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Abstract: System identification methods for non-linear aeroelastic systems could find uses in many

aeroelastic applications such as validating finite element models and tracking the stability of aircraft during

flight flutter testing. The effectiveness of existing non-linear system identification techniques is limited by

various factors such as the complexity of the system under investigation and the type of non-linearities

present. In this work, a new approach is introduced which can identify multi-degree-of-freedom systems

featuring any type of non-linear function, including discontinuous functions. The method is shown to yield

accurate identification of three mathematical models of aeroelastic systems containing a wide range of

structural non-linearities.
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NOTATION

a1,2 aerodynamic lift curve slope for a 3 DOF

wing model

b1,2 aerodynamic wing moment curve slope for a

3 DOF wing model

c damping coefficient in a 1 DOF aeroelastic

model

c1,2 aerodynamic control surface moment curve

slope for a 3 DOF wing model

C damping matrix

Ĉ damping matrix pre-multiplied by the inverse

of the mass matrix

Caero aerodynamic damping matrix

Ĉid identified Ĉ

Cstruct structural damping matrix

f restoring force vector

F excitation force vector

F̂ excitation force vector pre-multiplied by the

inverse of the mass matrix

h generalized restoring force vector

Iã, Iãè, etc. second moments of area of a 3 DOF wing

model

k1,2 stiffness coefficients in a 1 DOF system

ka aerodynamic stiffness contribution

ks structural stiffness contribution

kã, kè, kâ structural coefficients in a 3 DOF wing model

K stiffness matrix

K̂ stiffness matrix pre-multiplied by the inverse

of the mass matrix

Kaero aerodynamic stiffness matrix

K̂id identified K̂

Kstruct structural stiffness matrix

m mass coefficient in a 1 DOF model

M mass matrix

Mu diagonal modal mass matrix

M _è, M _â unsteady aerodynamic derivatives

N non-linear vector (including linear contribu-

tions)

N̂ purely non-linear vector

q displacement vector

r number of modal coordinates

R pseudo-inverse of ö
s span of a 3 DOF wing model

t time

u modal coordinates

u g excitation function in a 1 DOF model

V velocity

xf position of the flexural axis in a 3 DOF wing

model

xff , yff points of application of the excitation force in

a 3 DOF wing model

y time-dependent variable in a 1 DOF model

â, ã, è control surface, heave and pitch coordinates

in a 3 DOF wing model

r air density

ö modal matrix
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1 INTRODUCTION

The use of system identification methods to identify

frequencies, dampings and mode shapes is commonplace

in the aerospace industry. Such methods are used to anal-

yse ground vibration test data in order to validate finite

element models, and also during flight flutter testing

to track the stability of aircraft as the flight envelope

is expanded. There is a vast literature related to the iden-

tification of linear systems and a wide range of methods

have been implemented in the aerospace field. How-

ever, the identification of systems that contain non-

linearities is not yet at a stage where an accurate model

of a real full-sized structure, e.g. an aircraft, could be

estimated.

There already exist methods like the NARMAX model

[1, 2], higher order spectra [3] and the restoring force

method [4, 5], which can identify aeroelastic systems

given the inputs and outputs. However, these methods

have still not reached the level of maturity necessary to

allow their application to general aeroelastic systems.

Both NARMAX and the higher order spectra method

are incapable of identifying systems with discontinuous

non-linearities, such as bilinear stiffness or freeplay,

which are common in aeroelastic systems. The restoring

force method does not share this limitation, but its

application to multi-degree-of-freedom systems is still

problematic.

A further consideration that must be made is whether

the identification process is parametric. The analysis of

an identified system is much simpler when the terms in

the model resulting from the identification process are

parametric, i.e. model explicitly the non-linearities pre-

sent in the system. However, both NARMAX and the

restoring force method yield better results when using

non-parametric as well as parametric terms. Hence the

resulting model contains terms without any physical

meaning.

The effects of structural, aerodynamic and, in particular,

control system non-linearities upon the aeroelastic beha-

viour of aircraft are becoming of increasing concern.

