Introduction to SFTCG 2011

10th Annual Congress of the French Society of Cell and Gene Therapy
6–8 June 2011, Nantes, France

SFTCG Board and Organizing Committee

Nathalie Cartier-Lacave (President)
Nicolas Ferry (Vice President)
Anne Dubart-Kupperschmitt (Secretary)
Sophie Gomez (Webmaster)
Anne Galy (Treasurer)
Patrick Midoux (Vice Treasurer)
Alberto Epstein
Anna Salvetti
Karim Benihoud
Pierre Cordelier
Sophie Lebel-Binay
Gilles Marodon
Michel Pucéat
Anne Weber

Sponsors for the 10th annual meeting of the SFTCG

Platinum sponsors
Aviesan (ITMO IHP)
AFM
ThermoFisher Scientific
Clinigene

Gold sponsors
CellGenix
AMT Biopharma
GenoSafe
PeproTech
Sigma

Silver sponsors
Genethon
Texcell
Cleancells
Plasmid Factory
Beckman Coulter
Miltenyi Biotec
Agilebio
The French Society for Cell and Gene Therapy was created in 2001 to promote the development of Cell and Gene Therapy in France and to become the active interface between the people involved in the field of biotherapies at every level of translational research from preclinical laboratory work to clinical applications.

The past few years have witnessed considerable progress, with translation of numerous important new treatments demonstrating that patients with severe diseases can be treated efficiently and effectively by Cell Therapy and by Gene Therapy.

The emergence of this new field of medicine has underlined the importance of:

- Strong collaborations between many different partners
- The development of technological tools, medicinal cells and gene transfer vectors
- A responsive regulatory context
- Tools for evaluating efficiency and tolerance
- Sharing problems raised by the potential risks and working together to find solutions
- The cost of financing this new medicine, and
- The pivotal role played by patients’ associations, which have created a large, dynamic network that our society aims to promote, support and further unify.

Our annual congress is the opportunity for all the people involved in this human network—researchers, physicians, industry, and government representatives—to meet. For students in particular, this is a great chance to present their work, create exchanges, and form collaborations, which are very important tools in their training.

I would like the SFTCG to develop its unifying role in the field of biotherapies both for basic research and the different clinical stages. Recent progress: reprogramming of stem cells, targeted integration of therapeutic genes, use of miRNA, are a testimony to the pace at which we are moving and justify our ever growing enthusiasm.

More specifically, my wishes for the years to come are:

- Firstly, to promote the education of students through the organisation of congresses, the sharing of scientific information, and the facilitating of an exchange forum.
- Secondly, to set up a strong interaction with other societies involved in the field of biotherapies both nationally and internationally. Such interactions, including the co-organisation of meetings and the consolidation of training and exchange tools for students, are essential to the sustained advance of these fields.

We need your support and active participation. I would like to urge people involved in the many facets of this new and fascinating field of biotherapies and regenerative medicine to join and work with the SFTCG—researchers, physicians and patient associations, government and industry representatives. Help us fulfil our mission by contributing to new, ethically sound approaches in Cell and Gene Therapy, thus creating therapeutic hope for patients suffering from severe genetic or acquired diseases.

Nathalie Cartier
Président
SFTCG 2011 Invited Presentations*

Inv 1

Tailoring adeno-associated viral vectors for gene transfer and gene therapy

Hildegard Büning1

1Department 1 of Internal Medicine and Center for Molecular Medicine Cologne (ZMMK), University of Cologne, Cologne, Germany

Recombinant AAV vectors (rAAV vectors) have emerged as one of the leading gene transfer systems. Although various serotypes and variants have been developed as gene vectors, rAAV2 is still the dominant serotype used in clinical trials. Weaknesses of rAAV2 (and other AAV serotypes) include i) propensity to accumulate in liver tissue, ii) transduction of non-target cells and iii) pre-existing immunity due to prior exposure to wild-type AAV.

The AAV capsid determines viral/vector tropism and displays epitopes recognized by the host’s adaptive immune system. Therefore, to address some of the shortcomings of rAAV vectors, capsid engineering has been exploited. In particular, by insertion of ligands that mediate binding to cell surface receptors, vectors were generated that are capable of transducing non-permissive cells even in the presence of anti-AAV2 antibodies. Similar capsid modifications have helped improve transduction efficiency for permissive cells and/or cell-type specificity. However, the knowledge on ligands suitable for targeting approaches is limited and therefore libraries of capsid insertion mutants have been subjected to high-throughput selection protocols allowing the selection of mutants with a desired phenotype. The same strategy has been applied to identify mutants capable of escaping immune recognition. Specifically, point mutations of the hexon:FV interaction dictating in vivo tropism as well as in vitro had dramatic effects on FX-mediated gene delivery.

Inv 2

Adenovirus tropism and engineering for gene therapy

Andrew H Baker1

1Department of Molecular Medicine, University of Glasgow, United Kingdom

Adenoviral serotype 5 (Ad5) vectors are used frequently for local and systemic applications in gene therapy and vaccination. However, much of their potential for systemic delivery is limited by their strong tropism for liver and spleen, mediated through binding to coagulation factors, leading to effects on virion, sequestration, limited gene transfer to alternate tissue and toxicity. We, and others, recently elucidated the mechanism underlying liver and splenic uptake. We have shown the role of coagulation factor X (FX) in mediating liver uptake of adenovirus in rodent models and in non-human primates. This occurs through a high affinity interaction between the FX Gla domain and the hypervariable regions of the Ad5 hexon trimer. We observed specific contact points within the hexon in hypervariable regions 5 and 7. Creation of novel vectors with deletions and amino acid mutations in these regions had dramatic effects on FX-mediated gene delivery in vitro and in vivo. Binding to the hepatocyte surface is mediated via specific amino acids in the serine protease domain. Mutagenesis of these sites eliminates surface binding. We have also assessed the impact of HSPG structure on adenovirus uptake and transport of Ad:FX complexes. These findings highlight the fundamental importance of the hexon:FX interaction dictating in vivo tropism as well as novel avenues for vector retargeting to alternate sites in vivo.

Inv 3

Stealthy lentiviral vectors targeted to hematopoietic stem cells

François-Loïc Cosset and Els Verhoeyen

Université de Lyon, F69007; Inserm, EVIR, U758, Human Virology Department, F-69007; Ecole Normale Superieure de Lyon, F-69007; Université Lyon 1, F-69007, Lyon, France

Gene therapy proved to be promising for the cure of several inherited and acquired diseases as evidenced by the success in treatment of immunodeficiencies. Such gene therapies must target human hematopoietic stem cell (HSC), without modifying their properties. Ex vivo targeted HSC gene delivery implies the risk of cell differentiation and loss of homing/engraftment potential of these cells, which might be overcome by in vivo targeted gene delivery. A major barrier in lentiviral vector (LV) transduction of HSCs is that the majority of HSC are residing into the G0 phase of the cell cycle, which is a state poorly permissive to classical VSV-G-pseudotyped LV transduction without cytokines stimulation. We previously engineered LVs displaying ‘early-activating-cytokine’ (TPO and SCF), that allowed a slight and transient stimulation of hCD34+ cells, resulting in efficient ex vivo gene transfer while preserving the ‘stemness’ of the targeted HSC with comparable engraftment abilities with respect to un-manipulated HSCs and while promoting selective transduction of long-term NOD/SCID repopulating cells.

Two major challenges for in vivo gene delivery by such vectors are the exposure to the host complement system and the off-target cell gene transfer upon systemic administration, owing to the sensitivity of the VSVG glycoprotein (gp) co-incorporated to allow LV-cell membrane fusion and to the wide distribution of its receptor on all tissues. To surmount these hurdles, we have designed complement-resistant vectors capable of specifically targeting in vivo the very rare immature progenitor cells. To achieve this, the VSVG gp was exchanged for another fusion partner, the RD114 gp from a cat endogenous virus, which is attractive since...
Molecular imaging of gene expression using the Na/I symporter: applications in gene therapy

Georges Vassaux
1

1INSERM UMR 643, Institut de Transplantation — Urologie — Néphrologie, CHU Nantes — France

Molecular imaging of gene expression in vivo requires a reporter gene, a tracer and a scanner capable of detecting the presence of the tracer in the live, anaesthetised animal. This methodology has been extensively used in gene therapy to determine the biodistribution of gene expression allowed by viral and non-viral gene delivery vectors and to study the specificity of promoter fragments driving the expression of reporter genes. In term of methodology, both optical and isotopic imaging modalities are available. In this presentation, I will focus on in vivo molecular imaging using radiotracers as probes. More specifically, I will present examples of imaging using the Na/I symporter (NIS) as a reporter gene. This membrane protein induces the cellular uptake of iodide and, through the utilisation of relevant radio-iodide isotope, Positron emission tomography (PET) or Single Photon Emission Tomography (SPECT) scanner can be used to detect the biodistribution of iodide in the experimental subject. In addition to its potential as a reporter gene, NIS can also be used as a therapeutic transgene in cancer gene therapy, promoting targeted radiotherapy. Examples of the combination of imaging and therapy mediated by NIS will be presented in the context of oncolytic adenovirus.

The application of targeted nanoparticles in tumour suppression

Andrew David Miller
1

1Imaging Sciences Department, MRC Clinical Sciences Centre, University College, London, UK

RD114 gp is resistant to the degradation by human complement, RD114-pseudotyped LVs efficiently transduce CD34+ HSCs, and a RD114 gp mutant allowing efficient incorporation onto LVs was engineered. These novel vectors achieved a highly selective transduction of hCD34+ cells in unfractionated total cord blood and BM. Remarkably these new LVs targeted gene transfer to hCD34+ cells in vivo in the BM of humanized Balbc rag2-/-, yc-/- mice. Thus, this vector opens improved alternatives for gene therapy of BM failure syndromes both ex vivo and in vivo.

In vivo gene transfer and non-invasive imaging in rodent brain with viral vectors: progress and challenges

Veerle Baekelandt
1

1Division of Molecular Medicine, University of Leuven, Belgium

Viral vectors are extremely efficient tools for gene transfer into living cells. We are using lentiviral vectors and adeno-associated viral (AAV) vectors for stable overexpression and suppression of gene expression in rodent brain. Stereotactic injection of these viral vectors into different brain regions of mouse and rat brain induces overexpression or inhibition of disease-related genes, which can be used for target validation, functional genomics and generation of disease models. We have invested over the last years into reporter gene technology and non-invasive imaging in rodent brain. We have optimized bioluminescence imaging to monitor gene expression in mouse brain and to track neuronal stem cell migration and differentiation. In order to specifically target certain neuronal cell populations we have recently developed conditional lentiviral and AAV viral vectors based on Cre-mediated recombination. Application of these viral vectors in specific cre-transgenic mouse strains allows to specifically label endogenous neural stem cells in the subventricular zone or dopaminergic cells in the substantia nigra. This approach holds promise to non-invasively follow up endogenous neurogenesis and neurodegeneration over time.

Use of transgenic and cloned animals in xenotransplantation

Gilles Blancho
1

1INSERM U948, CHU Hotel Dieu, Nantes, France

Xenotransplantation is transplantation between individuals from different species. It is in fact an old procedure initiated in patients in the early 20th century, by pioneer surgeons that at least allowed showing the technical feasibility of a vascularized transplantation. Its interest regained in the 90th, because of a constant and worldwide organ shortage (in case of success, xenotransplantation could offer an unlimited supply) and because of the development of the new techniques such as transgenesis and gene therapy in large animals. In fact, the pig has been identified as the potential donor of organs and not primates because of important ethical issues and risks of virus transmission. Whereas pigs offer advantages, such as size and physiology compatibilities with humans, rapidity and easiness of reproduction, less ethical issues, they bring nevertheless drawbacks due to immunological discordance and also a viral risk. The immunological discordance is mainly due to the existence in humans of preformed antibodies (Ab) directed against an antigen (Ag) that is a disaccharide galactose 1-3 galactose (Gal) expressed on the majority of mammalian cells. Once anti Gal Ab bind their specific target, they activate EC and complement leading to a rejection so fast that it is called hyperacute rejection (HAR). Transgenic pigs expressing human complement regulatory molecules have been generated and have brought an advantage by being protected from HAR, but nevertheless are secondary rejected. Lately, Gal KO animals have been generated and are currently under investigation. The most promising trend of
Muscular Dystrophy (DMD) is a genetic progressive muscle disease resulting from the lack of dystrophin and without effective treatment. The characterization of adult stem cells has given new impetus to cell-based therapy of neuromuscular diseases. One of them, the Muscle-Derived Stem Cells isolated from mouse muscle by delayed adhesion has been shown to contribute to injured muscle repair. However, these data were collected in dystrophic mice that do not exhibit tissue phenotype and clinical features of DMD patients. Here, we isolated and characterized canine delayed adherent stem cells and investigated efficacy of their systemic delivery in clinically relevant DMD animal model to assess potential therapeutic application in Human.

Delayed adherent stem cells were isolated from healthy dog muscle with a pre-plating technique. These cells, that we named MuStem cells, were defined by a large expansion capacity with atypical division modalities and a multi-lineage differentiation potential in appropriate induction media. Phenotypically, they corresponded to early myogenic progenitors and uncommitted cells. When injected in Golden Retriever Muscular Dystrophy (GRMD) dog, they contributed to myofiber regeneration, satellite cell replenishment and dystrophin expression. Systemic delivery of allogenic MuStem cells in immunosuppressed GRMD dogs resulted in long-term dystrophin expression and muscle damage correction consisting in regeneration activity increase and reduced interstitial fibrosis. Importantly, the clinical follow-up revealed a striking improvement of the transplanted dogs with a major quantified impact on locomotion persisting for months.

The translational findings here demonstrate that MuStem cells provide an attractive therapeutic avenue for DMD patients.
Mechanisms of immunization by gene transfer

Anne Galy1, Florence Boisgerault1, Muriel Sudres1, Séverine Cire1, Bernhard Ryffel2, Maxime Ferrand1, Sylvie Darocha1, Cyril Wilmes1

1Molecular Immunology and Biotherapies, Inserm, UMR951, Génethon, Evry, France
2“Molecular Immunology and Embryology” CNRS, UMR 6218, Orléans, France

Gene transfer vectors can immunize or not, depending upon specific interactions with the immune system. There are two key points in this context: one is the capacity to trigger innate reactions underlying the development of adaptive immunity, the other is the capacity to present antigenic epitopes derived from the vector or transgene. We have studied these two aspects in the context of recombinant adeno-associated virus (rAAV) vector gene transfer. These vectors are widely developed for gene therapy applications due to their efficacy and low inflammatory properties, but they trigger strong antibody and T cell responses against the viral capsid and transgene-encoded products, due to mechanisms that remain insufficiently understood. In murine models, rAAV is not inflammatory but triggers specific innate signals via the central adaptor MyD88, to induce adaptive CD4 T and B cell responses against the vector capsid. Blocking these innate signals is probably important to fully control the immunogenicity of the vector. We found that rAAV interacts with various types of antigen-presenting cells (APCs) in vitro. However, not necessarily the same APCs present antigens from the capsid or from the transgene, suggesting possibilities for complex interplays. Since rAAV can infect and transduce APCs in vivo, the transgene can be directly presented by APCs to T cells leading to strong cellular immune responses and rejection of gene-modified cells. This mechanism can be effectively blocked by regulating transgene expression to achieve long-term tolerance against gene-modified cells. Thus, non-replicative, highly purified and engineered gene transfer vectors like rAAV provide a useful system to understand and to manipulate specific mechanisms involved in viral or cellular immune responses.

Antigen encoded by vaccine vectors derived from human adenovirus serotype 5 is preferentially presented to CD8+ T lymphocytes by the CD8alpha+ dendritic cell subset

Mr Muhammad Suleman1, Mrs Sandra Galea1, Mrs Françoise Gavard1, Miss Nathalie Mézillon1, Dr Bernard Klonjekowski1, Professor Eric Tartour2, Dr Jennifer Richardson1

1UMR 1161 Virologie Inra, Anses, ENVA, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
2“Molecular Immunology and Embryology” CNRS, UMR 6218, Orléans, France

Different subsets of dendritic cells (DC) elicit qualitatively different immune responses. In mice, two lymphoid tissue-resident subsets, CD8alpha+ and CD8alpha`, have been implicated in the induction of Th1 helper 1 (Th1) or Th2 responses, respectively. Moreover, CD8alpha` DC play a major role in priming CD8+ T lymphocyte responses to viral antigens during viral infections. These considerations have been less extensively explored for vaccine vectors derived from viruses. Despite inefficient ex vivo transduction of DC, vectored vaccines derived from human adenoviruses of serotype 5 (Ad5) elicit robust immune responses, predominantly of the Th1 orientation, in humans and mice. At present it is unknown whether Ad5 interacts with DC subsets in a differential manner, thereby influencing the quality of the elicited IR. To address this issue, successive steps (attachment, transgene expression, MHC class I antigen presentation and activation of antigen-specific T lymphocytes) involved in induction of immune responses by Ad5-based vectors were examined in CD8alpha` or CD8alpha+ murine DC subsets. Although in both ex vivo and in vivo experiments CD8a+ and CD8a` DC subsets captured an Ad5-based vector to a similar extent, transgene expression and subsequent MHC class I display of a transgene-encoded antigen were more efficient in CD8alpha` DC. Moreover, following in vivo and ex vivo transduction with an Ad5-based vaccine, antigen-specific CD8+ T lymphocytes were more efficiently activated by CD8alpha` DC than by CD8alpha` DC. Thus, superior antigen expression and MHC class I display in CD8alpha` DC may contribute to preferred priming of antigen-specific CD8` lymphocytes by Ad5-transduced CD8alpha` DC.

