSC codes), we provide the first predictions of the observable ΔP for stars in the red giant branch and in the red clump (RC). We find (1) a clear correlation between ΔP and the mass of the helium core (M [SUB]He[/SUB]); the latter in intermediate-mass stars depends on the MS overshooting, and hence it can be used to set constraints on extra-mixing during MS when coupled with chemical composition; and (2) a linear dependence of the average value of the asymptotic period spacing (langΔPrang[SUB] a [/SUB]) on the size of the convective core during the He-B phase. A first comparison with the inferred asymptotic period spacing for Kepler RC stars also suggests the need for extra-mixing during this phase, as evinced from other observational facts. [moins ▲]

Visualisation de la référence détaillée: 17 (0 ULiège)
Full Text
Voir détailDifferential population studies using asteroseismology: Solar-like oscillating giants in CoRoT fields LRc01 and LRa01
Miglio, A.; Chiappini, C.; Morel, Thierry ULiege et al

in European Physical Journal Web of Conferences (2013, March 01)

Solar-like oscillating giants observed by the space-borne satellites CoRoT and Kepler can be used as key tracers of stellar populations in the Milky Way. When combined with additional photometric ... [plus ▼]

Solar-like oscillating giants observed by the space-borne satellites CoRoT and Kepler can be used as key tracers of stellar populations in the Milky Way. When combined with additional photometric/spectroscopic constraints, the pulsation spectra of solar-like oscillating giant stars not only reveal their radii, and hence distances, but also provide well-constrained estimates of their masses, which can be used as proxies for the ages of these evolved stars. In this contribution we provide supplementary material to the comparison we presented in Miglio et al. (2013) between populations of giants observed by CoRoT in the fields designated LRc01 and LRa01. [moins ▲]

Visualisation de la référence détaillée: 16 (3 ULiège)
Full Text
Voir détailNon-radial, non-adiabatic solar-like oscillations in RGB and HB stars
Grosjean, Mathieu ULiege; Dupret, Marc-Antoine ULiege; Belkacem, K. et al

in EPJ Web of Conferences (2013, March 01), 43

CoRoT and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. We compare the theoretical spectrum of two red giants in ... [plus ▼]

CoRoT and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. We compare the theoretical spectrum of two red giants in the same region of the HR diagram but in different evolutionary phases. We present here our first results on the inertia, lifetimes and amplitudes of the oscillations and discuss the differences between the two stars. [moins ▲]

Visualisation de la référence détaillée: 24 (9 ULiège)
Full Text
Voir détailMode lifetime and associated scaling relations
Belkacem, K.; Appourchaux, T.; Baudin, F. et al

in EPJ Web of Conferences (2013, March 01), 43

Thanks to the CoRoT and Kepler spacecrafts, scaling relations (linking seismic indices and global stellar parameters) are becoming the cornerstone of ensemble asteroseismology. Among them, the relation ... [plus ▼]

Thanks to the CoRoT and Kepler spacecrafts, scaling relations (linking seismic indices and global stellar parameters) are becoming the cornerstone of ensemble asteroseismology. Among them, the relation between the cut-off frequency and the frequency of the maximum in the power spectrum of solar-like pulsators as well as the relation between mode lifetime and the effective temperature remain poorly understood. However, a solid theoretical background is essential to assess the accuracy of those relations and subsequently of the derived stellar parameters. We will thus present recent advances on the understanding of the underlying mechanisms governing those relations and show that the physics of mode lifetime (thus of mode damping) plays a major role. [moins ▲]

Visualisation de la référence détaillée: 25 (0 ULiège)
Full Text
Peer Reviewed
Voir détailEffects of the Coriolis force on high-order g modes in γ Doradus stars
Bouabid, M.-P.; Dupret, Marc-Antoine ULiege; Salmon, Sébastien ULiege et al

in Monthly Notices of the Royal Astronomical Society (2013), 429(3), 2500

γ Doradus stars pulsate with high-order gravity modes having typical frequencies which can be comparable to or higher than their rotation frequencies. Therefore, rotation has a non-negligible effect on ... [plus ▼]