Recent emphasis has been devoted to the study and

prediction of limit cycle oscillations (LCO). Although

unsteady computational fluid dynamics (CFD) codes are

being developed to model non-linear aeroelastic behaviour,

their efficient use is a long way off, and for the foreseeable

future there will be a requirement to estimate the para-

meters of non-linear systems.

This paper presents a method for the identification of

non-linear multiple degree-of-freedom (DOF) systems with

any type of non-linearity. Although the method is general,

the application described here is suited particularly to the

identification of aeroelastic systems. A number of simu-

lated examples are given that demonstrate the use of the

method. In reference [6], a demonstration of the use of the

proposed method in conjunction with gust load prediction

methods can be found.

2 MOTIVATION

Aeroelastic systems are usually described by the general

equation

M�q� (Caero � Cstruct) _q� (Kaero �Kstruct)q � F (1)

where M, C and K are the mass, damping and stiffness

matrices respectively, q is the displacement vector and F is

the excitation force vector. The subscripts denote whether

the matrices are due to structural or aerodynamic functions.

When using the restoring force method, the above

equations are rewritten as

M�q� f ( _q, q) � F(t) (2)

where f ( _q, q) is the restoring force of the system. For a

single DOF system with known mass, the restoring force

can be expressed in terms of the inertial force and the

excitation. It is then straightforward to plot and curve-fit

the restoring force surface [4].

For a multiple DOF system the process needs to take

place in modal space. By setting q � Öu, where u is the

modal displacement vector and Ö is the (m 3 r) modal

matrix (r being the number of modes to be considered),

substituting in equation (2) and premultipyling by ÖT, the

restoring force equation becomes (see reference [5])

h( _u, u) � ÖT F ÿMuR�q (3)

where h � ÖT F(t) is the generalized restoring force vector,

Mu � ÖTMÖ is the diagonal modal mass matrix and R �
[ÖTÖ]ÿ1ÖT. The modal restoring force can be estimated

provided estimates for the generalized mass and modal

matrices exist and the generalized displacements have been

obtained from accelerationÐor, indeed, acceleration, velo-

city and position [7]Ðmeasurements. Obviously, the pro-

cess of obtaining the generalized mass and modal matrices

requires a further identification analysis to be carried out

before forming the restoring force surfaces, and this is by no

means straightforward, particularly on non-linear systems.

The method proposed here attempts to evade some of the

above difficulties, while maintaining the flexibility of the

restoring force method to be able to deal with all types of

non-linearity. Use is made of the fact that at an arbitrary

response level, the restoring force due to the non-linearity

is constant. The approach estimates the exact equation of

motion of the system by curve-fitting the response at this

chosen response level. A simple demonstration of the

method is given in the following simulated example.

3 A SIMPLE APPLICATION

Consider a single degree-of-freedom system with a cubic

stiffness non-linearity and assume that the position and

type of the non-linearity and also the number of modes

(one) are known. The equation of motion for this system is
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m�y� c _y� k1 y� k2 y3 � ug(t) (4)

where m is the mass, c is the damping coefficient, k1 is the

linear stiffness coefficient and k2 is the non-linear stiffness

coefficient. Since it is known that the non-linear term

depends on y, the identification process begins with iso-

lating time instances where y has some given value. At this

level, the non-linear term has a constant value due to its

dependence on y. Thus, the equation of motion for the

system can be written as

�y(t1) _y(t1) 1

�y(t2) _y(t2) 1

..

. ..
. ..

.

�y(tn) _y(tn) 1

0BBB@
1CCCA m

c

N

8<:
9=; �

ug(t1)

..

.

ug(tn)

8><>:
9>=>; (5)

where the non-linear constant term N � k1 y� k2 y3 and

t1, . . ., tn are the instances in time that correspond to the

chosen response level. Notice that y itself does not appear

in the equations since, having a constant value, it would

render the left-hand side matrix singular. Equation (5) can

be solved using a least-squares process to give m, c and N .

The equation of motion can then be rearranged in the

form

N (t) � ÿm�yÿ c _y� ug(t) (6)

to give the values of N at all time steps.

The result of the identification process is the values of

the mass and damping coefficient as well as the stiffness

for all time steps. A characteristic of this approach, which

differs from others, is that the linear and non-linear parts of

the stiffness have been merged together in one function, N .

The response of the system can be found through the use of

this combined function.

