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ABSTRACT
The dynamic performance of vehicle drivetrains is signifi-

cantly influenced by differentials which are subjected to complex
phenomena. In this paper, detailed models of TORSEN differ-
entials are presented using a flexible multibody simulation ap-
proach, based on the nonlinear finite element method. A cen-
tral and a front TORSEN differential have been studied and the
numerical results have been compared with experimental data
obtained on test bench. The models are composed of several
rigid and flexible bodies mainly constrainted by flexible gear pair
joints and contact conditions. The three differentials of a four
wheel drive vehicle have been assembled in a full drivetrain in a
simplified vehicle model with modeling of driveshafts and tires.
These simulations enable to observe the four working modes of
the differentials with a good accuracy.

INTRODUCTION
Nowadays the requirements to reduce fuel consumption and

environmental pollution are more and more important in auto-
motive industry. In order to reach this goal, the current trend
addresses the enhancement of reliable simulation tools in the de-
sign process. Multibody simulation techniques are often used for
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dynamic analysis of suspensions and engines. The link between
engine and wheels of the vehicle is the drivetrain. The model-
ing of transmission components, such as differential, gear box or
clutch would allow the global modeling of cars from the motor
to the vehicle dynamics.

Differentials are critical components whose behavior influ-
ences the dynamics of vehicles. They are subjected to many non-
linear and discontinuous phenomena: impact, hysteresis, contact
with friction, backlash,... Some vibrations can notably be gen-
erated and transmitted in the whole car structure and decrease
the comfort of the passengers. An accurate mathematical model
is needed to improve the performance of these mechanical sys-
tems and decrease their weight. Nevertheless the modeling of
discontinuities and nonlinear effects is not trivial and often leads
to numerical problems.

The literature mentions several ways to model transmission
components in automotive and other application fields such as
wind turbines or railway. The gear contacts can be modeled with
fully elastic model of gear wheels as described in [1]. Gear pairs
are sometimes represented with a purely rigid behavior (see [2])
or with modal models to study the vibrations [3]. Modeling of
multi-stage planetary gears trains are available in [4] and [5].
Reference [6] presents a method to simulate impacts in gear
trains following several approaches. Methods to deal with nu-
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merical problems due to non-smooth phenomena such as impacts
between bodies are explained in [7], [8]. Impacts modeling be-
tween bodies is carried out in [9].

The objective of this paper is to develop accurate models
of TORSEN differentials able to simulate the locking effects of
these limited slip differentials. In order to take the flexibility
of the system into account, the nonlinear finite element method
based on absolute nodal coordinates has been used [10]. This
method is implemented in SAMCEF/MECANO and allows the
modeling of complex mechanical systems composed of rigid and
flexible bodies, kinematics joints and force elements. The nu-
merical solution is based on a Newmark-type integration scheme
with numerical dissipation, which is combined with a regulariza-
tion of discontinuities and non-smooth phenomena in the system.

The sequel of this paper is organized as follows. The next
section will describe the working principle of TORSEN differ-
entials with a particular attention to type C and type B which
have been modeled in this work. Then the formulation used to
model gear pairs and contact conditions, the two main joints in-
cluded in the system, will be looked over. The various models
are described in detail before the analysis and validation of the
simulation results. Finally, the three differentials of a four-wheel
drive vehicle have been assembled in a full drivetrain model and
a simulation of vehicle displacement is carried out.

DESCRIPTION OF THE APPLICATION: TORSEN DIF-
FERENTIALS

The two essential functions of any differential are: transmit
the motor torque to the two output shafts and allow a difference
of rotation speed between these two outputs. In a vehicle, this
mechanical device is particularly useful in turn when the outer
wheels have to rotate quicker than the inner wheels to ensure a
good handling.

The main drawback of a conventional differential (open dif-
ferential) is that the total amount of available torque is always
split between the two output shafts with the same constant ra-
tio. In particular, this is a source of problems when the driving
wheels have various conditions of adherence. If the motor torque
exceeds the maximum transferable torque limited by road fric-
tion on one driving wheel, this wheel starts spinning. Although
they don’t reach their limit of friction, the others driving wheels
are not able to transfer more torque because the input torque is
often equally splitted between the two output shafts.