The participation of Multipotent Mesenchymal stem/stromal cells (MSC) in the tumor microenvironment: tumor-associated fibroblasts and potent anti-cancer cellular vehicles

Erika Spaeth1, Michael Andreeff2, Frank Marini1

1Molecular hematology & Therapy, Department of Stem Cell Transplantation & Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
2Molecular Immunology and Biotherapies, Inserm, UMR951, Génethon, Evry, France

To meet the requirements for rapid tumor growth, a complex array of non-neoplastic cells are recruited to the tumor microenvironment. These host-derived cells facilitate tumor development by providing extracellular matrices, cytokines and growth factors as well as vascular networks for nutrient and waste exchange. Our group was the first to demonstrate [Cancer Res 62:3603, 2002; JNCI 96:1593, 2004] that a progenitor cell type called Mesenchymal stem cells or Multipotent stromal cell (MSC) was recruited into the tumor microenvironment and responded to tumor-produced signals where they participate in tumor stroma formation. We hypothesized that MSC, after systemic injection, can preferentially engraft into numerous solid tumors and participate in tumor stroma formation. This suggests that MSC have potential as cellular delivery vehicles for intratumoral expression of anti-cancer agents. However, another strategy is to understanding the migratory mechanisms of MSC for tumors, and inhibit the migration and thus the incorporation of the MSC into the tumor microenvironment, preventing the generation of tumor-associated stroma.

Using the Skov-3 ovarian carcinoma we blocked chemotactic inflammatory signals originating in the tumor, or by blocking the expression of the corresponding receptors on MSC we inhibited MSC migration both in vitro and in vivo. Based on our analysis, the hyaluronan receptor, CD44 was critical in eliciting a migratory response. First, blocking MSC-expressed CD44 with neutralizing antibody, soluble CD44 decay receptor, or siRNA knockdown inhibited migration of MSC toward Skov-3 conditioned media in vitro by greater than 75%, 82% and 45%, respectively. In vivo, a 60% inhibition of systemically injected MSC towards engrafted Skov-3 tumors was achieved using a soluble CD44 decay receptor. Finally, in vivo admixed MSC and tumor cells show high vascularization and structural stromal components identified by CD31, α-smooth muscle actin, fibroblast specific protein and fibroblast activation protein. However, compared
to their wild-type counterparts, CD44 knockout MSC admixed tumors displayed reduced stroma and reduced levels of all aforementioned proteins. Together, these results indicate that CD44 expressed on MSC is critical to tumor tropic migration and tumor vascular support by MSC and may be an important therapeutic target in the tumor microenvironment.

Inv 15

Recent progress in non viral gene delivery and therapy

Pascal Bigey, Aurore Burgain, Virginie Escriou, Corinne Marie, Mickael Quiviger, Anne Schlegel, Daniel Scherman

Clinical gene therapy most recent successes have been obtained by using viral vectors such as lentiviral vectors. However, given the broad scope of gene therapy, it is considered that both viral and non viral vectors will find their own niche of excellence and application.

For instance, “naked DNA” vaccination is now widely used in the veterinary field for prophylactic purposes, such as salmon vaccination against infectious hemato poetic virus in Canada (Novartis), horse vaccination against the West Nile virus infection (Fit Dodge Animal Health), and for an immunotherapeutic treatment of melanoma in dogs in the USA (Merial). Another non viral gene therapy product enables the sustained expression of growth hormone-releasing hormone (GHRH) to avoid fetal loss in swine (VGX Animal Health).

The recent progresses obtained both in our laboratory and by others will be presented, including:

- new biosafe plasmids such as minicircles or plasmids free of antibiotic resistance markers (pFAR) for both genetic immunization and gene therapy
- improved physical techniques such as electrotransfer for passive and active immunotherapy and for vaccination
- the use of another physical technique, hydrodynamic liver delivery, for the treatment of both systemic and brain metabolic disease.
- the use of chemical vectors for SiRNA delivery.

These recent progresses give hope for a rapid extension of non viral gene delivery for both cognitive and translational science at the laboratory level, and also for human or animal clinical applications.

Inv 16

Oncolytic virotherapy of glioblastoma: an overview

Jean Rommelaere

Viruses belonging to the genus Parvovirus, within the Parvoviridae family, are able to replicate autonomously in the absence of helper viruses, in contrast to the adeno-associated virus members. The experimental infectivity and excellent tolerance of some rodent autonomous parvoviruses in humans, together with their oncosuppressive effects in preclinical models, speak for the inclusion of these agents in the arsenal of oncolytic viruses under consideration for cancer therapy. In particular, wild-type parvovirus H-1PV can achieve a complete cure of various tumors in animal models and kill tumor cells that resist conventional anticancer treatments. There is growing evidence that parvoviral oncosuppression involves an immune component in addition to the direct viral oncolytic effect. This talk will summarize the recent assessment of H-1PV antineoplastic activity in preclinical models, laying the foundation for the present launch of a first phase I/IIa clinical trial on glioma patients.

Inv 17

Ten years of gene therapy for SCID-X1

Salima Hacein-Bey-Abina, Alain Fischer, and Marina Cavazzana-Calvo

The long-term follow-up of the first gene therapy trial for X-linked severe combined immunodeficiency (SCID-X1), characterized by a lack of the cytokine receptor common γ chain (γc) demonstrates that gene therapy based on the development of T cell immunity provided a clear therapeutic benefit in eight of the nine treated patients despite the occurrence of vector-related leukemia in some of them. The sustained presence of transduced T cells is observed for up to 12 years following gene therapy. Seven patients (including the three leukemia survivors) exhibited sustained immune reconstitution, with the presence of various T cell subsets and functions. Remarkably, most patients (including the three who received chemotherapy) have naïve T cells, strongly suggesting the presence of ongoing, long-term thymopoiesis that could originate from transduced progenitor cells with persistent self-renewal capacity. The T-cell receptor (TCR) repertoire is still diverse in all patients. Despite the lack of persistent transduced B cells, only 3 patients are requiring immunoglobulin replacement therapy. Correction of the immunodeficiency restored the patients’ general state of health and all are able to lead a normal life. Significant advances in viral vector technology have enabled the design of safer vectors with the development of enhancer-deleted LTR-SIN vectors containing an internal promoter. It will be critical to see if the SIN vectors are as safe as expected notably in the current SCID-X1 n°2 gene therapy trial.

Inv 18

A phase i/ii clinical trial entailing peripheral vein administration of a novel self complementary adeno-associated viral vector encoding human fix for haemophilia b gene therapy

A distinct approach for haemophilia B (HB) gene transfer is being tested in the clinic. This Phase I/II clinical trial entails peripheral vein administration of a single dose of our novel self-complementary AAV (scAAV2/8-LPI-hFIXco) vector encoding a codon optimised human FIX transgene into adult subjects with severe HB. Using a typical dose escalation design, scAAV2/8-LPI-hFIXco vector has been administered without immunosuppression at three dose levels consisting of the low (2 \times 10^{10} \text{vg/kg}), intermediate (6 \times 10^{10} \text{vg/kg}) and high (2 \times 10^{11} \text{vg/kg}) dose, with two subjects treated at each dose level. The safety and efficacy of this approach will be discussed.

Inv 19

Limbal stem-cell therapy and long-term corneal regeneration

Paolo Rama\(^1\), Stanislav Matuska\(^1\), Giorgio Paganon\(^1\), Alessandra Spinelli\(^1\), Michele De Luca\(^7\), Graziella Pellegrini\(^2\)

\(^1\)San Raffaele Scientific Institute, Ophthalmology Unit, Milan
\(^2\)Centre for Regenerative Medicine “Stefano Ferrari”, Modena, Italy

Corneal renewal and repair are mediated by stem cells of the limbus, the narrow zone between the cornea and the bulbar conjunctiva. Ocular burn may destroy the limbus, causing limbal stem-cell deficiency. We investigated the long-term clinical results of cell therapy in patients with burn-related corneal destruction associated with limbal stem-cell deficiency.

We used autologous limbal stem cells cultivated on fibrin to treat 112 patients with corneal damage, most of whom had burn-dependent limbal stem-cell deficiency. Clinical results were assessed by means of Kaplan-Meier, Kruskal-Wallis, and univariate and multivariate logistic-regression analyses. We also assessed the clinical outcome according to the percentage of holoclone-forming stem cells, detected as cells that stain intensely (p63-bright cells) in the cultures.

Permanent restoration of a transparent, renewing corneal epithelium was attained in 76.6% of eyes. The failures occurred within the first year. Restored eyes remained stable over time, with up to 10 years of follow-up (mean, 2.91+/-1.99; median, 1.93). In post hoc analyses, success - that is, the generation of normal epithelium on donor stroma - was associated with the percentage of p63-bright holoclone-forming stem cells in culture. Cultures in which p63-bright cells constituted more than 3% of the total number of clonogenic cells were associated with successful transplantation in 78% of patients. In contrast, cultures in which such cells made up 3% or less of the total number of cells were associated with successful transplantation in only 11% of patients. Graft failure was also associated with the type of initial ocular damage and postoperative complications.

Inv 20

Delivering on RNAi Therapeutics, Molecular Imaging and Theranostics; what do we think that we know?

Maya Thanou\(^1\) and Andrew D. Miller\(^1,2\)

\(^1\)Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London, United Kingdom, SE1 9NH; \(^2\)Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, London, United Kingdom, SW7 2AZ

The quest for safe, efficient synthetic vectors for delivery of therapeutic nucleic acids has been proceeding for at least the past 20 years. In our own work towards this objective, we described the synthetic, self-assembly ABCD nanoparticle paradigm that defines critical requirements for successful vector-mediated nucleic acid delivery in vivo. ABCD nanoparticles are highly regular and comprise a nucleic acid such as small interfering RNA (siRNA) or plasmid DNA (pDNA) (A-component) condensed into AB core particles by means of cationic liposomes (or even cationic polymers) (B-component). Core particles are coated by post-modification (or post coupling) procedures with variable amounts of a stealth/biocompatibility polymer (such as polyethylene glycol, PEG) (C-component) to confer stability in biological fluids with passive targeting. Biological ligands (D-component) may be similarly introduced sequentially thereafter if required for more active targeting. ABCD nanoparticles are self-assembled from synthetic tool-kits of chemical components and so in principle should provide for tailor-made delivery solutions. Here we report how this paradigm has used successfully to develop several new functional synthetic self-assembly ABC and ABCD nanoparticles as follows:

- **ABC** (and even **AB**) nanoparticles for pDNA delivery to murine lung in vivo
- **ABC** nanoparticles for the delivery of siRNA to the murine liver in vivo

Following this, we report on our latest data concerning the adaptation of the ABCD nanoparticle paradigm for the development of synthetic self-assembly Gd-ABC and Gd-ABCD imaging nanoparticles capable of multimodal (magnetic resonance imaging [MRI]-fluorescence) imaging of tumours in vivo post i.v.-injection. This work has now led to the creation of long-term circulation theranostic siRNA-ABC nanoparticles. These nanoparticles are shown to be capable of mediating functional delivery of siRNA to tumours in vivo (leading to phenotypic reductions in tumour growth rates), and shown to enable simultaneous real time/diagnostic imaging of siRNA delivery plus tissue biodistribution. In conclusion, we discuss how close we might be to therapy given successes with proof of concept experiments. What do we need to do next to make therapy happen?
SFTCG 2011 Oral Presentations

Or 1
Genomic targeting with group II introns: characterization of PL.LSU2 intron protein and evidence for intron splicing activity
Madeleine Zerbato¹, Nathalie Holic-Barlet¹,2, Sophie Frin¹,3, Anne Galy¹,3, Javier Perea¹,2
¹Genethon, Evry, France; ²IEVE, Evry, France; ³Inserm U951, Evry, France

Gene therapy trials using retroviral vectors result in the pseudo-random integration of the transgene cassette in the genome of target cells leading to two kinds of issues: 1) Insertional mutagenesis risk and 2) poor regulation of gene expression due to the variety of genomic context neighbouring each insertion site. Both of these issues could be overcome by targeting the insertion of the transgene into a previously chosen locus. Specific genomic site targeting could be done by using a special class of mobile element (“group II” intron) which is naturally able to perform a site specific transposition.

In contrast with the “homologous recombination” approach (Zn-finger nucleases or mécanucléases) specific target recognition by group II introns depends on “RNA-DNA” rather than “protein-DNA” interactions. Thus, the engineering of a vector targeting a specific sequence in the genome should be “a priori” easier to accomplish.

We are working with the group II intron PL.LSU2 from the brown alga Pylaiella littoralis. Like most of group II introns, PL.LSU2 should be able to transpose in a “site specific manner” through a mechanism which is called “homing”. Homing requires both the spliced RNA intron itself in its lariat form and an intron encoded protein (IEP). We choose the PL.LSU2 intron because of its ability to fold into an active form in vitro under salinity conditions similar to those encountered in eukaryotic cells.

We will present our work concerning both the PL.LSU2 splicing in eukaryotic cells (an essential step in the homing process) and the in vitro IEP characterization.

Or 2
Gene therapy of cystic fibrosis: plasmid DNA contribution in vivo lipid-based transfection efficacy
Matthias Lindberg¹, Tony Le Gall¹,3, Nathalie Carmoy¹,3, Stephen C. Hyde⁴, Deborah Gill⁵, Mathieu Berchet²,³, Aurore Fraix², Paul-Alain Jaffres²,³, Pierre Lehν¹, Tristan Montier¹,3
¹Unité INSERM 613, Université de Bretagne Occidentale, Brest, France; ²UMR CNRS 6521, Université de Bretagne Occidentale, Brest, France; ³Platform IbiSA SyNano Vect, IFR 148, Université de Bretagne Occidentale, Brest, France; ⁴Gene Medicine Group, Nuffield department of clinical laboratory sciences, University of Oxford John Radcliffe Hospital, Oxford, UK

Synthetic carriers, such as cationic lipids, have been developed for gene therapy of cystic fibrosis as an alternative to viral-based systems which are still associated with immunogenic and oncogenic side effects. Our objective was to evaluate the contribution of two luciferase encoding plasmids when using two of our original cationic lipids for in vivo gene transfection. These plasmids were pTG11033, a CpG containing plasmid, and pGM144, a completely devoid CG-dinucleotides DNA. This latter was shown to elicit significantly reduced inflammation. Following a systemic delivery of our lipoplexes in Swiss mice, pTG11033-based lipoplexes mediated detectable bioluminescent signals up to 4 days whereas those incorporating pGM144 allowed sustained transgene expression at least for 20 days. Moreover, whereas bioluminescence was specifically observed around lungs when using pTG11033, additional signals co-localized with many other organs (heart, kidneys ...) when using pGM144. We also demonstrated that re-administration of lipoplexes allowed recovering a high, as well as sustained, reporter gene expression but only when using pGM144, not pTG11033. Whatever the plasmid used, a transitional hepatotoxicity was detected during 4 days post-delivery. Recently, the intratracheal delivery route was also evaluated using the pGM144. Again, bioluminescence signals were observed in the lungs for at least 20 days. Immunohistochemical stainings showed that bronchial epithelial cells were specifically transfected. Altogether, these results highlight the important contribution of the plasmid DNA component showing that a good vector but also a good plasmid are together required in order to obtain an efficient as well as sustained in vivo gene transfer.

Or 3
Evaluation of the tumorigenic potential of AAV transduction in the newborn rat liver
Vanessa Gauttier¹, Nicolas Ferry¹, Sophie Conchon¹
²INSERM UMR94, Nantes, France

Delivery of AAV vectors to the newborn liver results in a rapid loss of episomal vector due to hepatocyte division. Integration of the rAAV genome can lead to a sustained expression of the transgene in selected hepatocytes. The safety of in vivo gene therapy with rAAV has been questioned by a study reporting a high incidence of hepatocellular carcinoma (HCC) in mice that received an AAV injection at birth, associated with provirus integration events.

In order to reveal the tumorigenic potential of AAV transduction in the liver, groups of newborn rats received intravenous injection of either self-complementary AAV vectors encoding GFP (scAAVGFP), or PBS, or DiethylNitrosamine (DEN), a well-known tumor-initiator as a control. After six weeks, rats were fed
on a diet containing 2-acetylaminofluorene (2-AAF), a potent liver tumor-promoting agent. After 2 months, animals were sacrificed and their liver analyzed. Neoplastic nodules were identified by GSTp staining, and GFP expression detected by immunohistochemistry.

The number of GSTp positive clones were comparable in the PBS and the scAAV5GFP groups and were significantly reduced compared to the DEN group. There was a loss of GFP expression in hepatocytes over time except for some clusters. A lower frequency of GFP clones in GSTp positive areas compared to normal parenchyma was probably due to higher proliferation rate, leading to increased loss of the vector genomes.

In conclusion AAV injection into newborn rats does not appear to induce an increased risk of liver tumorigenesis. To complete this study, vector genome integration events are currently being investigated.

Or 4

PEG-detachable cationic polymer for FGFR-targeted delivery of p53

Yuan Ping1, Jun Li1

1Supramolecular Biomaterials Laboratory, University of Singapore; Republic of Singapore

One of the most challenging issues in cancer gene therapy is the shortage of efficient and safe vectors that can specifically deliver therapeutic DNA to the target site with minimum toxicity. In the past twenty years, cationic polymers have attracted much attention as potential alternatives to viruses because of their safety and tailor-made features for specific therapeutic application. Although PEylation has been successfully applied to improve serum stability and lower the toxicity of cationic polymer/DNA complexes (polyplexes), this approach was found to decrease transfection activity and hampered the endosomal escape of polyplexes. To overcome the PEG dilemma, a new PEG-detachable non-viral vector, where the disulfide bond was inserted between the PEG chain and fibroblast growth factor receptor (FGFR)-targeted gene vector, was developed in the present study.

This vector, termed as MPC-ASP, was able to effectively stabilize polyplexes against salt or BSA-induced aggregation. In vitro gene transfection and cytotoxicity experiments in different carcinoma cell lines expressing FGFR showed that MPC-ASP could mediate significantly higher transfection efficiency than the non-PEG-detachable gene vector, and could achieve comparable or even higher transfection efficiency but induced much lower cytotoxicity than PEI of 25 kDa. p53 delivered by MPC-ASP showed that MPC-ASP is not only able to efficiently target different types of carcinoma cells expressing FGFR, but also could effectively inhibit the proliferation of these cancer cells. These results suggest that the MPC-ASP could be a safe and efficient non-viral vector for FGFR-mediated targeted delivery of p53 for cancer gene therapy.