However, should these elements need to be determined,

N can be discretized for the jth level as

N j � k1 yj � N̂ j

Then, if the type of non linearity in N̂ is known, the linear

and non-linear parts can be separated by means of curve-

fitting. For instance, if for the present example it is known

that the non-linear term is cubic, then it will also be known

that

N j � k1 yj � k2 y3
j

or

N1

N2

..

.

Nn

8>><>>:
9>>=>>; �

y1 y3
1

y2 y3
2

..

. ..
.

yn y3
n

0BBB@
1CCCA k1

k2

� �

Alternatively, if the non-linear function, N̂ , is unknown

but differentiable, then the combined function N can be

split into the linear and non-linear parts by differentiating it

twice with respect to y, which eliminates the linear part. If

the result is then integrated while setting the constants of

integration to zero, the purely non-linear part of N is ob-

tained, i.e.

N̂ �
��

d2 N

dy2
dy dy (7)

Subtracting N̂ from N gives the linear stiffness variation

and a linear curve fit will yield the linear stiffness co-

efficient. It should be noted, though, that differentiation

introduces additional numerical errors.

To illustrate the complete procedure numerically, the

excitation force, ug(t), was taken to be a sine sweep and the

system parameters were set at m � 1:2, c � 0:7, k1 �
5:8 3 103 and k2 � 1:16 3 109. Figure 1 shows the

constant level displacement points that were used to start

the analysis. Parameter estimates of m � 1:199 988, c �
0:700 016, k1 � 5:799 974 3 103 and k2 � 1:159 989 3
109 were found. Figure 2 shows the true and estimated

cubic stiffness values. It can be seen that, for this simple

case, very good quality estimates were found.

4 PROCEDURE

The previous example demonstrated the rationale behind

the proposed method. However, in order to apply it to more

realistic systems, various refinements are needed. The first

crucial refinement is to multiply the equations of motion

throughout by the inverse of the mass matrix, which has the

effect of ensuring that the excitation term appears in all the

equations of motion. Thus the equations become

�q�Mÿ1C _q�Mÿ1Kq �Mÿ1 F (8)

but now Mÿ1 F must also be treated as an unknown. The

only term in equation (8) that is completely known is the

acceleration �q. As a consequence, equation (5) is replaced

by

_q1(t1) . . . _qm(t1) q1(t1) . . . qm(t1) f x(t1) 1

_q1(t2) . . . _qm(t2) q1(t2) . . . qm(t2) f x(t2) 1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

_q1(tn) . . . _qm(tn) q1(tn) . . . qm(tn) f x(tn) 1

0BBB@
1CCCA

3

Ci1

..

.

Ĉim

K̂i1

..

.

K̂im

F̂i

Ni

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
�

qi(t1)

..

.

�qi(tn)

8><>:
9>=>; (9)
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for i � 1, . . ., m, where m is the number of modes.

K̂ii, Ĉii, F̂i are the various elements of the matrices

K̂ �Mÿ1K, Ĉ �Mÿ1C and F̂ �Mÿ1 F. In this example

N is a vector containing all the non-linearities in the

system. Any non-linear terms from the damping or stiffness

matrices are moved to N , together with their associated

linear terms (as in the previous case of N � k1 y� N̂ ), so

that all the elements in the matrices are linear or zero.

Equations (9) also demonstrate an additional advantage of

multiplying throughout by the inverse of the mass matrix,

namely that the number of unknowns is reduced, speeding

up the computation and also improving the accuracy of the

fit.

In equation (5), y was not included at all to avoid

rendering the equations singular. This should also be the

case in equations (9). However, since the position of the

non-linearity and the variable it depends on are not known,

it is impossible to predetermine which of q1, . . ., qm, _q1,

. . ., _qm should be kept constant and excluded. Even the

number of modes, m, is unknown for a real system.

However, preliminary analysis would give an indication via

frequency response function (FRF) plots.