The TORSEN differentials enable to reduce significantly
this undesirable side effect. This kind of limited slip differen-
tial allows a variable distribution of motor torque depending on
the available friction of each driving wheel. For a vehicle with
asymmetric road friction between the left and right wheels, for
example, right wheels are on a slippery surface (snow, mud...)
whereas left wheels have good grip conditions, it is possible to
transfer an extra torque to the left lane. That allows the vehi-

FIGURE 1. LOCKING EFFECT OF TORSEN DIFFERENTIAL
(WHEN T1+T2 IS CONSTANT)

cle to move forward whereas it would be hardly possible with a
open differential. However, the overall driving torque can’t be
applied on one output shaft while no load is submitted to the
second shaft. When the difference between the 2 output torques
becomes too large, the differential unlocks and lets different ro-
tation speeds but keeps the same constant torque ratio (see Fig-
ure 1). The maximum ratio of torque imbalance permitted is
defined by a constant, the Torque Distribution Ratio (TDR), spe-
cific for each differential design.

T DR =
T2

T1
(1)

where T2 and T1 are respectively the highest and lowest output
torques.

A T DR = 4 means that one side of the differential can han-
dle up to 80% while the other side would have to handle only
20% of the applied torque. During acceleration under asymmet-
ric traction conditions, no relative wheelspin will occurs as long
as the higher traction side can handle the higher percentage of ap-
plied torque. When the traction difference exceeds the TDR, the
slower output side of the differential receives the tractive torque
of the faster wheel multiplied by the TDR; any extra torque re-
maining from applied torque contributes to the angular accelera-
tion of the faster output side of the differential. In turn, due to the
centrifugal force, a transfer of loads modifies the distribution of
normal loads on the wheels, which also induces different friction
potentials.

When a TORSEN differential is used, the torque biasing is
always a precondition before any difference of rotation speed
between the two output shafts. Contrary to viscous coupling,
TORSEN (a contraction of Torque-Sensing) is an instantaneous
and pro-active process which acts before wheel slip.

The differentials can be used either to divide the drive torque
into equal parts acting on the traction wheels of the same axle,
or to divide the output torque from the gearbox between the two
axles of four-wheels drive vehicles. This second application is
often called the transfer box differential or central differential.

In this work, the type C TORSEN differential has been stud-
ied for the central differential and the type B for the front and
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rear axle differentials. These components are manufactured by
the company JTEKT TORSEN S.A. and notably equip the Audi
Quattro.

As depicted on Figure 2, the type C TORSEN is composed
of a compact epicyclic gear train which allows a non-symmetric
distribution of the torque due to the various number of teeth on
the ring gear and the sun gear. The differential under study tends
to provide more torque (58%) to the rear axle than to the front
axle and therefore favour a rear wheel drive behavior.

Due to the axial force produced by the helical mesh, several
gear wheels can move axially and enter in contact with the var-
ious thrust washers fixed on the case or housing. The friction
encountered by this relative sliding is at the origin of the locking
effect of TORSEN differentials. The second important contribu-
tion to the limited slip behavior is due to the friction between the
planet gears and the housing holes in which their are inserted.
When one axle tries to speed up, all encountered frictions tend
to slow down the relative rotation and involve a variable torque
distribution between the output shafts. The biasing on the torque
only results from the differential gearing mechanical friction.

This limited slip differential has four working modes which
depend on the direction of torque biasing and on the drive or
coast situation. According to the considered mode, the gear
wheels rub against one or the other thrust washers which can
have different friction coefficients and contact surfaces. The fric-
tion torque changes for each working mode which influences the
TDR as it will be shown in the sequel of this paper.

For front and rear differentials, the type B TORSEN is used
to transfer the driving torque to the left and right wheels of a
same axle. It also includes gear pairs with helical meshing and
thrust washers but is not based on an epicyclic gear train (see
Figure 3). This mechanism must be symmetric between the right
and the left half axle in a static case because there isn’t any rea-
son to favor one lane rather than the other. The element gears are
assembled by pairs and they mesh each other at their two extrem-
ities. The central part is composed of a slick reduced section and
a toothed portion which meshes with one of the two side gears
linked respectively to the right or left wheel. The working princi-
ple is similar to type C central differential. The locking is created
by the friction between the elements gears and housing cavities
as well as between the annular lateral contacts face of the sides
gears and the thrust washers. This TORSEN differential has also
four working modes. It is possible to provide more torque to the
right or to the left wheel and for each case the drive and coast
situation must be considered.

FINITE ELEMENT METHOD IN MULTIBODY SYSTEMS
For differentials, as for most automotive transmission com-

ponents, it can be interesting to take flexibility in the system into
account. For instance, the backlash between teeth in gear pairs
and impact phenomena can generate some vibrations and noise

FIGURE 2. KINEMATIC DIAGRAM, EXPLODED DIAGRAM
AND CUT-AWAY VIEW OF TYPE C TORSEN DIFFERENTIAL

which could be transmitted to the whole power train. In order to
represent these physical phenomena, some bodies like the trans-
mission shafts should be considered as flexible. The numerical
model should also be able to manage the nonlinearities and high
discontinuities, e.g. the stick-slip phenomenon.