Or 5

New AAV-based strategies for gene therapy of a feline SMA model

Thomas Bucher1, Stéphanie Astord2, Delphine Briot-Nivard1, Erin Wakeling1, John Frye1, Patrick Costiou1, Thibault Marais3, Thomas Voit2, Philippe Moullier1, Martine Barkats2, Béatrice Joussemet1

1INSERM UMR649, Nantes, France; 2UMR974 INSERM-UPMC-CNRS-AIM, Institut de Myologie, Paris, France; 3Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, USA; 4Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes-Atlantique (Oniris), France; 5INSERM UMR649, Nantes, France and Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, USA

Domestic cats exhibiting a recessive form of lower motor neuron degeneration associated with a deletion of the lix1 gene, represent a large animal model of type III spinal muscular atrophy (SMA). In this study, we tested intravenous and intracisternal delivery of GFP-expressing self-complementary AAV vectors (scAAV5,8,9.gfp) to mediate gene transfer into the MNs of both neonatal and 7-weeks old adult SMA cats.

A high number of GFP-expressing MNs were found in the whole spinal cord after both intravenous and intracisternal injection of scAAV9.gfp. In contrast, MNs were slightly transduced using intravenous scAAV5,gfp delivery and only GFP+ nerve fibres were observed within the dorsal columns using intravenous scAAV8,gfp injection. Following these preliminary results, we investigated lix1 overexpression into the spinal cord of SMA cats using scAAV9 recombinant vector for the feline lix1 gene under control of the CMV promoter. After neonatal intravenous injection of scAAV9.lix1 vector in three newborn SMA-affected kittens, the viral genome and its expression were revealed in the whole spinal cord using qPCR analyses. Intracisternal injections will soon be performed in three other neonatal SMA-kittens. The therapeutic impact and the expression of LXI1 in the spinal cord will be assessed and compared with those obtained after intravenous delivery of the vector.

Results of this study will be informative for the application of similar strategies in human SMA.

Or 6

Physiologic oxygen levels improve in vitro generation of regulatory T Lymphocytes

Thi my anh Neidez-Nguyen1, Sylvie Da Rocha1, Guillaume Corrê2, Yoshiaki Yamagata3, Peggy Sanatine1, Florence Boisgerault1, Anne Galy1, András Paldi1

1Inserm UMR951, Ecole Pratique des Hautes Etudes, UIEVE, Génétion, Evry, France

Regulatory T (Treg) cells are a central element of cell-mediated immune tolerance. In this regard, CD4 + CD25 + Foxp3 + Treg cells could be used for immunotherapy, as well as for immune tolerance to therapeutic proteins expressed by means of gene transfer. Such cells can be obtained in vitro by stimulation of naïve T cells with anti-CD3/CD28 beads, in the presence of TGF-β and IL-2. It has been reported that the oxygen levels used for the culture of primary lymphocytes can impact on their proliferation rate and function, and modulate the activity of some proteins involved in the maintenance of Treg cell compartment. We raised the question of whether the oxygen level supply (atmospheric (20%) or physiologic (5%) oxygen levels), could influence the efficiency of Treg induction. Using splenocytes from Foxp3 KI-GFP anti-male TCR transgenic mice, we compared the percentage of CD25 + GFP + (Foxp3+) obtained after stimulation of CD4 + GFP−, in 20% or 5% O2 conditions. We show that a better induction of Tregs is obtained under 5% in comparison to 20% O2: (i) with 92.9 ± −0.5% and 79.6 ± −3.6% of CD25 + GFP + (Foxp3+) obtained at day 11, respectively; (ii) with a higher mean fluorescence intensity (MFI) of CD25 on
CD4 + GFP + (Foxp3+) cells; (iii) with a higher proliferation index of the CD4 + GFP + (Foxp3+) cell population. These results have important implications in developing in vitro protocols for optimization of the induction of Treg lymphocytes from naive T cells.

Or 7

Using engineered stromal cells for the targeted therapy of liver carinoma

Elodie Fourquet1, Fabrice Muscard2, Jean-Marie Peron3, Louis Buscail4, Flavie Sicard4, Pierre Cordelier4

1INSERM U1037 Toulouse; 2INSERM U1037 et Service de Chirurgie Digestive, CHU Toulouse; 3INSERM U1037 et Service d’hépatogastroentérologie, CHU Toulouse; 4INSERM U1037 et service de gastroenterologie CHU Toulouse

Introduction: Tumor growth is supported by a complex microenvironment that includes a wide variety of non-epithelial cell types, which form the tumor stroma. These stromal cells are attracted to many tumor types to favour their growth. Thus, adult stromal cells make excellent cell vectors to target cancerous lesions. In this work, we asked whether adult mesenchymal stromal cells (MSCs) can be engineered to target and destroy liver cancer-derived cells.

Methods: MSCs are genetically modified using lentiviral vectors to express human IFNb or IL24 as therapeutic genes. Control MSCs express GFP. Transgene expression is measured by FACS analysis, Western blotting analysis and RTPCR. Cell proliferation is measured by cell counting. Cell migration is measured using Boyden chambers.

Results: MSCs were transduced with great efficacy, in the absence of selection. MSC viability is not impaired by transduction lentiviral vectors. Cell medium collected from MSC expressing IFNb or IL24 strongly inhibits the proliferation of human cells derived from liver cancer (HepG2 and HuH7). In addition, transwell assays demonstrated that MSC encoding for IFNb or IL24 actively inhibit cancer cell proliferation. Last, migration assays demonstrate that conditioned medium from liver cancer cells has a chemotactic effect on therapeutic MSCs.

Conclusion: We demonstrate that 1) MSCs are easily engineered using lentiviral vectors and 2) MSCs expressing soluble therapeutic genes are attracted to and strongly impair liver derived-cancer cells. This work strengthens the rationale for using MSCs as anticancer vehicles and opens an avenue to help fight disseminated liver cancer.

Or 8

Characterization at the clonal level of Mesenchymal stem cells from human fetal liver

Wenwei Zhang1, Zahia Hamidouche1, Guillaume Pourcher1, Varvara Gribova1, Farhad Haghighi1, Pierre Charbord1, Anne Dubart-Kupperschmitt1

1Inserm U972, Kremlin-Bicêtre, France

Mesenchymal stem cells (MSCs) from bone marrow (BM) are multipotent cells with adipocytic (A), osteoblastic (O), chondrocytic (C), and vascular smooth muscle (V) differentiation potentials. They represent the stromal component of the hematopoietic stem cell “niche”. We investigated whether such MSCs were present in human 12-13 week fetal liver (FL). Cells were selected by adherence on plastic then sorted by FACS and individually seeded. Clonogenic cell frequency was 1 in 3-5 and these cells were identified as MSCs having A, O, C, V differentiation potentials. We found gene expression of transcription factors PPARγ, RUNX2, SOX9, and MYOCD for A, O, C, V differentiation by Q-PCR and protein expression of RUNX2, SOX9 by immunofluorescence (IF). Moreover, we evaluated the presence of other differentiation potentials in our clonogenic cells. We found no trend to endothelial and hematopoietic differentiation but a low level of MYOCD (V) and SOX2 (C) gene expression, besides a significant higher expression for skeletal muscle (SKM) and pluripotency markers in FL compared to BM MSCs. We found a low expression of cytokeratin 19 and 8/18 by IF, and low expression of HNF3B, HNF1A and high expression of HNF1B by Q-PCR, compared to hepatic cell lines. Remarkably, HNF3B and HNF1B expression in FL were obviously higher than in BM, and very high gene expression of Snail, Slug, and Twist epithelial mesenchymal transition (EMT) inducers was observed.

Our study, at clonal level, suggests that MSCs from FL may have some potential for SKM and hepatoblastic differentiation, this latter one being impaired by high expression of EMT inducers.

Or 9

Progress towards gene therapy of HIV infection in humanized mice

Nicolas Petit1, Sidonie Lambert3, Karim Dorgnahm2, David Klattzmann1, Anne-Geneviève Marcelin2, Guy Gorochov2, Gilles Marodon1

1INSERM U95, Hôpital de la Pitié Salpêtrière, Paris, France; 2INSERM U94, Hôpital de la Pitié Salpêtrière, Paris, France; 3Laboratoire de Virologie -AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France

The recent description of the first cure of HIV infection through graft of CCR5-deficient hematopoietic progenitors represents a strong argument in favour of HIV gene therapy strategies targeting CCR5. We have undertaken such a strategy by combining a fusion inhibitor and a CCR5 agonist in a lentiviral vector to prevent viral entry into CD4+ T cells. In vitro, the expression of both transgenes could be observed: the fusion inhibitor prevented HIV infection whereas the agonist diminished CCR5 expression. The combined effect of the two genes on HIV replication is currently examined. To test the efficacy of this strategy with the real virus in human cells in vivo, we developed a small animal model susceptible to HIV infection. We show that NOD.SCID.ge-/- mice reconstituted with human progenitors readily develop CD4+ T cells that are susceptible in vivo to minimal doses of X4 or R5-tropic HIV. The infection is correlated with CD4 depletion in the blood, but is not always observed despite high viral loads. Gene transfer into CD34 + cells resulted in expression of the therapeutic transgenes in vitro. Mice reconstituted with modified progenitors will be challenged with HIV and various parameters will be measured. Overall, this project aimed at developing the first French clinical trial for gene therapy of HIV infection.

Or 10

Silencing of NMDA receptor NR1 subunit using HSV-1-derived amplicon vectors impairs cognitive functions in rats and reduces amyloid-beta oligomers binding and toxicity in cultured neurons
Ionotropic N-Methyl-D-aspartate glutamate receptors (NMDAR) are the predominant molecular devices for controlling synaptic plasticity and memory function. NMDAR are tetramers formed by two NR1 subunits and different NR2 and/or NR3 subunits. To study the role of hippocampal NMDAR in cognitive functions such as learning and memory formation, we developed HSV-1-based ampiclon vectors expressing antisense RNA sequences against NR1 to induce silencing of this subunit. Upon inoculation into the rat hippocampus the vectors induced high-levels of antisense NR1 RNA and considerably decreased expression of NR1. When inoculated into the CA1 layer of rat hippocampus, the vectors caused a significant impairment in the performance of behaviour tasks, thus indicating an involvement of hippocampal NMDAR in the control of the cognitive functions under study. The hippocampal formation is one of the earliest regions damaged in Alzheimer’s disease (AD). Amyloid-beta (Aβ)-oligomers accumulate in AD brains, where they target excitatory post-synaptic terminals and trigger synapse deterioration, a mechanism likely underlying memory loss in early-stage AD. When used to infect primary cultures of rat hippocampal neurons, the ampiclons suppressed up to 90% NR1 expression in dendritic spines and significantly reduced the binding of exogenously added soluble Aβ-oligomers to the spines. Furthermore, the ampiclon-induced NR1 knockdown markedly reduced the neuronal oxidative stress instigated by binding of Aβ-oligomers. Therefore, our results corroborated that NMDAR of CA1 are directly involved in learning and memory processing and strongly suggest that NMDAR are required for synaptic targeting of Aβ to neurons and are at least partially responsible for their deleterious effects.

Or 11

Evaluation of cholesterol 24S-hydroxylase overexpression by AAV-gene transfer as a potential therapeutic target for Alzheimer’s disease-like Tau neuropathology

Benoît Gautier, David Blum, Marieanne Burlot, Laetitia Troquier, Laurent Pradier, Luc Buee, Nathalie Cartier

1 U745 INSERM, Faculté de Pharmacie, Paris, France; 2 U837 INSERM — JPAR Alzheimer & Tauopathies, Unité. Lille-Nord de France, UDSL Faculté de Médecine — Pôle Recherche Institut de Médecine Prédicitive et Recherche Thérapeutique, 59045 Lille, France; 3 Sanofi Adventis, Therapeutic Strategy Unit Aging, 1 Av Pierre Brossolette, 91385 Chilly Mazarin, France

The development of Alzheimer’s Disease (AD) is closely connected with cholesterol metabolism. In the brain, the synthesized cholesterol cannot be degraded in situ nor cross the blood-brain-barrier. The major exportable form of brain cholesterol is 24S-hydroxycholesterol generated by the neuronal cholesterol 24-hydroxylase encoded by the CYP46A1 gene. We previously demonstrated that increasing brain CYP46A1 gene expression through AAV-mediated gene transfer markedly reduces amyloid pathology in APP23 mice.

In a therapeutic perspective, we aimed to determine if CYP46A1 gene overexpression not only could improve amyloid pathology but also could affect Tau pathology in the brain of Tau22 mice. This latter model exhibits progressive neuron-
Tobacco and alcohol consumption are the main risk factors of head and neck squamous cell carcinomas (HNSCC). However, papillomavirus (HPV) infection has been recently associated with the development of these cancers particularly in the lingual and palatine tonsils. In this context, HPV-16 is the most frequent serotype known to express the E6 and E7 oncoproteins. While vaccines containing L1 and L2 capsid HPV proteins are efficient for the prevention of HPV infection, they are not adequate for the treatment of established tumors. Then, development of innovative vaccine therapies targeting E6/E7 is important for controlling HPV-induced cancers. Thus, we engineered a plasmoVLP DNA vaccine encoding a non-oncogenic mutated E7 antigen displayed on retrovirus based virus-like particles (VLPs) formed by murine leukemia virus Gag proteins and VSVG envelope glycoproteins. We studied the ability of plasmoVLPs/E7 to generate specific immune responses as well as in vitro anti-tumor effects using the TC-1 epithelial cells that over-express the HPV-16 E6/E7 oncoproteins. First, we demonstrated by FACS and ELISPOT that human dendritic cells incubated with VLPs/E7 specifically elicited in vitro anti-E7 IFN-γ T cell responses. Next, we showed by ELISPOT analysis that intradermic vaccinations of mice with plasmoVLPs/E7 introduced by in situ electroporation induce an anti-E7 response. Finally, vaccinated mice were challenged either in a preventive or a curative way with E7-bearing TC-1 cells. Data indicated that preventive vaccination fully protected mice, since curative vaccination had antimurin effects and prolonged the survival of vaccinated mice. Thus, plasmoVLPs may be an efficient strategy for HPV-induced HNSCCs.

Impact of the immune system on rAAV2/4.hrpe65 mediated gene delivery in retina: Efficacy of sequential subretinal readministration of rAAV2/4.hrpe65 in RPE65−/− dogs

Nathalie Provost1, Alexandre Mendes Madeira1, Christophe Chevè1, Lyse Libleau1, Guylène Lemere1, Michel Weber2, Jack Yves Deschamps3, Philippe Moullier1, Fabienne Rolling1, Christine Chauveau1

1INSERM U649, Nantes, France; 2Service Ophtalmologie, CHU Nantes, France; 3ONIRIS, Nantes, France

Leber’s Congenital Amaurosis (LCA) is a group of hereditary retinal degenerations leading to total blindness. We previously reported that subretinal injection of recombinant adeno-associated virus serotype 4 (rAAV2/4) allows a dramatic restoration of vision in a LCA model of RPE65−/−. dogs. We evaluated the impact of the immune system on subretinal rAAV2/4.hrpe65-mediated gene delivery in RPE65−/− dogs.

Three RPE65−/− dogs were efficiently treated by subretinal injection of rAAV2/4.hrpe65 in one eye. ELISA analyses showed that none of the animals developed detectable antibodies against the transgene product and/or the AAV4 capsid in sera in the 4 months post-injection although AAV4-neutralizing factors were detected in 1/3 dogs. IFN-γ ELISPOT assays performed on PBMCs did not show any anti-AAV4 cellular response.

At four months post-first injection, the contralateral eye of these dogs was similarly treated and showed a successful rescue of retinal function. Both anti-AAV4 and/or anti-RPE65 antibodies were not detected by ELISA in sera meanwhile we noticed an increase of the AAV4-neutralizing factors in 1/3 dogs. No anti-AAV4 cellular immune response was found either.

Because anti-AAV4 pre-existing immunity could exist in human patients, high titres of circulating anti-AAV4 antibodies were induced in 2 dogs by AAV4 immunization before subretinal injection of rAAV2/4.hrpe65. Evaluation of the retinal function after the injection showed that a strong pre-existing immunity to AAV4 did not block rAAV2/4.hrpe65-mediated gene delivery and retinal function recovery in RPE65−/− dogs.

These findings, (i) sequential subretinal readministration of rAAV4 is safe and potent (ii) pre-existing immunity to AAV4 does not block subretinal AAV2/4.hrpe65 mediated gene transfer, have important implications for the treatment of LCA patients.

The cross-priming of tumor reactive cytotoxic T cells by synthetic long peptides depends on a sufficient HLA binding of the CD8 epitope

Joë Marc Chauvin1, Pierre Larrié2, Guillaume Sarabaryroussé3, Armelle Blondel1, Yannick Guilloux1, Nathalie Labarrièr3, Francine Joteurreau1

1INSERM U892 F-44093; Faculté des Sciences, Université de Nantes, Nantes, France; 2Ludwig Institute for Cancer Research, Université Catholique de Louvain, Brussels, Belgium; 3INSERM U892 Nantes, France; 3Institut Cocrin, INSERM, U1016, paris; CNRS, UMR8104, Paris; Université Paris Descartes, Paris, France; 3INSERM U892 Nantes; Faculté des Sciences, Université de Nantes, Nantes, France

Induction of a potent CTL response requires long-lived and strong enough antigen cross-presentation by dendritic cells (DC). Development of cancer vaccines fulfilling these requirements is therefore a major aim. It has been observed that long peptide (LP), from human melanoma antigens, induce a long lasting cross-presentation by human monocyte-derived dendritic cells (moDC) in vitro. We studied here, in vitro and in vivo (with HLA-A2 healthy donor PBL and HHD mice), the cross priming potential of a LP from the melanoma antigen Melan-A/MART-1, bearing a CD8 epitope optimized or not for HLA-A2 binding (Melan-A 16-40 and 16-40A27L) also containing CD4 epitopes. We show that both natural and modified LP induce a long-lived cross-presentation by moDC. However, only the modified LP efficiently prime long-lived tumor-reactive CTL. We further show that CD8 T cell priming and expansion by this LP is increased by CD4 lymphocytes. These data underscore that sufficient HLA binding affinity and/or TCR ligand potency of the cross-presented epitopes are critical requirements for tumor antigen LP immunogenicity. Together this supports the design and use of LP bearing optimized tumor epitopes as tumor vaccines. Further strengthening this conclusion, we show that cross-presentation of the modified Melan-A LP is a property restricted to antigen presenting cells.