Fig. 1 Constant level response points used in the identification process

Fig. 2 True and estimated cubic stiffness
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The number and types of non-linearities present in each

mode are not known; hence the procedure becomes specu-

lative at this point. It is first assumed that there is a non-

linearity depending on, say, q1 (e.g. a stiffness non-linearity

or Coulombic friction). Then points where q1 has a

constant value are identified in the output. Assuming that

enough such points have been identified in the output of

the system, each of equations (9) is solved using a least-

squares process, each yielding the elements of one line of

the mass, structural damping and structural stiffness ma-

trices as well as the value of the non-linear term. When all

the sets of equations are solved, the equivalent of equation

(6) is

N � ÿ�qÿ Ĉ _qÿ K̂q� F̂ (10)

(where the column associated with q1 in K̂ is made up of

zeros), which is employed to calculate the values of the

non-linear terms for every instant in time, since all the

other matrices are now considered to be known. Since the

equations of motion have been multiplied throughout by

the inverse of the mass matrix there will be non-linear

terms in each of the m equations (9), even if there is only

one non-linearity in one mode. The non-linear terms, Ni,

are then plotted against q1. If the plots are single-valued

functions of q1, then the non-linearity is assumed to depend

on the correct variable and the mode has been identified

correctly. If the curve has a phase-plot-type shape, then this

means that the non-linearity depends on some other

variable and, hence, the procedure needs to be repeated

from the beginning, keeping another one of q2, . . ., qm,

_q1, . . ., _qm constant until a successful identification is

obtained. Finally, after the non-linear terms have been

evaluated for all instants in time, they can be curve-fitted to

yield continuous functions.

In order for the identification process to succeed, the

input and output data need to be interpolated to obtain a set

of instances in time where the desired variable has exactly

the same value. This value needs to be near the equilibrium

level so that enough such points can be obtained. Cubic

interpolation has been found to be quite adequate, yielding

sets of points that are almost exact solutions to the

equations of motion. The excitation force also needs to be

such that it excites all the important features of the systems,

Fig. 3 System identification algorithm
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including the non-linearity. Sine-sweep or banded random

excitations are suitable since they allow several frequencies

of excitation to be applied to the system in one test.

To make the application of the method clearer, the

algorithm is presented below in pseudocode and in

graphical form in Fig. 3:

1. Choose the number of modes by which to represent the

system.

2. Choose a suitable input and measure the response of the

chosen modes to the input.

3. Assume the variable on which the non-linear term

depends, e.g. N1 � f (q1).

4. Find the set of time steps, tc, where q1 �constant (using

interpolation), from the measured data.

5. For i � 1 to number of modes, solve the ith equation of

(5) at tc to evaluate the ith line of Ĉ and K̂ as well as

Ni[q1(tc)].

6. Solve equations (10) at all time steps to evaluate N .

7. For i � 1 to number of modes:

(a) Plot Ni against the variable on which it was

assumed to vary, e.g. q1.

(b) If the plot has the shape of a phase-plane plot, the

wrong assumption was made. Go back to step 3 and

make a different assumption.

(c) If the plot is a single-valued function, the correct

assumption was made and the mode has been eval-

uated correctly. Curve-fit the plot to obtain the type

of non-linearity.

(d) End loop.

8. To validate the model solve at all time steps and

compare with measured data.

An example of the application of the method is given in

the next section. It should be noted that the non-linearities

identified by the method need not be single-valued func-

tions. Hysteresis-type non-linearities can be identified but,

if such a non-linearity is expected, then the procedure needs

to be applied on constant values of the variable with only

positive or only negative derivatives, as demonstrated in a

later section.

A further consideration regarding the proposed method

concerns the effect of performing the identification proce-

dure at various levels and not just the one. This was tried

for a few very simple test cases but was not found to

improve the accuracy of the resulting system estimates.

However, in the case where a significant amount of noise is

present in the response data, it is suggested that using a

large number of levels would have a beneficial effect, since

it would average out the noise contribution.

It should be noted that the method will only identify

systems that contain non-linearities dependent upon one

variable. For instance, it will identify a wing with friction

and freeplay in the wing-root pitch degree of freedom;

however, it will not identify a system with freeplay both in

the wing-root pitch and the wing-root heave degree of

freedom. This limitation comes from the fact that the

equations of motion are identified as if they had been

multiplied throughout by the inverse of the mass matrix.