γ Doradus stars pulsate with high-order gravity modes having typical frequencies which can be comparable to or higher than their rotation frequencies. Therefore, rotation has a non-negligible effect on their oscillation properties. To explore the rotation-pulsation coupling in γ Dor stars, we perform a non-adiabatic study including the traditional approximation of rotation on a grid of spherical stellar models covering the mass range 1.4 < M[SUB]*[/SUB] < 2.1 M[SUB]&sun;[/SUB]. This approximation allows us to treat the effect of the Coriolis force on the frequencies and the stability of high-order g modes. The effect of the Coriolis force depends on the kind of mode considered (prograde sectoral or not) and increases with their periods. As a consequence, we first find that the period spacing between modes is no longer periodically oscillating around a constant value. Secondly, we show that the frequency gap (5-15 cycles day[SUP]-1[/SUP]) arising from stable modes between γ Dor-type high-order g modes and δ Scuti-type modes can be easily filled by g-mode frequencies shifted to higher values by the rotation. Thirdly, we analyse the combined effect of diffusive mixing and the Coriolis force on the period spacings. And finally, we predict a slight broadening of the γ Dor instability strip. [moins ▲]

Visualisation de la référence détaillée: 36 (11 ULiège)
Full Text
Voir détailCoRoT Observations of O Stars: Diverse Origins of Variability
Blomme, R.; Briquet, Maryline ULiege; Degroote, P. et al

in Astronomical Society of the Pacific Conference Series (2013, January 01)

Six O-type stars were observed continuously by the CoRoT satellite during a 34.3-day run. The unprecedented quality of the data allows us to detect even low-amplitude stellar pulsations in some of these ... [plus ▼]

Six O-type stars were observed continuously by the CoRoT satellite during a 34.3-day run. The unprecedented quality of the data allows us to detect even low-amplitude stellar pulsations in some of these stars (HD 46202 and the binaries HD 46149 and Plaskett's star). These cover both opacity-driven modes and solar-like stochastic oscillations, both of importance to the asteroseismological modeling of O stars. Additional effects can be seen in the CoRoT light curves, such as binarity and rotational modulation. Some of the hottest O-type stars (HD 46223, HD 46150 and HD 46966) are dominated by the presence of red-noise: we speculate that this is related to a sub-surface convection zone. [moins ▲]

Visualisation de la référence détaillée: 53 (20 ULiège)
Voir détailTheoretical Instability Domains of Massive Stars
Godart, Mélanie ULiege; Dupret, Marc-Antoine ULiege; Noels-Grötsch, Arlette ULiege et al

in ASP Conference Proceeding, Vol. 462, 27 (2012, September 01)

Massive stars are characterized by a large radiation over gas pressure ratio. With increasing stellar initial mass, they suffer stronger stellar winds, and the induced mass-loss affects the evolution and ... [plus ▼]

Massive stars are characterized by a large radiation over gas pressure ratio. With increasing stellar initial mass, they suffer stronger stellar winds, and the induced mass-loss affects the evolution and internal structure on the main sequence and on the post-main sequence. Recent ground-based observations and space missions have shown the presence of pulsations in massive stars, such as acoustic and gravity modes excited by the κ-mechanism and even solar-like oscillations. Strange modes could also be excited in the most massive stars (Aerts et al. 2010). We computed evolutionary tracks and non-adiabatic frequencies for initial masses ranging from 15 to 70 M[SUB]&sun;[/SUB] on the main sequence and on the post-main sequence taking mass loss into account and we discuss in this paper the results for 25 M[SUB]&sun;[/SUB] models. [moins ▲]

Visualisation de la référence détaillée: 34 (2 ULiège)
Full Text
Voir détailNon-radial, non-adiabatic solar-like oscillations in RGB and HB stars
Grosjean, Mathieu ULiege; Dupret, Marc-Antoine ULiege; Belkacem, Kevin et al

Poster (2012, July)

Corot and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. We compare the theoretical spectrum (amplitudes and life ... [plus ▼]

Corot and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. We compare the theoretical spectrum (amplitudes and life- times) of two red giants in the same region of the HR diagram but in different evolutionary phases. The lifetimes are obtained by computing theoretical non-adiabatic non-radial solar-like oscillations for mixed modes in the two models. Thanks to this, we have been able to compute the oscillation amplitudes through a stochastic excitation model. We present here our first results on the inertia, damping rates and amplitudes of the oscillations in the two stars and discuss the trapping, the visibilities and the am- plitudes of the different modes. The differences in the spectra of the two stars are also investigated. As already known, the period spacings in the two models are very different. Moreover, we find significant differences in amplitudes and lifetimes between the two models. [moins ▲]

Visualisation de la référence détaillée: 42 (7 ULiège)