Therapeutic interest of RNA interference molecules in two rare bone diseases

Julie Rousseau1, Aurélie Domene1, Virginie Escriou1, Roberta Gioia1, Régis Brion1, Séverine Battaglia3, Antonella Forlino1, Daniel Scherman3, Dominique Heymann1, Françoise Redini1, Valérie Trichet1

1INSERM U892, Nantes, France; 2Service Ophtalmologie, CHU Nantes, France; 3ONIRIS, Nantes, France

Because anti-AAV4 pre-existing immunity could exist in human patients, high titres of circulating anti-AAV4 antibodies were induced in 2 dogs by AAV4 immunization before subretinal injection of rAAV2/4.hrpe65. Evaluation of the retinal function after the injection showed that a strong pre-existing immunity to AAV4 did not block rAAV2/4.hrpe65-mediated gene delivery and retinal function recovery in RPE65−/− dogs.
RNA interference is a physiological pathway that allows post-transcriptional inhibition of gene expression through the recognition of a specific sequence of mRNA by complementary sequences of small interfering RNAs (siRNAs). Since its discovery in mammalian cells in 2001, RNAi is being explored as a potential treatment for various diseases.

Intra-tumoral injections of siRNAs directed against the pro-resorptive cytokine Rankl (Receptor Activator of Nuclear Factor-kappa B Ligand or Tumor Necrosis Factor Superfamily member 11, Tnfs11), implicated in the vicious cycle established between tumor development and osteolysis at bone site, reduce the Rankl production in serum and protect bone from para-tumor osteolysis. These Rankl-directed siRNAs significantly prevent tumor relapse when combined with ifosfamide as compared to chemotherapy alone in two osteosarcoma model. Short hairpin RNAs (shRNAs) also permit to specifically target a mutated transcript that differs from the wild-type mRNA by only two nucleotides in a model of osteogenesis imperfect (OI). Our data support the use of shRNAs cautiously designed and lentivirus delivered as a strategy to specifically suppress the mutant allele making appealing the modification of mesenchymal stem cells of OI patients for autograft transplantation.

The increasing number of preclinical and clinical studies and our results highlight the power of this new therapeutic tool, suggesting a large-scale clinical development of siRNAs and shRNAs molecule in therapy.

Or 18

Brain gene therapy for Metachromatic Leukodystrophy using AAVrh10 vector: optimized clinical protocol

Francoise Piquet1, Dolan Sondhi2, Marieanne Colle3, Thomas Roujeau4, Sylvie Raoul5, Jack-Yves Deschamps6, Celine Bouquet6, Ornella Ahouanssou6, Marie-Thérèse Vanier7, Philippe Moullier6, Yan Chérel6, Neil Hackett1, Michel Zerah8, Ronald G Crystal1, Patrick Aubourg9, Nathalie Cartier9, Caroline Sevin9

Metachromatic Leukodystrophy (MLD) is a lethal neurodegenerative disease caused by deficiency of Arylsulfatase A (ARSA). The most severe form starts around 1-2 years, leading to death within a few years, without available treatment.

We have demonstrated: (1) in MLD mice and non-human primates (NHP) the efficiency and safety of a brain gene therapy strategy, using intracerebral delivery of adeno-associated-vector serotype 5 (AAV5) encoding human ARSA and (2) the superiority of AAVrh10 serotype upon AAV5 to more rapidly improve MLD mice and normalize sulfatide isoforms that accumulate specifically in oligodendrocytes.

In a clinical perspective, we have optimized in NHP the neurosurgical procedure to allow simultaneous infusion of vector at 12 different brain sites in less than 2 hours. We also developed a brain MRI protocol to select the injection sites and evaluate the tolerance of the procedure. Following the same protocol planed to be used in patients, we demonstrated in NHP that intracerebral injections of AAVrh10/ARSA vector in the white matter is well tolerated and results in the diffusion of the vector in up to 90% of the injected hemisphere and up to 31% increase in ARSA activity, reaching foreseeable therapeutic levels. Toxicological studies are in progress towards phase I/II tolerance and efficiency clinical trial in late 2011. This trial will enrol five patients with rapidly progressing MLD. Safety and efficiency parameters will be evaluated up to 2 years, a period that will be sufficient enough to assess the potential therapeutic efficiency of this strategy in rapidly progressing forms of MLD.

Or 19

Effective limb transduction and phenotypic correction after injection of rAAV-U7snRNA in GRMD dogs

Caroline Le Guiner2,4, Marie Montus5, Laurent Servais1, Luis Garcia1, Yves Fromes1,2, Jean-Yves Hogrel1, Pierre Carlier1, Yan Chérel1, Philippe Moullier2,4, Thomas Voit1, Thomas Voit1

The “AFM-sponsored DUCHENNE CONSORTIUM”

1Institut de Myologie, Paris — France; 2GENETHON, Evry, France; 3INRA UMR 703, Nantes, France; 4INSERM UMR 649, Nantes — France
In Duchenne Muscular Dystrophy (DMD) the selective removal by exon skipping of exons flanking an out-of-frame mutation in the dystrophin messenger can result in in-frame mRNA transcripts that are translated into shorter but functionally active dystrophin. The goal of our project was to determine in GRMD, the effective dose of our therapeutic product defined as a recombinant Adeno-Associated Virus serotype 8 (rAAV8) expressing a modified U7 snRNA specific for the skipping of exons 5 to 10 of the GRMD dystrophin transcript. The mode of delivery was the locoregional high-pressure intravenous (IV) injection of a forelimb. Several groups of GRMD dogs were exposed to different rAAV8-U7snRNA doses. Each dog was followed ≈ 3 months after injection. The primary outcomes were the restoration of dystrophin expression and the improvement of the tissue pathology in the injected limb compared to the contralateral limb. The secondary outcomes were the muscle strength correction, the biodistribution and shedding patterns as well as the immune response against rAAV8 capsid and dystrophin. We built a unique network of laboratories with complementary skills to deliver a GLP-compliant set of preclinical data to further define the regulatory toxicology studies. The organization of our network and the results obtained in our GRMD dogs study will be presented.
P 1
Creation of novel rat models for cancer research using zinc finger nuclease (ZFN) technology
Aaron McCoy1, Victoria Brown-kennerly1, Diana Ji1, Lara Carbery1, Edward Weinstein1, Xiaoxia Cui1
1Sigma Advanced Genetic Engineering (SAGE) Labs, 2033 Westport Center., St. Louis, MO 63146, USA

For many human conditions, rats are superior to mice as model organisms, due to their physiology, responses to drugs, and performance during behavioural tests. Their larger size facilitates molecular cell biology and physiology experimentation. Therefore, rats are the preferred model organism for studies of human diseases including cancers such as breast, prostate, and bone marrow metastases. However, the lack of convenient experimental tools to manipulate the rat genome has largely limited their use as genetic models for disease, until the recent creation of the first targeted knockout rats by using zinc finger nuclease technology. ZFN-assisted genetic modifications can be introduced into the rat genome at specific sites, and in a significantly shortened timeframe (compared to conventional ES cell technology in mice). At SAGE Labs, we are uniquely positioned to create rat knockout models for all major disease categories. With regard to cancer research, we have developed Tp53 knockout rats, which will complement and expand the p53 studies performed in mice to date. In the same capacity, we are also creating a suite of immunocompromised rats, knocked out for the RAG1, RAG2, and DNA PK gene. The models may be used, for example, in the generation of xenografts for metastasis studies and bone marrow transplantation for cancer therapy. In addition, we have developed a set of toxicity models, including knockouts of MDR1a, PXR, BCRP, MR1 and MRP2, which will enable studies on drug delivery and metabolism in a more physiologically relevant model. Model generation, their applications and future models will be discussed.

P 2
Gene targeted correction of inherited liver defects using zinc-finger nucleases: application to Crigler Najjar disease
Cécilia Abarrategui Pontes1, Pierre Marie Hemion1, Sébastien Boni1, Françoise Schmitt1, Laurent Tesson2, Ignacio Anegon1, Nicolas Ferry1, Tuan Huy Nguyen1
1Biothérapies Hépatiques, Inserm U986, University Hospital, 44093 Nantes; 2ITERT, Inserm U643, University Hospital, 44093 Nantes

Zinc-finger nucleases (ZFNs) can induce a locus-specific DNA double strand break (DSB). DNA repair can be performed through homologous recombination with donor DNA homologous to the DSB site. In vitro, it allows efficient knock-in and gene repair. We aim to evaluate the feasibility and efficiency of ZFNs-mediated knock-in and gene repair for in vivo gene therapy of inherited liver diseases, especially for type I Crigler-Najjar disease, a deficiency in UGT1A1 enzyme.

For the knock-in approach, we constructed a liver-specific lentiviral vector encoding IgM-ZFNs. As IgM is not expressed in hepatocytes, it represents an innocuous insertion site. Integrative lentiviral vectors (LV) and integration deficient lentiviral vectors (IDLV) were produced. They were tested in vitro in FAO rat hepatocytes by mutations detection assay based on PCR products heteroduplexes formation and T7 endonuclease I.

LV and IDLV encoding IgM-ZFNs were produced at a titer of 1x10^9 TU/mL. FAO were highly transduced (>90%) with LV. Transduced FAO contained more DSB with LV than IDLV. Knock-in at the IgM locus is being evaluated first in FAO cells. We also verified that UGT1A1-exon4-ZFNs can be designed and we will construct the corresponding donor DNA for gene repair.

We will evaluate this approach in primary hepatocytes and in vivo. We will also construct a vector encoding IgM-ZFNs and carrying a donor DNA encoding GFP or UGT1A1 flanked by sequences homologous to the target. For gene repair, we will construct a vector carrying UGT1A1-ZFNs and a promoter-less wild-type exon 4.

P 3
Gene therapy for the severe virilizing forms of congenital adrenal hyperplasia using direct intra-adrenal injection of recombinant AAV vector encoding human CYP21
Thomas Haudebourg1, Christine Dos Santos1, Marie-Anne Colle2, Claire Bouvattier3, Laurence Dubreil2, Johan Deniaud2, Cyndie Goumeaux1, Patrick Aubourg4, Pierre Bougnères3, Caroline Sevin4
1Inserm U986, Paris, France; 2UMR INRA 703, Ecole Vétérinaire de Nantes, Nantes, France; 3Inserm U986 and Pediatric Endocrinology, Saint Vincent de Paul Hospital, Paris, France; 4Inserm U745, Paris, France

21-Hydroxylase deficiency (21OH-D, 1/40,000) due to mutations in CYP21 gene blocks cortisol and aldosterone synthesis, leading to adrenal insufficiency, excessive ACTH feedback, hyperplastic adrenals and androgen overproduction. In the most severe forms (5% of cases), newborn girls have a complete sexual ambiguity. Despite medical treatment, severely affected girls endure multiple surgical corrections and remain exposed to lifelong virilization, almost complete restriction of sexual life and lack of fertility. We decided to initiate, for severe forms of 21OH-D, a gene therapy approach based on intra-adrenal injection of Adeno Associated Virus (AAV) encoding human CYP21. The objective is to restore a life-long enzymatic activity allowing normal secretion of gluco-and mineralo-corticoids and reduction of androgen excess.

Among several serotypes of AAV, we showed that AAV5 and AAV8 vectors were the best serotypes to target adrenal cells. Six
weeks after a single intra-adrenal administration (1.0 to 1.7×10^10 vg) in rats, the mean number of vector genome copies/cell in the injected adrenal ranged from 5.5±1.5 to 89.5±18.2 and 1.8±0.5 to 10.6±2.3 with AAV5/GFP and AAV8/GFP, respectively. Both vectors shared a strong tropism for adrenal fasciculate and glomerular zones, where cortisold is produced. The percentage of adrenalc cells expressing GFP reached up to 8.7% after injection of AAV5/EGFP vector (13% around the injection site) and 6.5% after injection of AAV8/GFP vector (14% around the injection site).

In the view of these results, both AAV5 and AAV8 will be used to evaluate the efficiency of our strategy in a mouse CYP21−/− model of the disease.

P 4

Genetic modifications at safe harbor loci in hematopoietic stem cells and T cells for gene therapy

Laurent Poirot, Cécile Schiffer Mannioui, Roman Galetto, Agnès Gouble, Julia Berretta, Frédéric Cedrone, Laurent Poirot, Cécile Schiffer Mannioui, Roman Galetto

Targeted gene therapy approaches offer the possibility of precisely editing genomic sequences. They present a lower risk of adverse consequences compared to non-specific integration but rely on the availability of accurate genomic tools. Meganuclease is natural highly specific endonuclease capable of inducing high frequency of homologous recombination at their target site. Redesigning their protein-DNA interface allowed us to engineer dozens of custom meganuclease with chosen specificity and target defined loci in the human genome. We defined specific genomic loci where insertion of a gene expression cassette would have a better therapeutic benefit/risk ratio (called safe harbor loci) according to different criteria such as the cell type where the modification is made. We first characterize potential safe harbor meganuclease by measuring their ability to induce mutagenesis or homologous recombination-mediated gene targeting in cell lines. Then, we set up initial assays to examine the safety and the capacity for the locus to support transgene expression.

Because they can be manipulated ex vivo, cells of the blood lineage are an attractive target for gene therapy. Among them, we focus our efforts on hematopoietic stem cells (HSCs) that rely on the availability of accurate genomic tools.rogens and on genetic modifications of HSCs and T cells. Then, we set up initial assays to examine the safety and the capacity for the locus to support transgene expression.

Because they can be manipulated ex vivo, cells of the blood lineage are an attractive target for gene therapy. Among them, we focus our efforts on hematopoietic stem cells (HSCs) that are natural highly specific endonuclease capable of inducing high frequency of homologous recombination at their target site. Redesigning their protein-DNA interface allowed us to engineer dozens of custom meganuclease with chosen specificity and target defined loci in the human genome. We defined specific genomic loci where insertion of a gene expression cassette would have a better therapeutic benefit/risk ratio (called safe harbor loci) according to different criteria such as the cell type where the modification is made. We first characterize potential safe harbor meganuclease by measuring their ability to induce mutagenesis or homologous recombination-mediated gene targeting in cell lines. Then, we set up initial assays to examine the safety and the capacity for the locus to support transgene expression.

Because they can be manipulated ex vivo, cells of the blood lineage are an attractive target for gene therapy. Among them, we focus our efforts on hematopoietic stem cells (HSCs) that are natural highly specific endonuclease capable of inducing high frequency of homologous recombination at their target site. Redesigning their protein-DNA interface allowed us to engineer dozens of custom meganuclease with chosen specificity and target defined loci in the human genome. We defined specific genomic loci where insertion of a gene expression cassette would have a better therapeutic benefit/risk ratio (called safe harbor loci) according to different criteria such as the cell type where the modification is made. We first characterize potential safe harbor meganuclease by measuring their ability to induce mutagenesis or homologous recombination-mediated gene targeting in cell lines. Then, we set up initial assays to examine the safety and the capacity for the locus to support transgene expression.

Because they can be manipulated ex vivo, cells of the blood lineage are an attractive target for gene therapy. Among them, we focus our efforts on hematopoietic stem cells (HSCs) that are natural highly specific endonuclease capable of inducing high frequency of homologous recombination at their target site. Redesigning their protein-DNA interface allowed us to engineer dozens of custom meganuclease with chosen specificity and target defined loci in the human genome. We defined specific genomic loci where insertion of a gene expression cassette would have a better therapeutic benefit/risk ratio (called safe harbor loci) according to different criteria such as the cell type where the modification is made. We first characterize potential safe harbor meganuclease by measuring their ability to induce mutagenesis or homologous recombination-mediated gene targeting in cell lines. Then, we set up initial assays to examine the safety and the capacity for the locus to support transgene expression.

Because they can be manipulated ex vivo, cells of the blood lineage are an attractive target for gene therapy. Among them, we focus our efforts on hematopoietic stem cells (HSCs) that are natural highly specific endonuclease capable of inducing high frequency of homologous recombination at their target site. Redesigning their protein-DNA interface allowed us to engineer dozens of custom meganuclease with chosen specificity and target defined loci in the human genome. We defined specific genomic loci where insertion of a gene expression cassette would have a better therapeutic benefit/risk ratio (called safe harbor loci) according to different criteria such as the cell type where the modification is made. We first characterize potential safe harbor meganuclease by measuring their ability to induce mutagenesis or homologous recombination-mediated gene targeting in cell lines. Then, we set up initial assays to examine the safety and the capacity for the locus to support transgene expression.

Because they can be manipulated ex vivo, cells of the blood lineage are an attractive target for gene therapy. Among them, we focus our efforts on hematopoietic stem cells (HSCs) that are natural highly specific endonuclease capable of inducing high frequency of homologous recombination at their target site. Redesigning their protein-DNA interface allowed us to engineer dozens of custom meganuclease with chosen specificity and target defined loci in the human genome. We defined specific genomic loci where insertion of a gene expression cassette would have a better therapeutic benefit/risk ratio (called safe harbor loci) according to different criteria such as the cell type where the modification is made. We first characterize potential safe harbor meganuclease by measuring their ability to induce mutagenesis or homologous recombination-mediated gene targeting in cell lines. Then, we set up initial assays to examine the safety and the capacity for the locus to support transgene expression.