In this work, the approach chosen to model the differen-
tials is based on the nonlinear finite element method for flexi-
ble multibody systems developed by Géradin and Cardona [10].
This method allows the modeling of complex mechanical sys-
tems composed of rigid and flexible bodies, kinematics joints and
force elements. Absolute nodal coordinates are used with respect
to a unique inertial frame for each model node. Hence, there is
no distinction between rigid and elastic coordinates which allows
accounting in a natural way for many nonlinear flexible effects
and large deformations. The cartesian rotation vector combined
with an updated lagrangian approach is used for the parametriza-
tion of rotations. This choice enables the representation of large
rotations.

This approach to model flexible multibody systems is im-
plemented in the software SAMCEF/MECANO commercialised
by SAMTECH S.A. The discontinuities are managed with reg-
ularizations and the equations of motion for a dynamic system
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FIGURE 3. EXPLODED DIAGRAM OF TYPE B TORSEN DIF-
FERENTIAL

subjected to holonomic constraints are stated in the form:

M(q) q̈+ggyr(q, q̇)+gint(q, q̇)+φ
T
q (pφ + kλ ) = gext(t) (2)

k φ(q, t) = 0 (3)

where q, q̇ and q̈ are the generalized displacement, velocities and
acceleration coordinates, M(q) is the mass matrix, ggyr is the gy-
roscopic and complementary inertia forces, gint(q, q̇) the internal
forces, e.g. elastic and dissipations forces and gext(t) the ex-
ternal forces. According to the augmented lagrangian method,
the constraint forces are formulated by φ T

q (pφ + kλ ) where λ is
the vector of Lagrange multiplier related to algebraic constraints
φ = 0; k and p are respectively a scaling and a penalty factor to
improve the numerical conditioning.

Equations (2) and (3) form a system of nonlinear
differential-algebraic equations. The solution is evaluated step
by step using a second order time integration scheme. For this
study, the Chung-Hulbert scheme, a generalized α-method has
been used (see References [11], [12]). At each time step, a sys-
tem of nonlinear algebraic equations has to be solved. In order
to solve this system, a Newton-Raphson method is used.

In the sequel on this section, the mathematical formulation
will be looked over for the two main kinematic joints used in the
model of TORSEN differentials: the gear pair element and the
contact condition.

Gear pair element
Each gear pair in the differential is modeled as a joint de-

fined between two physical nodes: one at the center of each
gear wheel considered as a rigid body. Nevertheless the flexi-
bility of the gear mesh is accounted for by a nonlinear spring and

FIGURE 4. GEAR PAIR - FLEXIBLE CONTACT LAW ALONG
THE LIGNE OF PRESSURE

damper element inserted along the instantaneous normal pres-
sure line (see Fig. 4). Several specific phenomena in gear pairs
which influence significantly the dynamic response of gears are
also included in the model: backlash, mesh stiffness fluctuation,
misalignment, friction between teeth.

The formulation developed in [13] and summarized below,
is available for describing flexible gear pairs in 3 dimensional
analysis of flexible mechanism. Any kind of gears often used
in industry can be represented with this formulation: spur gears,
helical gears, bevel gears, ring gears, rack-and-pinion... All re-
action forces due to the gear engagement are taken into account:
tangential, axial and radial forces.

The modeling of gear wheels as flexible bodies and the in-
troduction of contact conditions between the flank of teeth would
perhaps be possible with a finite element mesh. However, that
would increase dramatically the size and the complexity of the
model due to the complex and numerous gear meshes. The sim-
plified approach with a flexible joint between rigid wheels is suf-
ficient to observe the locking effects of the TORSEN differen-
tials. The main objective of this study is to develop a global and
light differential model able to analyze the dynamical behavior.
The differential model will be inserted in a complete driveline
modeling of a vehicle model including also frame, suspensions
and tire. Local effects such as stress in the gear teeth are not
required for this kind of global study.

One triad of unit orthogonal vectors is defined at each wheel
center in the reference configuration: (µ1,µ2,µ3) for the first
wheel A and (ξ1,ξ2,ξ3) for the second wheel B. The first vectors
µ1 and ξ1 are perpendicularly oriented to the wheel plane. The
second vectors µ2 and ξ2 point towards the contact point and the
third vectors µ3 and ξ3 complete a dextrorsum reference frame
(see Fig. 5).