Hence, every non-linearity that exists in the system appears

in the equation for every mode. Since the method works on

the assumption that it is possible to keep the non-linear

term in each equation constant, two or more non-linear

terms that depend on two different variables will cause it to

fail.

Finally, the method can be applied at a single level, but it

can also be applied simultaneously at a number of levels,

thus increasing the accuracy of the prediction in the

presence of experimental noise in the measured input and

output signals.

5 A MORE COMPLEX APPLICATION

The method is here demonstrated by applying it to a multi-

degree-of-freedom simulated aeroelastic system. The sys-

tem is a rigid, rectangular, flat-plate wing with three

degrees of freedom, one in the wing pitch, one in the wing

heave and one in the control surface pitch. The control

surface pitch spring is bilinear [8]. The equation of motion

for the system is

Iã Iãè Iãâ
Iãè Iè Ièâ
Iãâ Ièâ Iâ

0@ 1A �ã
�è
�â

8<:
9=;

� 1
2
rV sc

s2a1

3
0 0

ÿ scb1

2
ÿc2 M _è 0

ÿ scc1

2
0 ÿc2 M _â

0BBBBBB@

1CCCCCCA
ã_
_è
_â

8<:
9=;

�
Kã 0 0

0 Kè 0

0 0 Kâ

0@ 1A ã
è
â

8<:
9=;

� 1
2
rV 2sc

0
sa1

2

sa2

2

0 ÿ cb1

2
ÿ cb2

2

0 ÿ cc1

2
ÿ cc2

2

0BBBBB@

1CCCCCA
ã
è
â

8<:
9=;

�
F yff

F(xff ÿ x f )

0

8<:
9=; (11)

where ã, è and â are the three degrees of freedom, Iã, Iãè,

etc., are the second moments of area, c is the chord, s is the

span, t is the thickness of the wing, r is the density of air,

V is the free-stream velocity, a1, a2, b1, etc., are aero-

dynamic lift and moment curve slopes, M _è and M _â are

unsteady aerodynamic derivatives, xff , yff is the point of

application of the excitation, xf is the x coordinate of the
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flexural axis of the wing, Kã, Kè, Kâ are the stiffnesses of

the three springs and F is the excitation function. Kâ in

this case is substituted by a bilinear function of â.

The fact that the system is numerical implies that there is

no measurement error. However, numerical errors are intro-

duced by the process of differentiation of the response

(introduction of higher derivatives). In order to apply the

identification routine usefully, the time step needs to be

sufficiently small. The input used here was a sine sweep.

The first step is to choose the number of modes. Because

the model is simple, wing heave ã, wing pitch è and

control surface pitch â are the three modes required for a

successful identification.

According to the procedure outlined in the previous

section, the next step is to assume that there is a non-

linearity which appears in every equation. Therefore, it is

assumed that the wing heave equation contains a non-

linearity depending on the wing heave. Equations (9) are

solved and using the estimates for Ĉ and K̂, the three non-

linear terms are calculated for each time step. As it

happens, because the single non-linearity in this model

depends on â, the identification process fails and needs to

be repeated for the case where the non-linearity depends on

the control surface pitch. For a particular case of successful

identification, the resulting damping matrix was

Ĉid �
0:0381 ÿ0:0700 0:0100

ÿ0:1665 0:1293 ÿ0:0387

0:2000 ÿ0:2763 0:1159

24 35
The actual damping matrix was

Ĉ �
0:0381 ÿ0:0700 0:0100

ÿ0:1665 0:1292 ÿ0:0387

0:2000 ÿ0:2763 0:1158

24 35
The identified stiffness matrix was

K̂id �
16:7993 ÿ12:2321 0:0000

ÿ74:6637 225:4430 0:0000

74:6637 ÿ481:9899 0:0000

24 35
The actual stiffness matrix was

K̂ �
16:7994 ÿ12:2321 0:0259

ÿ74:6637 225:4430 0:0738

74:6637 ÿ481:9898 ÿ0:3048

24 35
The two sets of matrices are virtually identical apart from

the last column of K̂, which is zero in the identified case.