Because they can be manipulated ex vivo, cells of the blood lineage are an attractive target for gene therapy. Among them, we focus our efforts on hematopoietic stem cells (HSCs) that are natural highly specific endonuclease capable of inducing high frequency of homologous recombination at their target site. Redesigning their protein-DNA interface allowed us to engineer dozens of custom meganuclease with chosen specificity and target defined loci in the human genome. We defined specific genomic loci where insertion of a gene expression cassette would have a better therapeutic benefit/risk ratio (called safe harbor loci) according to different criteria such as the cell type where the modification is made. We first characterize potential safe harbor meganuclease by measuring their ability to induce mutagenesis or homologous recombination-mediated gene targeting in cell lines. Then, we set up initial assays to examine the safety and the capacity for the locus to support transgene expression.

Because they can be manipulated ex vivo, cells of the blood lineage are an attractive target for gene therapy. Among them, we focus our efforts on hematopoietic stem cells (HSCs) that are natural highly specific endonuclease capable of inducing high frequency of homologous recombination at their target site. Redesigning their protein-DNA interface allowed us to engineer dozens of custom meganuclease with chosen specificity and target defined loci in the human genome. We defined specific genomic loci where insertion of a gene expression cassette would have a better therapeutic benefit/risk ratio (called safe harbor loci) according to different criteria such as the cell type where the modification is made. We first characterize potential safe harbor meganuclease by measuring their ability to induce mutagenesis or homologous recombination-mediated gene targeting in cell lines. Then, we set up initial assays to examine the safety and the capacity for the locus to support transgene expression.

Because they can be manipulated ex vivo, cells of the blood lineage are an attractive target for gene therapy. Among them, we focus our efforts on hematopoietic stem cells (HSCs) that are natural highly specific endonuclease capable of inducing high frequency of homologous recombination at their target site. Redesigning their protein-DNA interface allowed us to engineer dozens of custom meganuclease with chosen specificity and target defined loci in the human genome. We defined specific genomic loci where insertion of a gene expression cassette would have a better therapeutic benefit/risk ratio (called safe harbor loci) according to different criteria such as the cell type where the modification is made. We first characterize potential safe harbor meganuclease by measuring their ability to induce mutagenesis or homologous recombination-mediated gene targeting in cell lines. Then, we set up initial assays to examine the safety and the capacity for the locus to support transgene expression.

Because they can be manipulated ex vivo, cells of the blood lineage are an attractive target for gene therapy. Among them, we focus our efforts on hematopoietic stem cells (HSCs) that are natural highly specific endonuclease capable of inducing high frequency of homologous recombination at their target site. Redesigning their protein-DNA interface allowed us to engineer dozens of custom meganuclease with chosen specificity and target defined loci in the human genome. We defined specific genomic loci where insertion of a gene expression cassette would have a better therapeutic benefit/risk ratio (called safe harbor loci) according to different criteria such as the cell type where the modification is made. We first characterize potential safe harbor meganuclease by measuring their ability to induce mutagenesis or homologous recombination-mediated gene targeting in cell lines. Then, we set up initial assays to examine the safety and the capacity for the locus to support transgene expression.
Tight control of gene expression is a prerequisite for clinical applications of gene therapy. To this end we have designed a unique system that combines the tTR-Krab doxycyclin sensitive regulation system with endogenous miRNA silencing to achieve specific and high expression in hepatocytes.

We generated lentiviral vectors containing the tet-O sequence and two different expression cassettes in reverse orientation. The first cassette contains an ubiquitous promoter driving the TetR-KRAB sequence and 4 target sequences of the liver specific miR-122. The second cassette contains the GFP gene under control of an ubiquitous or liver specific promoter. The regulation of GFP expression was evaluated in vitro in cells from hepatic or non hepatic lineage.

In non hepatic cells (miR122negative), withdrawal from doxycycline resulted in a decrease of mean fluorescence from 50 to 95% depending on the promoters used. In contrast, in hepatic cells in which miR122 binds to its target sequence transgene expression remained stable at high level in the presence or absence of doxycycline. As a control we used target sequences for miR 142 which is specifically expressed in cells from hematopoietic lineage and we got similar results.

We will now evaluate in vivo the tissue specificity of our approach. Also we seek to determine whether tight tissue specific expression may thwart immune response to the transgene product. Furthermore if an immune response to the tTR-Krab develops, it will specifically eliminate the non hepatic cells but should spare hepatocytes that do not express the tTR-Krab protein.

P 8

Tools for gene targeting using DNA double strand break-induced homologous recombination in human cells

Alix Bourdel1, Vladimir Manchev1, Arnaud Jollet1, Georges H Silva2, Agnès Gouble2, Frédéric Paques2, Olivier Danos1
1INSERM U845, Hôpital Necker Enfants Malades, 156 rue de Vaugirard 75015 Paris; 2Collectis SA, 102 route de Noisy, 93340 Romainville.

Meganucleases (MN) are site specific endonucleases, with 12 to 45 bp DNA recognition sites. They generate double-strand breaks that can be repaired by homologous recombination if a DNA template is present. MN can be engineered for custom recognition of any genetic locus and used for gene targeting. Our interest is to develop efficient means of targeting transgenes at specific loci for the purpose of gene therapy.

We are studying single chain MN derived from I-Crel that recognizes sequences within the human Rag-1 gene or at two candidate safe harbor loci in the human genome. The MN are introduced into the target cells using integrative and integration-deficient lentiviral vectors encoding them, or as proteins associated with the lentiviral vector particle. The later approach avoids the prolonged expression of the MN which is reportedly toxic. It is achieved by fusing the MN to Vpr, a lentiviral protein which is associated with the capsid and is able to drive the incorporation of foreign proteins into the virion.

We have constructed a recombination detection system based on luciferase, allowing for a quantitative assay that could also be used for detecting the MN activity after delivery into human cells, or live animals. A duplication-inactivated thermostable Firefly luciferase gene was constructed and used in different assay format in human 293 cells. This luciferase-based system is fast, sensitive and quantitative, and will be useful for the detection of MN activity into experimental animals.

We present here the latest results on the activity of our MN-Vpr constructs.

P 9

In vivo transformation of lung cells with apoprotein E derived peptide conjugated to polysine (apoEdp-PLL): a non-viral vector for gene therapy

Rasoul Salehi1, Mohammad Mousazadeh1, Palizban Abasali1
1Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Gene therapy involves the delivery of genes, small DNA or RNA molecules to human cells, tissues or organs to correct a genetic defect, or to provide new therapeutic functions for the ultimate purpose of preventing or treating diseases. Two diseases, cystic fibrosis (CF) and α1-antitrypsin (α1-AT) deficiency are relatively common single-gene disorders for which the genetic basis is known and current treatment strategies are not curative. On the other hand lung cancers of multifactorial nature are also common. Attempts have been made to treat both categories by gene therapy. For any sort of gene therapy we need to develop therapies that are non-toxic, non-immunogenic, cost effective with good transformation/expression efficiency for the target organ.

Here we report the development of a non-viral vector using a LDL receptor mediated pathway for transporting genetic materials to the lung tissue. A tandem dimmer sequence of apoprotein-E conjugated to polysine was used as the DNA delivery vector for in vivo transformation of the lung. pcDNA3.1 plasmid complexed with an apoEdp-PLL harboring beta-galactosidase reporter gene was injected to the tail vein of 5 male Balb/c mice.

Frozen sections were prepared two days after injection from lung tissue and stained with X-gal for transgene activity assay. A Beta-galactosidase reporter gene activity detection kit was used for quantitative assessment of gene expression. The beta-galactosidase activity level of 180 ng/mg of protein was detected whereas in all control tissues tested the values were 0.05 ng/mg.

Using a specific promoter for exclusive gene expression in lung tissue, therapeutic genes, either for cancer or monogenic diseases, would be delivered to the lung tissue.

P 10

“Double-Edged” arsinom-containing lipophosphoramide: gene transfection compatibility with antibacterial properties

Tony Le Gall1, Mathieu Berchel2, Sophie Le Hir3, Jean-Yves Salain2, Claude Ferec3, Pierre Lehn1, Paul Alain Jaffres1, Tristan Montier1
1Groupe Thérapie Génique & Cellulaire, Faculté de Médecine Morvan, Brest, France; 2Laboratoire CEMCA, CNRS UMR 6521, IFR 148 ScInBlaS, Université de Bretagne Occidentale, Brest, France.

Gene therapy of diseases such as cystic fibrosis consists of the delivery of a gene medicine in a complex environment where colonization by multiple bacterial strains can compromise its success. In the course of the development of novel gene delivery systems, our group has reported over the past decades new classes of cationic lipids as efficient gene transfer agents for both in vitro and in vivo applications. In the present study, we wondered
whether these compounds could also behave as cationic biocides when mixed with a bacterial strain. By conducting a systematic screening of the properties of diverse chemical structures, we found that arsonium-containing cationic lipids can display efficient to very efficient antimicrobial activities against various bacteria, including multi-resistant virulent clinical strains. Interestingly, their antibacterial properties were compatible with their gene transfer activity as (i) corresponding efficient concentrations were of the same order of magnitude, (ii) DNA condensation and protection against degradation were not impaired, and (iii), using in vitro cell culture models, it was possible to inhibit bacterial growth while still transfecting eukaryotic cells. Thus, arsonium-containing cationic lipids appear as promising versatile multifaceted agents which could find various applications for the treatment of inherited as well as acquired diseases.

P 11
Hepatic differentiation of simian pluripotent stem cells: a tool for cell therapy applications

Sebastien Corbineau1, Soumeya Abed2,3, Alisa Tubawan2,3, Karim Si-Tayeb1, Michel Pucéat1, Stany Chrétien2,3, Ludovic Vallier2, Anne Dubart-Kuppenschmidt1, Philippe Leboulch2,3, Leïla Maouche-Chretien2,3, Anne Weber1
1INSERM U972 Hôpital Kremlin-Bicêtre, France; 2CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Innovative Therapies, Fontenay-aux-Roses, France; 3Inserm U962 and University Paris Sud 11, CEA-iMETI, Fontenay-aux-Roses, France; 4INSERM Université Paris Descartes UMR633 Campus Genopole 1, France; 5Department of Surgery and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; 6Genetics Division, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA

Hepatocyte transplantation is becoming an alternative to orthotopic liver transplantation for the treatment of metabolic diseases. However, there is a lack of donor organs and isolated mature hepatocytes are difficult to manipulate in vitro. Pluripotent stem cells, either embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), may become an alternative source of hepatocytes. However, it is necessary to develop large animal models, which include non-human primates, of ESC- and iPSC-derived hepatic cells before envisaging clinical trials. These models will also allow for the in vivo evaluation of the liver function replacement obtained and safety issues. The aim of this work is to generate hepatic progenitor cells and hepatocytes from monkey ESCs and iPSCs and to characterize them in vitro for their phenotype markers and functions. We have set up chemically defined conditions devoid of serum, to derive rhesus monkey ESCs into endodermal cells that express specific markers such as Sox17, FoxA2. iPSCs from cynomolgus monkey fibroblasts were generated using four Moloney-derived retroviral vectors that express human Oct4, Sox2, KIf4 and c-Myc. The isolated iPSC clones express pluripotency markers that include Oct4, SSEA4, Nanog. These cells were then differentiated into endodermal cells expressing the aforementioned markers. We are presently defining optimal conditions to generate hepatic progenitors from both ESC-derived and iPSC-derived cells and compare their phenotypes. We will then generate pluripotent cells from fibroblasts isolated from skin biopsies of three cynomolgus monkeys, differentiate them into hepatic cells and transplant them into the autologous donor liver after cell expansion.

P 12
Vevo-Micromarker® microbubbles: A new and promising generation of microbubbles for enhanced in vitro gene delivery by sonoporation

Jean-Michel Escoffre1, Julien Piron1, Anthony Novell1, Aya Zeghimi2, Ayache Bouakaz2
1UMRS Inserm U930 “Imagerie et Cerveau”, CNRS ERL 3106, Université François Rabelais, Tours, France

Among the non-viral methods for in vitro gene delivery, the use of ultrasound waves with gas microbubbles as a safe tool to deliver pDNA to tissues and organs has been rapidly developing throughout the past decade. This method transiently increased the native permeability of cell membranes when submitted to ultrasound in the presence of microbubbles. This process is commonly known as sonoporation.

In this report, we investigated the use of new generation of microbubbles, Vevo-Micromarker®, for in vitro gene transfer and we compared to BR14® and SonoVue®. The acoustical properties of the microbubbles were then measured to help understand the biophysical mechanism involved in the pDNA delivery. Human glioblastoma (U-87MG) cells are transfected with GFP-encoding plasmid. 24h and 48h later, the transfection level and the cell viability are measured by flow-cytometry after propidium iodide staining. Our results showed that the transfection level achieved with Vevo-Micromarker® was much higher than BR14® and SonoVue® with a comparable cell viability. For the first time, a transfection rate of nearly 70% was reported using the combination of ultrasound and microbubbles. Furthermore, the persistence of the microbubbles to insonation was directly correlated to the induced transfection efficiency. Indeed, Vevo-Micromarker® exhibited the lowest attenuation coefficient than BR14® and SonoVue®. These findings indicated that the attenuation and the destruction of microbubbles might be involved in the sonoporation efficiency.

In conclusion, our results demonstrated that the combination of ultrasound and Vevo-Micromarker® could be a promising method for efficient gene delivery.

P 13
Transendothelial passage of polyplexes across a pulmonary vascular endothelium

Jean-Pierre Gomez1, Cristine Goncalves1, Emilie Bertrand2, Hervé Cheradame3, Chantal Pichon1, Philippe Guegan5, Patrick Midoux1
1Centre de Biophysique Moléculaire, CNRS UPR4301 and Université d’Orléans, France; 2Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, CNRS UMR8587 Université d’Eve Val d’Essonne, Evey, France

To treat cystic fibrosis by gene therapy, systemic administration of CFTR gene complexed with synthetic vectors is an interesting alternative compared to the aerosol administration. Indeed, the presence of thick mucus reduces the access to airway epithelial cells. However, the endothelial barrier of pulmonary capillaries represents a limiting step for transfection of underlying airway epithelial cells.

We have assessed the transendothelial passage of polyplexes (DNA/polymer complexes), in a human lung endothelium model constituted of HMVEC-L cells cultured on a polyethylene
terephthalate insert with 3 μm pore size. The formation of the endothelial monolayer was controlled by the transendothelial electrical resistance. The human tracheal epithelial (ECFT290+) cells from a CF patient homozygous for the AF508 mutation of CFTR gene were seeded at the bottom of the well. Their transfection efficiency was used to measure the transendothelial passage of a series of polyplexes formed with linear polyethyleneimine substituted by histidine groups. The results indicate that His₁₀-PEI polyplexes were the most efficient both in terms of transendothelial passage of HMVEC-L cells, transfection efficiency of ECFT290- cells, and cell viability. Quantitatively, we found that about 45% of polyplexes passed through the endothelial monolayer.

Further work is in progress to delineate mechanisms of polyplexes transendothelial passage. Subsequently, this system will be used to assess the capacity of transendothelial passage of different types of DNA complexes including lipopolypelexes and lipopolyplexes.

P 14

Isolation of cardiac progenitors from NKX2.5-eGFP transgenic human embryonic stem cells

Sofiane Hamidi¹, Hana Raslova¹, Claude Baillou², Francois Marie Lemoiné³, William Vainchenker⁴, Françoise Norol⁵

¹INSERM, U1009, Institut Gustave Roussy, Villejuif; ²IMR CNRS 7211/INSERM U959, UPMC Univ Paris 06; ³AP-HP, Service de Biothérapie, Hôpital Pitié Salpêtrière, Paris

Embryonic stem cells (ESCs) are a promising source for cardiac cell therapy but their potential use in human has been hampered by major safety concerns. Here, we describe the generation of transgenic human ES cells (hESCs) that allow the isolation of a population of committed human cardiac progenitors depleted of undifferentiated cells. This approach is based on the use of the Nkx2.5 cardiac-restricted promoter to drive the expression of a reporter gene (eGFP). Sorted Nkx2.5-GFP⁺ hESCs showed a gene profile of cardiac progenitors with a concomitant expression of GATA4, ISL1, MEFC2 and TBX5 and the absence of N nog and Oct-4, two genes reflecting the undifferentiated state of hESC. Loss of tumorigenic potential was confirmed in a model of Nod SCID mice, in which no teratoma was detected after 2 months. In in vitro differentiation assays, these cells gave rise mainly to smooth muscle cells and cardiomyocytes, and at a lesser extent to endothelial cells. After administration in a cardiac environment, Nkx2.5-GFP⁺ hESCs could still be detected after 2 months and their cardiac, endothelial and vascular smooth muscle development potential was confirmed at a molecular and phenotypic level. These results demonstrated the potential for this approach to provide an innovative tool for cardiovascular research and regenerative medicine.

P 15

Value of large-scale expansion of tumor infiltrating lymphocytes in a compartmentalised gas-permeable bag: interests for adoptive immunotherapy

Soraya Saiagh¹

¹Unité de Thérapie Cellulaire et Génique, Institut de Biologie, Nantes, France

Background: Adoptive cell therapy (ACT) has emerged as an effective treatment for patients with metastatic melanoma. However, there are several logistical and safety concerns associated with large-scale ex vivo expansion of tumour-specific T lymphocytes for widespread availability of ACT for cancer patients. To address these problems we developed a specific compartmentalised bag allowing efficient expansion of tumour-specific T lymphocytes in an easy handling, closed system.