At the current configuration, the orientation of these two tri-
ads is obtained multiplying the rotation operator of each wheel
by the vectors at the reference configuration:

µ
′
i = RA µi ξ

′
i = RB ξi i = 1,3 (4)

4 Copyright c© 2011 by ASME



FIGURE 5. GEAR PAIR KINEMATICS AND SIGN CONVENTIONS FOR CONE AND HELIX ANGLE [14]

with RA,RB are the rotation matrices at nodes A and B. They are
related to the rotation vectors ΘA,ΘB through the exponential
operator exp(Θ̃A),exp(Θ̃B).

Two other unit dextrorsum triads, (µ ′′1 ,µ ′′2 ,µ ′′3 ) and
(ξ ′′1 ,ξ ′′2 ,ξ ′′3 ), are defined at the current configuration with the
same orientation rules as the reference triads (µ1,µ2,µ3) and
(ξ1,ξ2,ξ3). A last unit triad (η ′′1 ,η ′′2 ,η ′′3 ) is also defined at the
contact point C. η ′′1 is parallel to the tooth baseline; η ′′2 points
along the tooth vertical line, from the first wheel to the second
one; and η ′′3 is normal to the tooth midplane. As shown in Fig. 5,
the triad (η ′′1 ,η ′′2 ,η ′′3 ) can be related to the triad (µ ′′1 ,µ ′′2 ,µ ′′3 )
through the helix angle βA and cone angle γA whereas similar
relations hold for the triad (ξ ′′1 ,ξ ′′2 ,ξ ′′3 ) through the angles βB and
γB. It is then possible to get the triad (ξ ′′1 ,ξ ′′2 ,ξ ′′3 ) of the second
wheel from the triad (µ ′′1 ,µ ′′2 ,µ ′′3 ) of the first wheel multiplied by
a matrix Z composed of sine and cosine of helix and cone angles
of both wheels:

[ξ ′′1 ξ
′′
2 ξ

′′
3 ] = [µ ′′1 µ

′′
2 µ
′′
3 ] Z(γA,γB,βA,βB) (5)

The position of the contact point being the same when ex-
pressed either in terms of kinematics variables at wheel A or at
wheel B (xA

C,xB
C), Reference [13] shows that the expressions of

the vector µ2, µ3 and ξ2, ξ3 at the reference configuration can be
found in terms of the distance vector xAB between center wheels,
the normal vector to the first wheel plane µ1 and geometric pa-
rameters of both wheels: βA,βB,γA,γB and rA,rB the wheel ra-
dius.

In order to describe this flexible gear pair joint, fifteen kine-
matic variables are used and are grouped together into the gener-
alized coordinates vector q,

q = {xT
A Θ

T
A xT

B Θ
T
B ψA ψB um} (6)

where xA, xB and ΘA, ΘB are respectively the position and rota-
tion vector of wheel center A and B in the inertial frame. The
three remaining generalized coordinates are internal variables.
um is a scalar value which represents the deformation of gear
mesh in the hoop direction. This variable is in fact a combined
measure resulting from tooth deformation at both wheels and
clearance between teeth. The angular displacements ψA,ψB mea-
sure the relative rotation of wheels A and B in the local frame at-
tached to each wheel center. These variables allow to express the
following simple relations between quoted and doubly-quoted
frames:

µ
′′
2 = µ

′
2 cosψA−µ

′
3 sinψA µ

′′
3 = µ

′
2 sinψA + µ

′
3 cosψA (7)

ξ
′′
2 = ξ

′
2 cosψB−ξ

′
3 sinψB ξ

′′
3 = ξ

′
2 sinψB +ξ

′
3 cosψB (8)

This joint has twelve physical degrees of freedom: the six
components of rigid body motion at each wheel center (xA, xB,
ΘA, ΘB) plus the elastic deformation of the mesh minus the rota-
tion constraint between wheels. The dimension of the kinematic
variable vector q exceeds by three the number of physical de-
grees of freedom. Therefore, three kinematic constraints have
to be imposed. Three Lagrange multipliers, associated to these
constraints, are added to the generalized coordinates q to form
the vector of the eighteen unknowns of the joint.

The first algebraic equation of constraint is the kinematic re-
lation resulting from teeth contact and gives the relation between
angular displacements of booth wheels:

φ1 = (−ψA zA +ψB zB)
mn cosαn

2
+um cosαn = 0 (9)

where mn is the normal module of the gear teeth, αn the pressure
angle in the normal plane, and zA and zB are the numbers of teeth
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at each wheel. It can be shown easily that by formulating the
constraint in this way, the associated Lagrange multiplier (scaled
by factor k) has the physical meaning of a normal contact force:
F = kλ1.

The second constraint represents the hoop contact constraint
produced by engagement between teeth:

φ2 = (xA
C− xB

C).η ′′A3 = 0 (10)

where xA
C,xB

C give the position of the contact point computed on
wheel A and B, respectively.