This is due to the fact that the non-linearity appears in all

three elements of that column and the identification process

merges the linear and non-linear parts of these elements, as

in the earlier example where N � k1 y� k2 y3. However,

unlike the case of cubic stiffness, the bilinear function is

discontinuous and, therefore, cannot be differentiated or

curve-fitted. Additionally, since it is linear in parts, Ni

cannot be fitted by least squares as the sum of a linear and

a bilinear function. Hence, separating the linear and non-

linear parts of Ni is not as straightforward as in the

previous example. The problem can only be partly solved

by considering the fact that the linear part of Ni is made up

of a structural and an aerodynamic term. Aerodynamic

stiffness terms depend on the square of the free-stream

velocity [9, 10]. Hence

Ni(V , â) � (ks � kaV 2)â� N̂i(â) (12)

where V is the free-stream velocity, ks is the structural

contribution and ka is the aerodynamic contribution. Since

the purely non-linear term is structural, N̂i does not depend

on V . By performing identifications at two different

airspeeds, ka can be evaluated; however, the linear and

non-linear structural terms will remain merged in a new

non-linear function equal to ksâ� N̂i(â). Consequently, it

is possible to isolate the aerodynamic contribution to the

linear part of the system's stiffness but not the structural

one.

The best test of the accuracy of the method is to use the

new matrices, together with the non-linear terms obtained

to solve the identified model, and compare its response to

that of the actual system. The non-linear terms are handled

as lookup tables since their discontinuities prohibit the use

of interpolation or curve-fitting.

Figure 4 shows the percentage error. The large peaks

occur at points where the real system's response is very

close to zero. The comparison between the actual non-

linear term in wing heave and that produced by the

identification method can be seen in Fig. 5. Figure 6 shows

the non-linear surface for the same degree of freedom, i.e.

an equivalent of the restoring force surface given by the

restoring force method. This plot should be compared to

graphs in reference [11].

The identification method was tried on a system with

freeplay non-linearity, again with satisfactory results.

Figure 7 shows the comparison between actual and identi-

fied non-linear terms in wing pitch and Fig. 8 shows the

freeplay non-linear surface.

Several special cases of the simple wing model have

been identified using the present method, especially where

the response is chaotic, with satisfactory results.

6 IDENTIFYING HYSTERESIS-TYPE

NON-LINEARITIES

Hysteresis is characterized by the fact that the response lies

on one path while increasing and on another one while

decreasing [12]. Hence, hysteresis-type non-linearities can

be easily identified by the proposed method with a slight

modification. When isolating response levels, only points

in the response that lie on the level but also have a first
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derivative with respect to time of the same sign can be

used. This is demonstrated in Fig. 9.

The simple single degree-of-freedom system presented

earlier but with hysteretic stiffness was identified success-

fully using the proposed method. For a particular test case,

the values of the mass and damping coefficients were

m � 1:2, c � 18:9. The identified values were m �
1:200 000 83 and c � 18:900 001 4. Figure 10 shows the

percentage error in the identification of the hysteretic

stiffness variation with y.

7 IDENTIFICATION OF LARGE SYSTEMS

A real system will contain a large number of modes and the

identification of the entire system will be difficult to

perform accurately. It is therefore of interest to determine

whether the proposed method could deliver acceptable

results when less modes are used in the identification

procedure than there are in the real system.

A second mathematical model of a wing was developed,

this time without a control surface but with a multi-mode

Fig. 4 Percentage error in the identified control surface pitch response

Fig. 5 True and identified bilinear term in the wing heave
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Rayleigh±Ritz [13] series approximating the flexibility of

the wing. The two wing-root rigid modes (wing-root pitch

and heave) were retained as a mechanism of introducing

non-linearities. Since in order to identify a non-linear

system the modes that contain the non-linearities need to

be identified, the two rigid modes always need to appear in

the identification process.