Methods: Starting from lymph nodes from eight melanoma patients, we performed a side-by-side comparison of Tumour-Infiltrating Lymphocytes (TIL) produced after expansion in the compartmentalised bag versus TIL produced using the standard process in plates. Proliferation yield, viability, phenotype and IFNg secretion were comparatively studied.

Results: We found no differences in proliferation yield and cell viability between both TIL production systems. Moreover, each of the cell products complied with our defined release criteria before being administered to the patient. The phenotype analysis indicated that the compartmentalised bag favours the expansion of CD8⁺ cells. Finally, we found that TIL stimulated in bags were enriched in reactive CD8⁺T cells when co-cultured with the autologous melanoma cell line.

Conclusions: The stimulation of TIL with feeder cells in the specifically designed compartmentalised bag can advantageously replace the conventional protocol using plates. In particular, the higher expansion rate of reactive CD8⁺T cells could have a significant impact for ACT.

P 16

Gene therapy for retinal dystrophies using human cellular models: differentiation of disease-specific iPS cells into retinal pigment epithelium

Lorena Robert¹, Marie Pequignot¹, Nicolas Cereso¹, Aude Conscience¹, Fabienne Becker², John de Vos², Christian Hamel¹, Vasiliki Kalatzis¹

¹Institut des Neurosciences de Montpellier, Inserm U1051, Montpellier, France; ²Institut de Recherche en Biothérapie, Inserm U632, Montpellier, France

The retina is highly amenable to, and many retinal dystrophies ideal candidates for, gene therapy. The first such clinical trials were carried out in 2008 using an AAV vector with positive results. Consequently, the requirements for future preclinical studies of other diseases will be less stringent, notably concerning the need for large animal disease models. However, a growing number of diseases lack even an appropriate small model, compromising their chances of one day reaching a clinical trial. In such cases, a viable alternative would be to perform preclinical studies on human cellular models of the pathogenic retina.

As it is impossible to obtain retinal cells from a patient, the aim of our work is to generate iPS cells from skin fibroblasts of patients with a retinal dystrophy and differentiate these cells into retinal pigment epithelium (RPE). As a pilot project we are concentrating on the X-linked disease choroideremia that represents 2% of retinal dystrophies and is due to mutations in the CHM gene encoding the Rab escort protein 1 (REPI) protein; the mouse and zebrafish REPI-deficient models are lethal. We have obtained the first iPS clone of a choroideremia patient with the aim of transducing the future REPI-deficient RPE with a CHM-expressing AAV vector and assaying for the restoration of a normal cellular phenotype. The use of such innovative human disease systems are more economical and less time-consuming alternatives to animal models, as well as more biologically
relevant for further understanding disease pathogenesis and preclinical therapeutic studies.

P 17

Biodistribution and shedding of rAAV8-U7 snRNA vectors after locoregional injection in the forelimb of GRMD dogs

Virginie Francois1, Caroline Le Guiner2, Marie Montus3, Laurent Servais4, Yan Cherel5, Yves Fromes6, Thomas Voit4, Philippe Moullier1, "Duchenne Consortium".

The AFM-sponsored Duchenne Consortium7

1GENETHON, Evry & INSERM UMR 649, Nantes — France; 2INSERM UMR 649, Nantes & GENETHON, Evry — France; 3GENETHON, Evry — France; 4Institut de Myologie, Paris — France; 5INRA UMR 703, Nantes — France; 6GENETHON, Evry & Institut de Myologie, Paris — France; 7GENETHON, Evry — Institut de Myologie, Paris — INRA UMR 703, Nantes — INSERM UMR 649, Nantes — France

In Duchenne Muscular Dystrophy (MDM) the selective removal by exon skipping of exons flanking an out-of-frame mutation in the dystrophin messenger can result in in-frame mRNA transcripts that are translated into shorter but functionally active dystrophin.

The goal of our project is to determine in Golden Retriever Muscular Dystrophy (GRMD) dogs the effective dose of our therapeutic product defined as a recombinant Adeno-Associated Virus serotype 8 (rAAV8) expressing an optimized U7 snRNA specific for the correction by exon skipping of the GRMD dystrophin transcript. The mode of delivery is the locoregional high-pressure intravenous (IV) injection of a forelimb.

We established a unique network of laboratories with complementary skills to deliver a comprehensive set of preclinical data. Several groups of GRMD dogs were exposed to different rAAV8-U7snRNA doses (2,5E12 to 2,5E13vg/kg). To assess the biodistribution and shedding patterns of the vector, biological fluids were repeatedly collected as soon as 6 hours post-injection and subsequently for weeks. Ultimately, all animals were sacrificed 3 months after injection of the vector. All muscles of the injected limb and of the contralateral limb were precisely sampled, as well as several skeletal muscles at distance and major organs.

The complete biodistribution and shedding data, obtained after quantitative PCR analysis of these different samples will be presented.

P 18

Gene therapy approach for Huntington’s disease

Sandrine Betuing1, Francoise Piguet2, Philippe Mailly3, Amélie Hu4, Nathalie Cartier2, Patrick Aubourg2, Jocelyne Caboche1

1UMR7224/UMR8952 Université Pierre et Marie Curie, Paris, France; 2UMRS745 Université Paris 5, Paris, France

Huntington’s disease (HD) is a fatal dominant hereditary neurodegenerative disease, that typically emerges in adulthood and results in motor, cognitive and behavioural abnormalities. HD has a single genetic cause (abnormal expansion of CAG tri-nucleotide repeats in the gene encoding huntingtin) and a well-defined striatal neuropathology.

There is no available treatment for HD. The therapeutic approaches are targeted on mitochondrial dysfunctions, or excitotoxicity. Recently, it has been shown that the brain cholesterol metabolite, 24S-hydroxycholesterol, is decreased in the plasma of HD patients. We recently showed that expression of CYP46A1mRNA, the enzyme responsible for the conversion of cholesterol into 24S-hydroxycholesterol is decreased into the striatum of the R6/2 mouse model of HD at early stages (6 weeks). Furthermore, overexpression of CYP46A1 is neuroprotective in a cellular model of HD. We thus aimed to restore CYP46A1 expression in the striatum of R6/2 HD mouse models, using a new serotype (rh10) of AAV vector (AAV10). We characterized transduction and tropism of AAV10rh-GFP, and showed widespread expression of the transgene within the striatum (around 63% of the whole rostro-caudal extension of the striatum), along with the synaptically connected brain regions. As expected, the transgene showed a particular tropism for neuronal cells. Ongoing experiments aim to demonstrate the effects of CYP46A1 overexpression on the hallmarks (behavioural, biochemical and neuropathological) of HD pathology in R6/2 mice. Overall these studies will provide a body of preclinical information to address the feasibility and the potential efficacy of gene therapy in HD patients based on targeted overexpression of CYP46A1 enzyme.

P 19

In vivo inhibition of cholesterol-24-hydroxylase induces a sequential and progressive neuronal loss in hippocampus of C57BL/6 mice

Fathia Djelti1, Eloise Hudry1, Ornella Ahouansou1, Ivan Bieche1, Michel Vidal1, Patrick Aubourg1, Nathalie Cartier1

1INSERM U745, Paris, France

The abnormalities of cholesterol metabolism are closely related to neurodegenerative disorders. The neurons cannot degrade cholesterol by themselves and the blood-brain barrier restricts its export out of the brain. The major mechanism of cerebral cholesterol clearance involves the conversion of cholesterol into 24S-hydroxycholesterol by neuronal cholesterol 24-hydroxylase, an enzyme encoded by the CYP46A1 gene. 24S-hydroxycholesterol can freely cross the blood-brain barrier and is degraded in the liver.

Intracerebral injection of AAV5 vector encoding CYP46A1 in a mouse model of Alzheimer disease (APP23) decrease amyloid pathology and improve cognitive function.

To further characterize the role of CYP in vivo, we studied the effect of cholesterol 24-hydroxylase gene down-regulation through RNA interference strategy.

Among eleven shRNA, only AAV5-sh271 was chosen for its highest efficiency to decrease CYP46A1 expression and brain 24S-hydroxycholesterol content (~40%) in vivo after injection in the hippocampus of C57BL/6 mice.

One month after injection in the cortex and the hippocampus of three month old C57BL/6 mice, neuronal loss in the CA2 and CA1 layer of the hippocampus were observed which progress to the CA3 layer to finally lead to a complete destruction of hippocampus three months after injection. The emergence of hippocampal lesions was accelerated in APP23 mice and was associated with 3-fold increase of Aβ40/42 peptides. This observed toxicity on neurons is specific for CYP downregulation and not to a non specific one of the RNAi strategy.

Electrophysiological and neuropathological investigations are ongoing to understand the mechanisms of neurotoxicity. These results confirm the crucial role of CYP46A1 in the hippocampus.
P 20
Therapeutic approach by “genetic compensation” for dysferlinopathies
Florian Barthelemy1, Nicolas Wein1, Virginie Kergourlay1, Martin Krahn1, Aurelie Avril1, Vincent Moully1, Luis Garcia1, Marc Bartoli1, Nicolas Levy2
1Inserm U910 27, Marseille, France; 2Inserm U910 27, Marseille, France; 3Biotherapies of neuromuscular disorders, Inserm UMRS_974, Paris, France; 4Inserm UMR_S 974, CNRS UMR 7215, Institut de Myologie, Paris, France

Mutations in DYSF encoding dysferlin cause primary dysferlinopathies, autosomal recessive diseases that mainly present clinically as Limb Girdle Muscular Dystrophy type 2B and Miyoshi myopathy. Nowadays, there is no curative treatment but some therapeutic approaches are being investigated.

Dysferlin is composed of homologous C2 domains and a C-terminal transmembrane domain. Even if, these C2 domains differ from each other by the interaction established with dysferlin partners, there is some evidence that they could have redundant or independent functions. Based on the clinical observation that some deletions have been associated with moderate phenotype, we are investigating two approaches of “genetic compensation” for dysferlinopathies: exon skipping and “miniproteins” transfer.

Firstly, an in-frame deletion of exon 32, resulting in “quasi-dysferlin” expression, has been found in a patient presenting with a mild and late-onset phenotype. Thus, we have postulated that exon 32 of dysferlin could be a target for an exon-skipping therapeutic strategy. We have then developed Antisense Oligonucleotides designed to block essential sites for the maintenance of exon 32.

Similarly, a “minidisferlin”, composed only by the two last C2 domains and the transmembrane domain has been discovered in a patient with no severe symptoms. Here again we used this natural proof of concept for a gene therapy. The minigene approach overcomes the limited packaging size of AAV vectors, the best vector so far for muscular disorders. Several combinations of dysferlin domains will be tested to obtain the most functional “minidisferlin”.

Finally, we think that both approaches, based on clinical data, could be the starting point for a therapy in the dysferlinopathy fields.

P 21
Therapeutic approach of TMD and LGMD2J by trans-splicing
Karine Charton1, Florence Leroy1, Nathalie Daniele1, Delphine Pion1, Isabelle Richard1
1GENETHON 1 bis rue de l’internationale 91000 EVRY

Titin is a giant protein expressed in both skeletal muscles and heart. Several pathogenic mutations were identified in its last coding exon. The most frequent mutation commonly referred to as FINmaj, results in the replacement of 4 amino acids and affects a number of patients in Finland. The mutation causes a Tibial Muscular Dystrophy (TMD) when present on one allele and a Limb Girdle Muscular Dystrophy phenotype 2J (LGMD2J) when present on both alleles.

To date, there is no treatment for these diseases. Considering the large size of the titin cDNA (about 100kb), classical gene transfer strategies are not feasible as therapeutic approach. To bypass this hurdle, spliceosome-mediated RNA trans-splicing (SMaRT) is being tested to replace titin last exon at mRNA level. HER911 cells expressing a titin minigene with the FINmaj mutation were transfected with a plasmid coding for a 3’ pre-trans-splicing molecule encoding a binding domain (BD) specific for the last intron, an intronic sequence followed by the wild-type last exon. RT-PCR and western blot analyses showed that specific replacement of the mutated 3’ portion of the titin minigene transcript occurred through trans-splicing. PTM constructs carrying different BD were tested and the result showed that localization of these BD modifies the trans-splicing efficacy. Following this proof-of-principle at cellular level, experiments to deliver trans-splicing RNAs in a murine model carrying the FINmaj mutation are currently being performed in our laboratory.

P 22
Trans-splicing approach for dysferlinopathies
Francois Monjaret1, Eduard Gallardo2, Karine Charton1, Isabelle Richard1
1Genethon, 1bis rue de l’internationale, Evry, France; 2Hospital de la Santa Creu i Sant Pau, 167 Pare Claret, Barcelona, Spain

Deficiency in Dysferlin causes two major phenotypes: Limb Girdle Muscular Dystrophy type 2B (LGMD2B) and Miyoshi Myopathy (MM). There is no treatment to date for these diseases. Besides the traditional viral-mediated gene transfer strategy, which is complicated by the large size of the dysferlin cDNA, there are alternative strategies that can be tested such as the RNA reprogramming by spliceosome mediated RNA trans-splicing. Trans-splicing is achieved using a nuclear pre-mRNA splicing event in trans between the mutated endogenous pre-mRNA and the exogenous therapeutic pre-mRNA trans-splicing molecule (PTM) which provides the correct RNA sequence. In the case of dysferlinopathies, this strategy would have the advantage of bypassing the possibility of any toxicity related to dysferlin over-expression since the endogenous transcriptional control is conserved. In addition, it would be applicable to any type of mutations with the exception of very large deletions.

To obtain a proof of feasibility, we constructed a PTM targeting the last exons of dysferlin and a human dysferlin minigene to be used as trans-splicing target. Following co-transfection of these constructs in HER911 cells, we validated transcription of the minigene and PTM by RT-PCR, and demonstrated that trans-splicing had occurred. Western Blot analysis using antibody to detect specifically the trans-spliced protein showed a band indicating that the trans-spliced RNA had been translated. Following these preliminary results, we are now testing this PTM on human myogenic cells from dysferlin patients and are also evaluating a similar strategy to reverse the pathological signs observed in dysferlin deficient mouse model.

P 23
Use of miRNA-regulated AAV vector to reduce humoral immune responses against alpha-sarcoglycan
Jerome Poupiot1, Maxime Ferrand2, Florence Boisgerault2, Anne Galy2, Isabelle Richard1
1CNRS UMR8857, Genethon, Evry, France; 2Inserm U951, Genethon, Evry, France

Alpha-Sarcoglycanopathy (Limb-Girdle Muscular Dystrophy type 2D, LGMD2D) is a recessive muscular disorder caused by
deficiency in z-sarcoglycan, a transmembrane protein part of the dystrophin-associated complex. We previously reported efficient AAV-mediated transfer of z-sarcoglycan in z-sarcoglycan deficient mice (Sgca-null mice) resulting in correction at the biochemical, histological and functional levels. However, specific humoral immune response directed against the transgene was induced after intramuscular injection, leading to disappearance of transgene expression in muscle fibres. The use of a muscle-specific promoter like desmin improved transgene expression but continued to elicit a weak humoral response. Since expression of a neotransgene in antigen-presenting cells (APC) can effectively prime immune responses, we decided to switch off the expression of the transgene in APC by using microRNA (miRNAs) regulating properties. Indeed, miRNAs are small non-coding RNAs that have very specific expression profiles and regulate gene expression by repressing translation of target cellular transcripts. We incorporated a target sequence of miRNA142-3p (miR142-T) in the AAV cassette containing the z-sarcoglycan transgene under the transcriptional control of the ubiquitous promoter CMV. After viral preparations in serotype 1, we injected the constructs with and without miR142-T intramuscularly in the Tibialis Anterior of Sgca-null mice. Analyses of muscle biopsies at day 84 and of blood sera showed that the use of miRNA-regulated vector led to increased survival of muscle fibres associated with long-term expression of z-sarcoglycan and reduced humoral immune responses against the transgene. This promising strategy could facilitate sustained therapeutic effects of rAAV gene transfer in muscle.

P 24
Efficient motor neuron and sensory neuron transduction by intrathecal AAVrh10 gene transfer in rats
Juliette Hordeaux1, Stéphanie Moreau1, Laurence Dubreil1, Johan Deniaud1, Fabien Iacobelli1, Beatrix Joussemet1, Caroline Le Guiner2, Philippe Moullier2, Yan Chere1, Marie-Anne Collé1
1INRA UMR703 ONIRIS BP 40706 44307 Nantes, France; 2Laboratoire de Thérapie Générique INSERM UMR649 Institut de Recherche Thérapeutique 1 Université de Nantes, France

Recombinant AAV vectors are promising tools for safe and efficient clinical gene therapy. They lead to long-term gene expression in brain and spinal cord with no detectable toxicity and are thus attractive vectors for gene transfer to the central nervous system (CNS). Currently, direct CNS injections of AAV vectors are performed to treat neurodegenerative diseases. However direct delivery into the brain is invasive and requires multiple injections to treat diffuse CNS diseases because of its relatively local transduction. In order to investigate broader CNS gene transfer methods we initiated a gene therapy strategy based on intrathecal injection of Adeno-Associated Virus of serotype 10 (AAVrh10) encoding EGFP.

We show that AAVrh10 has a strong tropism for CNS both in neonates and adults. Four weeks after a single intracerebral administration (1.0 to 4.1011 vg) in rats, single or double-stranded vectors lead to a strong transduction of the brain, cerebellum and spinal cord. Neurons are mainly targeted: EGFP is strongly expressed in pyramidal and subcortical neurons, Purkinje cells and motor neurons from cervical to lumbosacral spinal cord. Sensory neurons in dorsal root ganglia are also transduced. A strong expression of the transgene is observed in peripheral nerves and dorsal ascending spinal tracts as a consequence of the high proportion of transduced motor and sensory neurons respectively. This widespread transduction of upper and lower motor neuron and of sensory neurons offers promising perspectives in the field of motor neuron diseases, sensory neuron diseases, and chronic pain therapies.
was measured by enzyme-linked immunosorbent assay and ELISPOT analysis.