The third constraint expresses that the triad (η ′′1 ,η ′′2 ,η ′′3 ) is
unique, when computed in terms of kinematic variables of either
wheel:

φ3 = η
′′A
2 .η ′′B3 = 0 (11)

The mesh force is derived from the elastic potential νm, de-
fined as follows:

νm =
1
2

km[[um + xerr]]2 (12)

with the operator [[•]] defined as

[[x]] =

 x x≥ 0
0 b < x < 0

x+b x≤−b
(13)

where km is the mesh stiffness and b is the hoop backlash. xerr
is the loaded transmission error which includes both the mesh
errors with respect to the theoretical gear profiles and time varia-
tion effects of mesh stiffness due to the variation of the number of
teeth in contact. This effect is included in the form of a displace-
ment excitation representing the fundamental harmonic which is
assumed to be a function of the angular displacement at one gear
(φA for example).

xerr(ψA) = X(1− cos(zAψA)) (14)

Mesh damping force is accounted for by adding a term cm u̇m to
the internal forces (cm being the damping coefficient).

The hoop and axial components of the contact force oriented
along ν ′′3 , have been taken into account when formulating the
holonomic constraint φ2. However, the radial component of the
contact force is of non-holonomic nature and has to be added
explicitly to the formulation as a non-conservative force. The
radial component of the force acting on wheel A at the contact

FIGURE 6. CONTACT CONDITION - PROJECTION OF SLAVE
NODE ON MASTER SURFACE

point is F = −k|λ1|sinα2 η ′′2 while the opposite force −F acts
upon wheel B at the same point.

If the mutual sliding speed along teeth in contact is non-
zero (e.g. worm gears), a non-negligeable friction force between
wheels appears:

Ff r =−sign(vrel) µ(vrel) k|λ1| η ′′1 (15)

vrel is the relative sliding speed, measured along the teeth lon-
gitudinal direction η ′′1

µ(vrel) is the friction coefficient for which a regularization is
used to avoid discontinuities while the sign of vrel is chang-
ing.

This friction force takes place in the internal forces of the gear
pair element and is of non-holonomic nature.

Contact element
In the software used, contacts can be defined between a rigid

structure and a flexible part (flexible/rigid contact) or between
two flexible parts (flexible/flexible contact). Contact relations
are created between a set of nodes on the first support that will
be connected to a facet (in case of flexible/flexible contact) or a
surface (in case of flexible/rigid contact) on the second support.
Contact algorithms consist of two steps: the first one searches
for the projection of each slave node in the master surface(s) and
creates an associated distance sensor, the second step imposes
the kinematic constraint. In the nonlinear case (large displace-
ments, large rotations), the contact is treated as a nonlinearity
and the coupled iterations method is used. A contact element is
created, with a kinematic constraint that is active when contact
and inactive without contact.

In order to model the Torsen differential, the friction has to
be taken into account in all contact conditions. In this case, in
addition to a distance sensor some sliding sensors are generated.
The friction force Ff r is directly proportional to the normal reac-
tion between the point and the surface by means of a regularized
friction coefficient µR (Ff r = µR |Fnorm|). The regularization tol-
erance is used to avoid the singularity of the derivative when the
relative sliding velocity is zero.
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In case of convergence problem, the use of a penalty func-
tion allows small interferences. Physically, a penalty function
behaves as a spring that is active in compression but not in trac-
tion. Damping is sometimes used to have a smoother response
and consequently better convergence properties.

MULTIBODY MODELING OF DIFFERENTIALS
In this work, a complete modeling of the type B and C

TORSEN differentials has been carried out with the software
SAMCEF Field and its module MECANO for implicit nonlin-
ear analysis. These two multibody models are mainly composed
of rigid bodies, only the various trust washers are considered
with a flexible behavior. The objective of the initial study was
to develop a robust modeling approach able to simulate the four
working modes and the locking effect of TORSEN differentials.
Therefore, several hypotheses which appear reasonable for the
analysis of the global working of differentials have been intro-
duced.

The axial displacement of planet gears in type C (Fig. 2)
and element gears in type B (Fig. 3) have small magnitude and
have been locked in the model. The friction coefficient of all
contact conditions introduced in the models have been chosen in
accordance to experimental data provided by the manufacturer
JTEKT TORSEN. Some washers have completely different fric-
tion coefficients on their two opposite faces (for example: 0,1
on one side and 0,03 on the other side). In this case, only the
contact condition with the lower friction coefficient is modeled
while the washer is considered to be fixed on the body in con-
tact with the other washer face having higher friction coefficient
(in Fig. 2 washer #8 is fixed on the sun gear and washer #10 is
fixed on the coupling). The planet gears and element gears are
inserted in holes of the housing. The joints have been model as
hinges even though there is not physical rotation axis in the real
system.