The results presented below are for a 5 DOF rectangular

wing with bilinear stiffness in the wing-root pitch. The

Rayleigh±Ritz series contains two bending and one tor-

sional mode. The system was identified using models of

increasing complexity from 2 DOF to 5. The wing's

damping and stiffness matrices were

Ĉ �

5:2101 ÿ0:0392 ÿ12:2802 ÿ7:7218 0:2345

ÿ41:5151 1:7436 89:6726 58:1212 1:8682

3:3185 0:000 1:6930 ÿ1:6144 ÿ0:1776

ÿ9:4815 0:000 7:3802 8:8887 0:5074

ÿ68:1641 0:000 164:0038 102:5024 4:8612

266664
377775

K̂ � 104

0:4293 0:0121 0:0000 0:0000 0:0156

ÿ1:5331 ÿ0:1121 0:0000 0:0000 ÿ0:1245

0:0000 0:0136 2:3893 0:4540 ÿ0:0405

0:0000 ÿ0:0309 ÿ3:9099 ÿ0:7300 0:1158

0:0000 ÿ0:1518 ÿ0:4661 ÿ0:0194 3:0015

266664
377775

The results obtained by the 5 DOF identification were

Fig. 6 Wing heave bilinear surface

Fig. 7 True and identified non-linear term in the wing pitch for freeplay
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Ĉid �

5:2164 ÿ0:0398 ÿ12:2586 ÿ7:7137 ÿ0:2334

ÿ41:5106 1:7484 89:5107 58:0764 1:8697

3:3629 ÿ0:0007 1:7712 ÿ1:5794 ÿ0:1864

ÿ9:5281 0:0015 7:2587 8:8269 0:5166

ÿ67:5750 0:0069 162:8999 101:7764 4:7698

266664
377775

K̂id � 104

0:4289 0:0000 ÿ0:0000 0:0000 0:0155

ÿ1:5331 0:0000 0:0001 ÿ0:0001 ÿ0:1231

0:0004 0:0000 2:3793 0:4522 ÿ0:0404

ÿ0:0006 0:0000 ÿ3:8933 ÿ0:7270 0:1151

ÿ0:0006 0:0000 ÿ0:4601 ÿ0:0188 2:9788

266664
377775

The results obtained by the 4 DOF identification were

Ĉid �
5:6880 ÿ0:0564 ÿ11:3243 ÿ7:1511

ÿ45:3634 1:8817 82:0752 53:5962

3:9890 ÿ0:0012 1:9721 ÿ2:0110

ÿ9:9812 0:0101 8:0456 8:2341

2664
3775

K̂id � 104

0:4991 0:0000 ÿ0:0000 0:0000

ÿ1:1298 0:0000 0:0000 ÿ0:0002

0:0019 0:0000 2:8748 0:6753

ÿ0:0002 0:0000 ÿ4:7892 ÿ0:5499

2664
3775

Fig. 8 Wing pitch freeplay surface

Fig. 9 Constant level response points used in the identification of hysteresis
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The results obtained by the 2 DOF identification were

Ĉid � 6:3704 ÿ0:0944

ÿ53:4671 2:1364

� �

K̂id � 104 0:3879 0:0000

ÿ1:2271 0:0000

� �
The agreement between the comparable parts of the actual

and identified sets of matrices deteriorates with decreasing

identification model order. Again, the second column of

the identified stiffness matrices is zero because its elements

were absorbed in the non-linear terms. However, despite

the drop in accuracy, the system has been identified

properly, even in the two-mode case, as can be seen by the

comparison of the non-linear terms presented in Fig. 11. In

other words, the type and location of the non-linearity have

been identified accurately.

Fig. 10 Percentage error in the identification of the hysteretic non-linear term

Fig. 11 Identification of a 5 DOF system with five-, four-, three- and two-mode models
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8 CONCLUSIONS

A new method for identification of non-linear aeroelastic

systems is proposed, based on the restoring force method.

The main thrust of the technique consists of curve-fitting

the system at time points where the response of a mode

and, hence, the non-linearity dependent on it has a constant

value. The method was demonstrated on a simple single

degree-of-freedom system and then applied to a multi-

degree-of-freedom system representing a rigid wing, yield-

ing in both cases models whose response was in very good

agreement with that of the actual systems. The method was

found capable of identifying a wide range of non-

linearities, including discontinuous and hysteresis-type

non-linearities.

The proposed method was also applied to a rigid, flexible

wing system using less flexible modes in the model than in

the system. The agreement between the response of the

model and that of the system was noticeably worse than in

the earlier examples. However, both the type and the

position of the non-linearity were identified correctly. The

quality of the identification was found to deteriorate with

increasing disparity in the number of modes between the

model and the system.
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