Results: Intramuscular administration of Derf1 encoding plasmid formulated with synthetic vector lead to a strong and specific humoral response against Derf1 antigen. We have tested this formulation in a mouse model of allergic asthma, in order to evaluate the ability of our immunization protocol to bias the T-helper (Th) cell response to a Th1 phenotype.

Discussion: DNA immunization against Derf1 allergen following a prophylactic approach would prevent allergic response against house dust mite, which will be a promising approach to prevent allergic respiratory diseases.

P 27

Intramuscular AAV8 delivery in mice results in intricate vector interactions with the host immune system and dendritic cell transduction

Gwillys Gernoux1, Mickaël Guillaud1, Laurence Dubreil2, Yann Chena2, Philippe Moulier3, Oumeya Adjali1

1 INSERM UMR 649, Institut de Recherche Thérapeutique, Nantes, France; 2 INRA UMR 703, ONIRIS, Nantes, France; 3 INSERM UMR 649, Institut de Recherche Thérapeutique, Nantes, France.

Recombinant AAV (rAAV) vectors appear to be vehicles of choice for gene transfer to the skeletal muscle. However, recent gene transfer studies into animal models and even humans indicate that the risk of transgene and/or capsid-specific immune responses is high following intramuscular (IM) rAAV delivery. It has been hypothesized that these immune responses are correlated to intricate interactions of the vector with the host immune system, due to high vector concentration at the site of injection.

We explored the early relationship between the host immune system and an AAV8 vector expressing GFP, following its IM delivery in a mouse model. Kinetics of vector biodistribution and transcript detection in draining lymph nodes as well as spleen. Moreover, we were able to detect both viral genomes and GFP transcripts in dendritic cells (DC). DC transduction was further confirmed by immunohistochemistry in draining lymph nodes as well as spleen. Interestingly, we were able to detect viral genomes and GFP transcripts in dendritic cells (DC). DC transduction was further confirmed by immunohistochemistry in draining lymph nodes as well as spleen. Moreover, we were able to observe DC transduction, with both self complementary (sc) and single stranded (ss) AAV8 vectors. These results indicate that transgene immune rejection could be initiated by DC-mediated direct antigen presentation, in addition to the crosspresentation mechanism that was favoured in early AAV studies.

P 28

Intrathymic injection of lentiviral vector curtails the peripheral immune response in BALB/c mice

Beatrice Faideau1, Gaelle Gottrand1, Kahina Taleb2, Jeremie Goldstein1, Anne Sophie Bergot1, Isabelle Ragon1, Sofien Dessolin1, David Klatzmann2, Gilles Marodon1

1 INSERM U959, Hôpital de la Pitié Salpêtrière, Paris, France; 2 Institut Cochin, Paris, France; 3 INSERM U9559, Hôpital de la Pitié Salpêtrière, Paris, France.

Lentiviral vectors are promising tools for gene therapy. Here, we have investigated whether pre-conditioning of normal BALB/c mice with intrathymic injection of lentiviral vectors expressing the hemaglutinin (HA) of the Influenza virus could prevent the immune response against this antigen in the periphery. We first evaluated the distribution and persistence of a lentiviral vector expressing luciferase after intrathymic injection. Luciferase signal could be detected in the thymus for over 40 days and rapidly vanished thereafter. In some mice, the signal was also observed in the periphery, showing that even surgically-performed intrathymic injections could leak outside of the thymus. We then observed that the vector expressing HA was able to induce a robust CD4 and CD8-mediated immune response in the periphery that could prevent the development of a tumor expressing HA, illustrating the power of lentiviral vectors for vaccination purposes. After intrathymic injection, some treated mice presented an efficient HA-specific lytic activity in the spleen without peripheral immunization, suggesting that leakiness of the injection could result in immunization. We also observed that mice surgically manipulated were resistant to immunization few days after the surgery. This immunomorbidity was time-dependent as a normal immune response against HA was recovered 3 weeks after the procedure. At that time, we show a dose-dependent effect of intrathymic injection of the vector on the immune response elicited in the periphery. Altogether, our results establish the conditions and feasibility of intrathymic injection of lentiviral vectors for manipulating T cell tolerance in the thymus for future clinical applications.

P 29

An experimental model set-up to study MHC class II targeted gene transfer in antigen-presenting-cells

Severine Ciré1, Mary K. Collins2, Christian J. Buchholz3 and Anne Galy1

1 INSERM, U 951, Molecular Immunology and Innovative Biotherapies, Genethon, Ervy, France; 2 Infection and Immunity, University College London, London, UK; 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany.

Our objective is to target gene transfer into various types of MHC-II+ antigen-presenting cells (APC) to study the impact on the cellular immune responses against the transgene. We herein report the experimental model set-up for this study. A novel immunogenic transgene was generated by fusing GFP to murine male antigenic epitopes from the HY gene. Cells expressing the GFP-HY transgene were detected by FACS with reduced (about a log) fluorescence levels compared to native GFP. To target APCs for gene transfer in vivo, we used lentiviral vectors pseudotyped with engineered measles envelope glycoproteins targeted to MHC class II with a ScFv (Ageichik et al., 2011). The vector is produced by co-transfecting 5 plasmids in 293T cells. Under optimal conditions, viral stock containing 90 ± 60 ng/ml p24 (n = 7) is produced. The vector concentrated by ultracentrifugation (2500g, 12h, 4°C) yields 15-25% of p24 and concentration (2500g, 12h, 4°C) yields 15-25% of p24 and concentration increased p24 titers by about 50 fold. Concentrated preparations contained about 1500 ng/ml reverse transcriptase (RT). Intravenous injection of a concentrated vector lot (30 to 40 ng of RT i.e. 120 or 200ng of P24 per female mouse) induced a clear and
specific immune response. Fourteen days after injection, spleen cells re-stimulated ex vivo with the Dby or Uty peptides (respectively CD4 and CD8 epitopes) generated 200-400 IFNγ SFU/millions lymphocytes whereas PBS-injected animals did not respond. Future experiments will consist of directing transgene expression in different MHC Class II + APCs through microRNA usage and study the effects on immune responses.

P 30

Agnostic anti-CD137 antibody treatment leads to anti-tumor response in mice with orthotopic liver tumor

Vanessa Gauttier¹, Jeannette Cany³, Nicolas Ferry¹, Sophie Conchon¹

¹INSERM UMR948 — CHU Hôtel-Dieu — 1 place Alexis Ricordeau — Nantes

Immunotherapy represents a potential therapeutic option for patients with hepatocellular carcinoma (HCC). Patient's survival is directly correlated to the type and number of tumour infiltrating immune cells, indicating that immune responses have a direct effect on the clinical course of the disease. CD137, a member of the TNF receptor family, is expressed on various immune cells and plays an important role in sustaining T cells activation, amplifying cytotoxic T lymphocyte response, and co-stimulating both Th1 and Th2 cytokine production. We have assessed the potential of immunotherapy with an agnostic anti-CD137 antibody in an orthotopic murine model of HCC.

Injection of 2.5x10⁷ Hepa1.6 hepatoma cells into the portal vein of C57Bl/6 mice results in orthotopic liver tumors which develop within 3 weeks. Groups of mice received intraperitoneal injections of 100µg of anti CD137 antibody or control rat IgG on day 4 and 8 after tumor challenge and were sacrificed on day 18 to monitor tumor development. All animals in the control group showed an important tumor burden whereas 57% (4/7) of the anti-CD137 antibody-treated animals were completely free of tumor growth. Moreover, these mice remained tumor-free when re-challenged with a new load of Hepa1.6 cells, demonstrating a long-term protection. In vivo mAb depletion experiments demonstrated that this therapeutic effect required CD8 and NK cells.

In conclusion anti-CD137 antibody demonstrated a potent anti-tumor effect on a preclinical in situ liver tumor model and is therefore a promising strategy for the treatment of HCC.

P 31

Osteoprotegerin administrated by non viral gene transfer decreased lytic bone lesions and prevents tumor development in a xenogenic model of Ewing’s sarcoma by inhibiting RANKL produced by tumor cells

Gaelle Picarda¹, Etienne Matous¹, Soizic Hervouet¹, Benoit Barteau², Franck Tirole³, François Lamoureux¹, Bruno Pitard², Dominique Heymann¹, Valérie Trichet¹, Françoise Redini¹

¹UMR957, Faculté de médecine, Nantes, France; ²UMR915, IRT-UN, Nantes, France; ³U830 — Institut Curie, Paris, France

Ewing’s sarcoma (ES) is a solid tumor typically arising in the bones of children and adolescents. Long-term survival rates reach 50% at 5 years but only 20% for patients with clinically detectable metastases at diagnosis, not responding to therapy or with disease relapse. Osteoprotegerin (OPG), an anti-bone re-absorption molecule may represent a promising candidate to inhibit the osteolytic component of ES and subsequently to limit tumor development. OPG was administered in vivo by gene transfer using the amphibiphilic non-ionic block co-polymer vector LUTROL. A xenogenic model of ES was induced by intra-osseous injection of 2x10⁷ human TC71 ES cells. ES bearing mice were assigned to control (CT: no treatment), LUTROL (vector alone), pcDNA3.1 (LUTROL/empty pcDNA3.1 plasmid), hOPG (LUTROL/pcDNA3.1-human OPG) and mOPG (LUTROL/pcDNA3.1-mouse OPG) groups. Mice were treated once a week with 2x50 µg DNA-LUTROL beginning 7 days before tumor induction. hOPG transgene expression was validated in vivo at the transcript and protein levels and confirmed in vivo at the systemic (serum) and local (tumor) levels. In vivo, a significant inhibition of tumor development was shown in the hOPG group as compared to control groups (CT and LUTROL). A marked osteolysis was revealed by micro-architecture analyses in all control (CT, LUTROL, pcDNA3.1) groups and also in the mice treated with mOPG, whereas osteolysis was significantly prevented in the hOPG group. By using ELISA test specific to the species, we demonstrated that RANKL over-expressed in ES was from human origin (expressed by tumor cells) rather than mouse origin (host cells).

P 32

Partial correction of liver metabolism by scAAV-mediated gene therapy in a mouse model of glycogen storage disease type 1a did not prevent the development of hepatic tumours

Elodie Mutel¹, Anne Stefanutti¹, Frank Pilleul², Olivier Beuf², Nicolas Ferry³, Gilles Mathieux¹, Tuan Huy Nguyen³, Fabienne Rajas¹

¹Inserm U855/Université Lyon 1, Lyon, France; ²Creatis CNRS UMR 5220, Inserm U1044, Insa-Lyon, Université Lyon 1, Villeurbanne, France; ³Inserm U948, CHU Hôtel-Dieu, Nantes, France

Glycogen storage disease type 1a (GSD1a) is caused by the deficiency of glucose-6 phosphatase (G6pc) gene, encoding an essential enzyme for glucose production. Patients with GSD1a suffer from severe hypoglycemia, hepatomegaly and liver steatosis. Despite a strict diet, patients develop liver tumours with age. In this study, we analyzed the efficiency of gene therapy on long-term liver pathology in mice with an inducible liver-specific G6pc deficiency (Mutel et al., 2011). At weaning, liver G6pc deletion was induced by tamoxifen treatment of B6.G6pcloxlox/SACreERT2/+ mice to obtain Lg6pc−/− mice. Four weeks later, mice were injected with scAAV-LP1-G6PC [6x10¹ⁱVg/kg] via the retroorbital vein. To accelerate the development of hepatic tumours, a group of mice were fed on a high fat/high sucrose (HF/HS) diet for 9 months and nodules were detected by MRI.

During 8 months, blood glucose of treated mice fed on the standard diet was maintained after 6h fasting whereas hypoglycemia occurred after this time in untreated Lg6pc−/− mice. Four weeks later, mice were injected with scAAV-LP1-G6PC via the retroorbital vein. To accelerate the development of hepatic tumours, a group of mice were fed on a high fat/high sucrose (HF/HS) diet for 9 months and nodules were detected by MRI.

At weaning, liver G6pc deletion was induced by tamoxifen treatment of B6.G6pcloxlox/SACreERT2/+ mice to obtain Lg6pc−/− mice. Four weeks later, mice were injected with scAAV-LP1-G6PC [6x10¹¹Vg/kg] via the retroorbital vein. To accelerate the development of hepatic tumours, a group of mice were fed on a high fat/high sucrose (HF/HS) diet for 9 months and nodules were detected by MRI.

During 8 months, blood glucose of treated mice fed on the standard diet was maintained after 6h fasting whereas hypoglycemia occurred after this time in untreated Lg6pc−/− mice. Four weeks later, mice were injected with scAAV-LP1-G6PC [6x10¹¹Vg/kg] via the retroorbital vein. To accelerate the development of hepatic tumours, a group of mice were fed on a high fat/high sucrose (HF/HS) diet for 9 months and nodules were detected by MRI.

During 8 months, blood glucose of treated mice fed on the standard diet was maintained after 6h fasting whereas hypoglycemia occurred after this time in untreated Lg6pc−/− mice. Four weeks later, mice were injected with scAAV-LP1-G6PC [6x10¹¹Vg/kg] via the retroorbital vein. To accelerate the development of hepatic tumours, a group of mice were fed on a high fat/high sucrose (HF/HS) diet for 9 months and nodules were detected by MRI.
P 33

Use of lentiviral vectors to sensitize pancreatic cancer cells to chemotherapy

Adeline Pointreau1, Flavie Sicard1, Louis Buscail1, Pierre Cordelier1

1INSERM U1037, Toulouse, France

Introduction: There is no efficient treatment for pancreatic cancer. Gemcitabine chemotherapy improves the patient’s clinical status but survival is not prolonged. Because of the promise of lentiviral vectors, we tested their ability to deliver deoxycytidine kinase (DCK), a key enzyme in gemcitabine metabolism, so as to sensitize pancreatic cancer-derived cells to chemotherapy.

Methods and Results: We produced HIV-1 based lentiviral vectors encoding for human DCK (LV-DCK) or copGFP (LV-GFP). Human MIA Paca-2 and Capan-2 pancreatic cancer-derived cells are readily transduced using these vectors (75 to 95% of positive cells, flow cytometry analysis). Transduction with LV-DCK results in DCK mRNA and protein over-expression. We found that stable clones expressing DCK are 50 times more sensitive to gemcitabine than control cells expressing copGFP (2D and 3D cell proliferation, cell viability). In addition, pancreatic cancer cells treated with LV-DCK are blocked in S phase (cell cycle analysis) and enter apoptosis (annexin-V labelling, caspase activity, Western blotting analysis). Last, we proceeded to DCK gene transfer in proliferating MIA Paca-2 cell cultures. As a consequence, cell viability as well as cell proliferation were strongly altered.

Conclusion: Taken together, these results strengthen the high efficiency of lentiviral vectors to deliver genes into pancreatic cancer-derived cells. As a consequence, DCK transduction strongly sensitizes pancreatic derived-cells to gemcitabine chemotherapy. This study is essential to benchmark the use of therapeutic vectors for the management of pancreatic cancer, in the continuity of the THERGAP gene therapy trial currently performed by the team.

P 34

Gene therapy for ovarian cancer: initial results with intraperitoneal infection of AAV vectors

Maciej Malecki1, Krzysztof Gawrychowski1, Anna Stachurska1, Anna Delbani1

1Department of Molecular Biology, Centre of Oncology and Faculty of Pharmacy WUM, Poland

It is known that peritoneal dissemination of cancer cells is characteristic of advanced stages of ovarian cancer. One of the novel therapeutic strategies available is cancer gene therapy with recombinant adeno-associated vectors (rAAV). The rAAV vectors represent the most promising gene delivery vehicles to cancer cells within serosal cavities. In our experiments rAAV2/2 vectors were produced in a helper-free system using an AAV-293 packaging cells, and analyzed by real-time PCR. The obtained viral vectors and non-viral preparations as a control (pDNA:PEI and pDNA:aminopropenol) were intraperitoneally administered to Balb/c mice pre-injected with L1 cancer cells. Subsequently, the mice were sacrificed and intraperitoneal effusions were analyzed for rAAV and pDNA sequences and the efficiency of gene transfer to cancer cells disseminated into peritoneal cavity was estimated. We reported an efficient infection of L1 cancer cells disseminated into the peritoneal cavity by rAAV2. The expression of reporter genes (GFP and LacZ) attributable to the rAAV cell uptake was dependent on an applied multiplicity of infection ratio (MOI). The highest infection efficiency was observed at the highest rAAV doses. This work documents the ability of rAAV to facilitate gene transferability to cancer cells disseminated in the serosal cavity, as well as the potential usefulness of these viruses as a new approach in cancer gene therapy in the clinic.

P 35

Development of a clinically-applicable lentiviral vector for the gene therapy of RS-SCID

Sabine Charrier1, Grégoire Cedrone1, Hélène Chautard1, Frédéric Barnay1, Johanna Blondeau2, Laure Caccavelli2, Jean-Pierre De Villartay2, Marina Cavazzano-Calvo2, Salima Hacein-Bey-Amina3, Anne Galy1

1Inserm U851, GENETHON, Evry; 2CIC Biothérapies and Inserm U768, Hôpital Necker, Paris, France

RS-SCID is a primary severe combined immune deficit caused by mutations in the Artemis gene. RS-SCID patients lack T and B cells and have an increased sensitivity to ionizing radiations. Several studies have already corrected models of the disease following Artemis lentiviral gene transfer. These results warrant further development of a clinically-applicable vector for a phase I/II gene therapy trial.

The proposed clinical vector expresses the human Artemis cDNA under control of an intronless EF1a promoter. To test if a post-transcriptional regulatory element is needed we evaluated the biopotency of vectors with or without WPRE in human Artemis-deficient cells (Guetel) and Sca1+ bone marrow cells of Artemis KO mice.