In order to validate and to check the accuracy of the math-
ematical model, the numerical results have been compared with
measurements on an experimental test bench. For this purpose,
the test bench configuration has been recreated in simulations.
Contrary to operation in a vehicle, the housing does not rotate
during the test (Fig. 7). However, it is nevertheless possible to
observe the four working modes because the locking effect of
TORSEN differentials is due to relative motions and forces be-
tween the output shafts and the housing.

Dynamic analysis has been perform using the Chung-
Hulbert generalized-α integration scheme. Due to the presence
of gear elements and contact conditions with friction, the tangent
matrix is not symmetric and therefore a non-symmetric resolu-
tion algorithm has been chosen. This option is computationally
more expensive since it increases the number of arithmetic op-
erations. But it permits a better convergence in some complex
situations such as high Coulomb friction.

FIGURE 7. (A) CONFIGURATION ON TEST BENCH (B) CON-
FIGURATION ON VEHICLE

Central Differential : Type C TORSEN
The model of the type C Torsen differential includes in total

15 bodies: 11 rigid bodies and 4 flexible ones (thrust washers). It
also includes: 8 gear pairs, 5 contact conditions (flexible/rigid),
4 hinge joints, 1 screw joint. The number of configuration pa-
rameters amounts to 8161. The flexible bodies are meshed with
volume finite elements obtained by extrusion.

For each gear pair element, the mesh stiffness and damp-
ing have been computed according to the ISO 6336 standard
(method B). These parameters depend on material properties and
geometrical characteristics (addendum, number of teeth, helical
and pressure angles...) of gear wheels and teeth.

In configuration on test bench, a torque is applied to one
output shaft whereas the rotation speed of the second shaft is
prescribed, which is equivalent to apply a resistant torque. This
torque is measured and used to compute the TDR defined in
Eq. 1. This index represents the torque distribution due to the
locking effects and is simply computed with the applied torque
value divided by the resistant torque measured value.

For instance, Figure 8 depicts the case where a torque of 125
Nm is applied to the coupling and the rotation speed of the sun
gear is controlled in order to keep a difference of 20 r.p.m. be-
tween the two output shafts. The housing and the case are locked
in translation and rotation. The sun gear being linked to the front
axle and the coupling to rear axle, this situation corresponds to
a torque biasing to the rear axle. According to the direction of
the torque applied, it is a drive or a coast mode. With the inertial
frame used in this simulation, a positive torque involves a drive
mode and a negative one, a coast mode.

The TDR is a constant specific for each locking mode what-
ever the amplitude of the torque applied and the output shafts
relative rotation (cf. Fig. 1). The choice of 125 Nm and 20 r.p.m.
is only due to the capacity of the experimental test bench used
for this work. The time evolution of the applied torque and pre-
scribed rotation speed has been chosen to observe the two modes
with biasing to rear axle in a same simulation and in order to
have a smooth transition between the 2 modes. The parts of in-
terest to compute the TDR are the steady state parts 0,4s− 1s
and 2,2s−2,8s.

The same procedure has been reproduced for the two modes
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FIGURE 8. SIMULATION OF TYPE C ON TEST BENCH FOR
DRIVE TO REAR AND COAST TO REAR MODES

TABLE 1. COMPARISON OF TORQUE DISTRIBUTION RATIOS
FOR THE FOUR WORKING MODES (TYPE C TORSEN)

TDR Mode 1 Mode 2 Mode 3 Mode 4

Drive Coast Drive Coast

bias to rear bias to rear bias to front bias to front

experimental 4,02 2,82 1,57 1,62

simulation 3,9 2,94 1,56 1,65

error (%) 2,98 4,25 0,64 1,85

with torque biasing to front axle but are not depicted in this paper.
This time, the torque is applied to the sun gear and the rotation
speed of the coupling is regulated. For each locking mode, Table
1 shows the good agreement between the simulated TDR values
and the experimental results.

This simulation is also able to compute the contact pressure,
friction stress, dissipated power, sliding velocity... Figure 9 il-
lustrates the contact pressures for all the contact elements intro-
duced in the model for the drive to rear mode.

The dynamic response of this differential has also been stud-
ied in the vehicle configuration. In this case, the housing is rotat-
ing and linked with splines to the propeller shaft which transmits
the motor output torque from the gear box. For this kind of simu-
lation, a torque is applied to the housing and the rotation speed of
the two output shafts is prescribed. In order to observe the four
working modes during the same simulation, the time evolution
of the three loadings depicted in Fig. 10 has been used.

FIGURE 9. CONTACT PRESSURE ON THRUST WASHERS FOR
DRIVE TO REAR MODE (TEST BENCH CONFIGURATION AT
TIME T = 0.6 s)

According to the orientation of the inertial frame employed,
the rotation speeds have negative values when the vehicle moves
forward. The difference of rotation speed has been chosen ar-
bitrarily because it doesn’t affect the TDR. The motor torque is
positive in coast conditions and negative for drive modes. In or-
der to test the robustness of the model, an intermediate level is
introduced during the increase and decrease stage of the motor
torque. Figure 10 shows the torques on the two outputs (sun
gear and coupling), the sum of theses two values at each time
step is equal to the value of the torque applied to the housing.
The gap between these curves is representative of the torque bi-
asing and their ratio gives the TDR. The values computed by this
simulation are very close to the values obtained in test bench ex-
periments (see. Table 1). In drive modes, more torque is sent to
the slower axle while it is the opposite for coast modes. Contrary
to the situation on test bench, the two output shafts have same
rotation directions as well as the housing whose rotation speed is
always determined by the ratio of teeth number on the sun gear
and internal gear.

As seen in Figure 11, as soon as the sign of the torque ap-
plied to the housing changes, three gear wheels move axially
very quickly and involve impacts onto the thrust washers. Some
spikes can be seen on the torque curves in several Figures and
are due to the transient behavior at the impact time. The discon-
tinuity created can affect the convergence of the simulation. The
automatic time step decreases significantly and sometimes can’t
override the discontinuity. The solution adopted to try to reduce
these numerical problems consists in allowing a small penetra-
tion of the bodies in contact by a contact stiffness and introduce
a damping factor which anticipates slightly the contact in order
to reduce the shock. The axial displacements of the sun gear and
the coupling are always in the direction and opposite to the in-
ternal gear. The sun gear and the coupling are then in contact for
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FIGURE 10. TIME EVOLUTION OF TORQUE AND ROTA-
TION SPEED OF HOUSING AND OUTPUT SHAFTS OF TYPE C
TORSEN ON VEHICULE CONFIGURATION

FIGURE 11. AXIAL DISPLACEMENTS OF GEAR WHEELS (VE-
HICLE CONFIGURATION)

all the working modes. This contact has a very low friction coef-
ficient (0,03) which allows to reduce the stick-slip phenomenon.

Front or Rear Differential : Type B TORSEN
The type B TORSEN differential has been modeled with 20

bodies (17 rigid, 3 flexible) and the main kinematic constraints
are: 10 hinges, 2 cylindrical joints, 3 rigid-flexible contacts con-

TABLE 2. COMPARISON OF TORQUE DISTRIBUTION RATIOS
FOR THE FOUR WORKING MODES (TYPE B TORSEN)

TDR Mode 1 Mode 2 Mode 3 Mode 4

Drive Coast Drive Coast

bias to right bias to right bias to left bias to left

experimental 1,6 1,7 1,6 1,7

simulation 1,58 1,66 1,61 1,64

error (%) 3,20 2,35 0,62 3,53

ditions and 20 gear pairs. The model is composed of 21164 con-
figuration parameters. This large number of parameters is due to
the finite element method for flexible multibody systems used in
this work. Indeed, three translational degrees of freedom are re-
lated to each node of the flexible bodies. The contact conditions
also increase the number of parameters because several internal
variables (Lagrange multipliers, distance captor, ...) are intro-
duced for each slave node projected on the master surface.

A ring gear fixed on the housing allows the input torque to
be transfered to the differential with a hypoid gear mesh. The
pinion is fixed on the propeller shaft coming out of the gear box
in a front wheel drive vehicle or on a output shaft of central dif-
ferential for four wheel drive vehicle. The two side gears are
linked with splines to the semi-axles supplying the motor torque
to the right and left wheels.

In order to validate the model, the tests on experimental test
bench have been reproduced using the simulation tool. The pro-
cedure is similar to the one explained in the previous section for
the type C TORSEN. The housing is fixed and o torque is applied

Figure 12 depicts the resistant torque on the output shaft
(side gear left) whose rotation speed is prescribed. The TDR
for the four working modes have been computed on the basis of
these simulations on test bench. The TDR values computed are
close to experimental data as shown on Table 2. The geometrical
configuration of the type B TORSEN being symmetric in relation
to the output shafts, the TDR values for the modes with torque
biasing to the left are similar to the modes with torque biasing
to the right. The friction coefficients have similar values for all
contacts with thrust washers, which explains the very small dif-
ference between the TDR for drive and coast modes.

The configuration on vehicle has also been simulated for this
front differential. A torque is applied on the housing and the side
gears rotation speeds are prescribed (see Fig. 13). Although very
seldom effective in reality, the four locking modes can be observe
in backwards motion of the vehicle. The TDR values for theses
modes are of course the sames as for vehicle forwards motion.
In the second part of the simulation (34s−67s), the direction of
prescribed rotation speed of side gears has been changed which
enables to reproduce the differential behavior in backwards mo-
tion. Time evolutions of resistant torque on the two side gears are
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FIGURE 12. SIMULATION OF TYPE B TORSEN ON TEST
BENCH FOR DRIVE AND COAST MODES WITH TORQUE BIAS-
ING TO THE RIGHT WHEEL

FIGURE 13. TIME EVOLUTION OF TORQUE AND ROTA-
TION SPEED OF HOUSING AND OUTPUT SHAFTS OF TYPE B
TORSEN ON VEHICULE CONFIGURATION

symmetric in relation to the middle of the simulation (t = 34s).
This proves that the model is able to represent also the locking
effects in backwards motion with accurate TDR.

FIGURE 14. ACADEMIC FOUR-WHEEL DRIVE VEHICLE
MODEL WITH THREE DIFFERENTIALS

TORSEN DIFFERENTIALS INCLUDED IN A SIMPLE VE-
HICLE DRIVETRAIN

As final application of this paper, a global four-wheel drive
vehicle equipped with three TORSEN differentials has been
modeled (Figure 14).

The objective of this model is to observe the distribution of
the engine torque between the four wheels. In this context, a
very simplified vehicle model is considered here. The car body
is modeled by a lumped mass and the suspension mechanisms
are ignored. The differentials are attached to the vehicle frame
with hinge joints. In order to connect the central differential (type
C) with the front and rear differentials (type B), the driveshafts
are represented by rigid bodies as well as the half-axles linking
the differentials. Simple tire models are also considered in this
simulation.

As depicted on Fig. 15, a driving torque of 100 Nm is applied
to the housing of central differential. Friction coefficients are
prescribed with a different value for each wheel-ground contact.
For this academic application, very different friction coefficients
have been assigned arbitrarily to illustrate the torque biasing be-
havior of the limited slip behavior. For the shake of simplicity,
the drive ratios have been chosen equal to one for the conical
gear pairs which mesh the housing of front and rear differen-
tials with pinion fixed on driveshafts of the central differential.
Friction coefficients in all contact conditions have been modified
compared with the previous models with the consequence that
the TDR values are modified with repect to Tables 1 and 2.

The torque provided to each wheel is different and the dis-
tribution of the motor torque is in accordance with the ground-
wheel friction coefficient. The wheel with the higher road fric-
tion gets more torque than the others which is the advantage of
TORSEN differentials. With open differentials without slip lim-
itations the torque on each wheel would be limited by the lowest
friction potential (front left wheel) and any extra motor torque
contributes to wheel spin up.
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FIGURE 15. TORQUE DISTRIBUTION ON EACH WHEEL FOR
A FOUR-WHEEL DRIVE VEHICLE EQUIPPED WITH THREE
TORSEN DIFFERENTIALS

CONCLUSION AND PERSPECTIVES
Dynamic simulations of TORSEN differentials have been

carried out in this work. Those complex mechanical devices in-
clude various gear pairs and thrust washers. The friction phe-
nomena play a key role in the locking effect. TORSEN differ-
entials have been modeled with a flexible multibody approach
using the nonlinear finite element method. The flexible gear pair
formulation and rigid-flexible contact element which are key el-
ement of the modeling, are well adapted to render the four work-
ing modes of these limited slip differentials.

The comparison of simulation results with experimental data
obtained on test bench has shown a good correlation and there-
fore has allowed validating the models and checking their ac-
curacy. Finally, the three differentials (front, central and rear)
of a four-wheel drive vehicle have been assembled with sim-
ple driveshafts and tire models in order to simulate the global
behavior of this part of the drivetrain. These simulations have
illustrated the working behavior of TORSEN differentials. Al-
though the number of configuration parameters is high (several
thousands), the computational load required for the simulations
appears to be compatible with industrial requirements. The com-
putational time for simulations on test bench is about 15 minutes
and reaches two hours for simulations in vehicle configuration.

Future work will address the modeling of other mechanical
components such as clutch or gear box to complete the full drive-
line model. It is also planned to carry out a combined simulation
of the vehicle and driveline dynamics to investigate the interac-
tion between the two systems during dynamics maneuvers (e.g.
elk test).
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