Transduction in Guetel cells showed a good correlation between vector copy number, mRNA and protein expression, according to the LV concentration. With a mean vector copy number equal to 1, the vector with a WPRE expressed 5 fold-higher levels of mRNA than the vector without WPRE whereas the vector without WPRE expressed normal levels of Artemis mRNA, as evaluated on single cell clones. Importantly, the expression of high levels of the Artemis transgene caused toxicity in Guetel cells and BM-Sca1+ cells. It is therefore important to maintain low levels of this transgene. The vector without WPRE is a good candidate for this option. Future experiments are planned to evaluate its biopotency in murine models and a formal preclinical biosafety evaluation will be conducted to obtain clinical trial authorization for a phase I/II gene therapy trial of RS-SCID.
SFTCG 2011 Abstract Author Index*

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abasali, Palizban</td>
<td>P 9</td>
</tr>
<tr>
<td>Abed, Soumeya</td>
<td>P 11</td>
</tr>
<tr>
<td>Adali, Ouomeya</td>
<td>P 27</td>
</tr>
<tr>
<td>Adrover, Martin</td>
<td>Or 10</td>
</tr>
<tr>
<td>Aghighi, Saman</td>
<td>Inv 18</td>
</tr>
<tr>
<td>Aguirre, Alejandra</td>
<td>Or 10</td>
</tr>
<tr>
<td>Ahouansou, Ornella</td>
<td>P 19</td>
</tr>
<tr>
<td>Ahouanssou, Ornella</td>
<td>Or 18</td>
</tr>
<tr>
<td>Allay, James</td>
<td>Inv 18</td>
</tr>
<tr>
<td>Andreiff, Michael</td>
<td>Inv 14</td>
</tr>
<tr>
<td>Angene, Ignacio</td>
<td>P 2</td>
</tr>
<tr>
<td>Astord, Stéphanie</td>
<td>P 5</td>
</tr>
<tr>
<td>Aubourg, Patrick</td>
<td>Or 18</td>
</tr>
<tr>
<td>Aubourg, Patrick, Or 3, Or 18</td>
<td>P 19</td>
</tr>
<tr>
<td>Aubouer, Patrick</td>
<td>Or 18</td>
</tr>
<tr>
<td>Aubri, Aurélie</td>
<td>P 20</td>
</tr>
<tr>
<td>Baelkendael, Veerle</td>
<td>Inv 6</td>
</tr>
<tr>
<td>Baez, Maria-Veronica</td>
<td>Or 10</td>
</tr>
<tr>
<td>Baillou, Claude</td>
<td>P 14</td>
</tr>
<tr>
<td>Baker, Andrew H</td>
<td>Inv 2</td>
</tr>
<tr>
<td>Barkats, Martine</td>
<td>Or 5</td>
</tr>
<tr>
<td>Barnay, Frédéric</td>
<td>P 35</td>
</tr>
<tr>
<td>Barteeu, Benoît</td>
<td>P 31</td>
</tr>
<tr>
<td>Barthelemy, Florian</td>
<td>P 20</td>
</tr>
<tr>
<td>Bartoli, Marc</td>
<td>P 20</td>
</tr>
<tr>
<td>Battaglia, Sérénor</td>
<td>Or 16</td>
</tr>
<tr>
<td>Becker, Fabienne</td>
<td>P 16</td>
</tr>
<tr>
<td>Belierv, Fanny</td>
<td>P 6, P 26</td>
</tr>
<tr>
<td>Berlier, Bertrand</td>
<td>Or 13</td>
</tr>
<tr>
<td>Berchel, Mathieu</td>
<td>Or 2, P 10</td>
</tr>
<tr>
<td>Bertog, Anne Sophie</td>
<td>P 28</td>
</tr>
<tr>
<td>Berretta, Giulia</td>
<td>P 4</td>
</tr>
<tr>
<td>Bertrand, Emilie</td>
<td>P 13</td>
</tr>
<tr>
<td>Betruing, Sandrine</td>
<td>P 18</td>
</tr>
<tr>
<td>Beuf, Olivier</td>
<td>P 32</td>
</tr>
<tr>
<td>Becie, Ivan</td>
<td>P 19</td>
</tr>
<tr>
<td>Bigey, Pascal</td>
<td>Inv 15</td>
</tr>
<tr>
<td>Blacho, Gilles</td>
<td>Inv 7</td>
</tr>
<tr>
<td>Blondeau, Johanna</td>
<td>P 35</td>
</tr>
<tr>
<td>Blondel, Armelle</td>
<td>Or 15</td>
</tr>
<tr>
<td>Blum, David</td>
<td>Or 11</td>
</tr>
<tr>
<td>Boisgerault, Florence</td>
<td>Inv 12, Or 6, P 23, P 25</td>
</tr>
<tr>
<td>Boni, Sébastien</td>
<td>P 7</td>
</tr>
<tr>
<td>Bouakaz, Ayache</td>
<td>P 12</td>
</tr>
<tr>
<td>Bougneres, Pierre</td>
<td>P 3</td>
</tr>
<tr>
<td>Bouquet, Celine</td>
<td>Or 18</td>
</tr>
<tr>
<td>Bourdel, Alys</td>
<td>P 8</td>
</tr>
<tr>
<td>Bouvattier, Claire</td>
<td>P 3</td>
</tr>
<tr>
<td>Brion, Régis</td>
<td>Or 16</td>
</tr>
<tr>
<td>Briot-Nivard, Delphine</td>
<td>Or 5</td>
</tr>
<tr>
<td>Brown-kennerly, Victoria</td>
<td>P 1</td>
</tr>
<tr>
<td>Bucher, Thomas</td>
<td>Or 5</td>
</tr>
<tr>
<td>Buchholz, Christian</td>
<td>P 29</td>
</tr>
<tr>
<td>Buei, Luc</td>
<td>Or 11</td>
</tr>
<tr>
<td>Bunin, Hildegard</td>
<td>Inv 1</td>
</tr>
<tr>
<td>Burgan, Auroure</td>
<td>Inv 15</td>
</tr>
<tr>
<td>Burlot, Marieanne</td>
<td>Or 11</td>
</tr>
<tr>
<td>Buscais, Louis</td>
<td>Or 7, Or 17, P 33</td>
</tr>
<tr>
<td>Cabauche, Jocelyne</td>
<td>P 18</td>
</tr>
<tr>
<td>Cacavelli, Laure</td>
<td>P 35</td>
</tr>
<tr>
<td>Cany, Jeannette</td>
<td>P 30</td>
</tr>
<tr>
<td>Carberry, Lara</td>
<td>P 1</td>
</tr>
<tr>
<td>Carlier, Pierre</td>
<td>Or 19</td>
</tr>
<tr>
<td>Carmoy, Nathalie</td>
<td>Or 2</td>
</tr>
<tr>
<td>Cartier, Nathalie</td>
<td>Or 11, Or 18, P 18, P 19</td>
</tr>
<tr>
<td>Castel, Jose V</td>
<td>Inv 8</td>
</tr>
<tr>
<td>Cavazza, Marina</td>
<td>Inv 17, P 35</td>
</tr>
<tr>
<td>Cedrone, Frédéric</td>
<td>P 4</td>
</tr>
<tr>
<td>Cedrone, Grégoire</td>
<td>P 35</td>
</tr>
<tr>
<td>Cereso, Nicolas</td>
<td>P 16</td>
</tr>
<tr>
<td>Charbord, Pierre</td>
<td>Or 8</td>
</tr>
<tr>
<td>Charrier, Sabine</td>
<td>P 35</td>
</tr>
<tr>
<td>Charton, Karine</td>
<td>P 21, P 22</td>
</tr>
<tr>
<td>Chatin, Benoît</td>
<td>P 6, P 26</td>
</tr>
<tr>
<td>Chautard, Hélène</td>
<td>P 35</td>
</tr>
<tr>
<td>Chauveau, Christine</td>
<td>Or 14</td>
</tr>
<tr>
<td>Chauvin, Yer Marc</td>
<td>Or 15</td>
</tr>
<tr>
<td>Cheli, Veronica</td>
<td>Or 10</td>
</tr>
<tr>
<td>Cherlandame, Hervé</td>
<td>P 13</td>
</tr>
<tr>
<td>Chèrel, Yan</td>
<td>Or 18, Or 19, P 17, P 24, P 27</td>
</tr>
<tr>
<td>Cheve, Christophe</td>
<td>Or 14</td>
</tr>
<tr>
<td>Chowday, Pratima</td>
<td>Inv 18</td>
</tr>
<tr>
<td>Chrésien, Stany</td>
<td>P 11</td>
</tr>
<tr>
<td>Ciré, Séverine</td>
<td>Inv 12, P 29</td>
</tr>
<tr>
<td>Coleman, John</td>
<td>Inv 18</td>
</tr>
<tr>
<td>Colle, Marie-Anne</td>
<td>Or 18</td>
</tr>
<tr>
<td>Colle, Marie-Anne</td>
<td>P 3, P 24</td>
</tr>
<tr>
<td>Collins, Mary K</td>
<td>P 29</td>
</tr>
<tr>
<td>Conchon, Sophie</td>
<td>Or 3, P 30</td>
</tr>
<tr>
<td>Conscience, Aude</td>
<td>P 16</td>
</tr>
<tr>
<td>Consortium, Duchenne</td>
<td>P 17</td>
</tr>
<tr>
<td>Corbinais, Sébastien</td>
<td>P 11</td>
</tr>
<tr>
<td>Cordel, Pierre</td>
<td>Or 7, Or 17, P 33</td>
</tr>
<tr>
<td>Corre, Guillaume</td>
<td>Or 6</td>
</tr>
<tr>
<td>Cosset, François-Loïc</td>
<td>Inv 3, Or 12</td>
</tr>
<tr>
<td>Costiout, Patrick</td>
<td>Or 5</td>
</tr>
<tr>
<td>Crystal, Ronald</td>
<td>Or 18</td>
</tr>
<tr>
<td>Cui, Xiaoxia</td>
<td>P 1</td>
</tr>
</tbody>
</table>

*Invited (Inv) abstracts are found on pp. A-3–A-8; Oral (or) abstracts are found on pp. A-9–A-15; and Poster (P) abstracts on pp. A-16–A-26.
<table>
<thead>
<tr>
<th>Author</th>
<th>Inv/Or/Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauttier, Vanessa</td>
<td>Or 3, P 30</td>
</tr>
<tr>
<td>Gavard, Françoise</td>
<td>Inv 13</td>
</tr>
<tr>
<td>Gawrychowski, Krzysztof</td>
<td>P 34</td>
</tr>
<tr>
<td>Gemouex, Gwladys</td>
<td>P 27</td>
</tr>
<tr>
<td>Gill, Deborah</td>
<td>Or 2</td>
</tr>
<tr>
<td>Gioia, Roberta</td>
<td>Or 16</td>
</tr>
<tr>
<td>Glader, Bert</td>
<td>Inv 18</td>
</tr>
<tr>
<td>Goldstein, Jérémie</td>
<td>P 28</td>
</tr>
<tr>
<td>Gomez, Jean-Pierre</td>
<td>P 13</td>
</tr>
<tr>
<td>Goncalves, Cristine</td>
<td>P 13</td>
</tr>
<tr>
<td>Gorochov, Guy</td>
<td>Or 9</td>
</tr>
<tr>
<td>Gottrand, Gaelle</td>
<td>P 28</td>
</tr>
<tr>
<td>Gouble, Agnès</td>
<td>P 4, P 8</td>
</tr>
<tr>
<td>Goumeaux, Cyndie</td>
<td>P 3</td>
</tr>
<tr>
<td>Gray, John T.</td>
<td>Inv 18</td>
</tr>
<tr>
<td>Gribova, Varvara</td>
<td>Or 8</td>
</tr>
<tr>
<td>Griffoen, Anja</td>
<td>Inv 18</td>
</tr>
<tr>
<td>Guegan, Philippe</td>
<td>P 13</td>
</tr>
<tr>
<td>Guillaud, Mickaël</td>
<td>P 27</td>
</tr>
<tr>
<td>Guillaumeux, Yannicke</td>
<td>Or 15</td>
</tr>
<tr>
<td>Guiner, Caroline Le</td>
<td>Or 19, P 17, P 24, P 27</td>
</tr>
</tbody>
</table>

Hacein-Bey-Abina, Salima, Inv 17
Hacein-Bey-Amina, Salima, P 35
Hackett, Neil, Or 18
Haghighi, Farhad, Or 8
Hamel, Christian, P 16
Hamidi, Sofiane, P 14
Haminouche, Zahia, Or 8
Harrington, Chris, Inv 18
Haudenbour, Thomas, P 3
Hemion, Pierre Marie, P 2
Herrouet, Soizic, P 31
Heymann, Dominique, Or 16, P 31
High, Katherine, Inv 18
Hir, Sophie Le, P 10
Hogrel, Jean-Yves, Or 19
Holic-Barlet, Nathalie, Or 1
Hordeaux, Juliette, P 24
Horvat, Branka, Or 12
Hu, Amélie, P 18
Hudy, Eloise, P 19
Huret, Christophe, Or 13
Hyde, Stephen C., Or 2

Iacobelli, Fabien, P 24

Jaffres, Paul-Alain, Or 2, P 10
Jerome, Christian, P 5
Jerusalinsky, Diana A, Or 10
Ji, Diana, P 1
Jollet, Arnaud, P 8
Jotereau, Francine, Or 15
Joussemet, Béatrice, Or 5, P 24

Kalatzis, Vasiliki, P 16
Kaye, Mark, Inv 18
Kergournay, Virginie, P 20
Klatzmann, David, Or 9, P 28

Klonkowski, Bernard, Inv 13
Krahn, Martin, P 20

Labarriere, Nathalie, Or 15
Lambert, Sidonie, Or 9
Lamoureux, François, P 31
Langelot, Marie, P 26
Larcher, Thibault, P 27
Larrieu, Pierre, Or 15
Le Guiner, Caroline, Or 19
Leboulch, Philippe, P 11
Lehn, Pierre, Or 2, P 10
Lemere, Guylène, Or 14
Lemoine, François, Or 13
Lemoine, François Marie, P 14
Leroy, Florence, P 21
Lescale, Geraldine, Or 13
Levy, Nicolas, P 20
Li, Jun, Or 4
Libleau, Lyse, Or 14
Lilley, Patricia, Inv 18
Lindberg, Matthias, Or 2
Luik, Hubert, Or 17

Macintosh, Jenny, Inv 18
Madeira, Alexandra Mendes, Or 14
Magnan, Antoine, P 26
Mailly, Philippe, P 18
Malecki, Maciej, P 34
Manchev, Vladimir, P 8
Mannouei, Cécile Schiffer, P 4
Maouche-Christien, Leila, P 11
Marais, Thibault, Or 5
Marcellin, Anne-Genovève, Or 9
Marie, Corinne, Inv 15
Marini, Frank, Inv 14
Marodon, Gilles, Or 9, P 28
Matous, Etienne, P 31
Matsuka, Stanislav, Inv 19
McCoy, Aaron, P 1
Melendez, Matias, E, Or 10
Méroil, Nathalie, Inv 18
Mevel, Mathieu, P 6, P 26
Midoux, Patrick, P 13
Miller, Andrew D., Inv 20
Miller, Andrew David, Inv 5
Mingozzi, Federico, Inv 18
Miticheux, Gilles, P 32
Monjare, François, P 22
Montier, Tristan, Or 2, P 10
Montus, Marie, Or 19, P 17
Moreau, Stéphanie, P 24
Moullier, Philippe, Or 5, Or 14, Or 18, Or 19, P 17, P 24, P 27
Mouly, Vincent, P 20
Mousazadeh, Mohammad, P 9
Muscar, Fabrice, Or 7
Mutel, Elodie, P 32

Nathwani, Amit C., Inv 18
Neldey-Neunga, Thi my anh, Or 6

Ng, Catherine Y.C., Inv 18
Nguyen, Tuan Huy, P 2, P 7, P 32
Nienhaus, Arthur W., Inv 18
Norol, Françoise, P 14
Novell, Anthony, P 12

Paganoni, Giorgio, Inv 19
Paldi, Andras, Or 6
Paques, Frédéric, P 4, P 8
Pelligrini, Graziella, Inv 19
Pengam, Sabrina, P 6
Pequignot, Marie, P 16
Peric, Javier, Or 1
Peron, Jean-Marie, Or 7
Petit, Nicolas, Or 9
Picard, Gaelle, P 31
Pichard, Virginie, P 7
Pichon, Chantal, P 13
Pie, Jun, Inv 18
Piguet, Françoise, Or 18, P 18
Pilleul, Frank, P 32
Ping, Yuan, Or 4
Pion, Delphine, P 21
Piron, Julien, P 12
Pitard, Bruno, P 6, P 26, P 31
Pitoiset, Fabien, Or 13
Planet, Pierre, P 27
Ploquin, Aurélie, Or 12
Pointreau, Adeline, P 33
Poiriot, Laurent, P 4
Pontes, Cécilia Abarrategui, P 2
Poupiot, Jérôme, P 23
Pourcher, Guillaume, Or 8
Pradier, Laurent, Or 11
Preat, Véronique, P 5
Provost, Nathalie, Or 14
Pucéat, Michel, P 11

Queuxiaux, Valerie J.F., Inv 11
Quiviger, Mickael, Inv 15

Ragelle, Héloïse, P 5
Ragon, Isabelle, P 28
Rajas, Fabienne, P 32
Rama, Paolo, Inv 19
Raoul, Sylvie, Or 18
Raslova, Hana, P 14
Redini, Françoise, Or 16, P 31
Reiss, Ulrike M., Inv 18
Richard, Isabelle, P 21, P 22, P 23
Richardson, Jennifer, Inv 13
Riddell, Anne, Inv 18
Riva, Raphaël, P 5
Robert, Lorenne, P 16
Rouge, Fabienne, Or 14
Rommaelaere, Jean, Inv 16
Roules, Cecilia, Inv 18
Rouger, Karl, Inv 9
Roujeau, Thomas, Or 18
Rousseau, Julie, Or 16
Ryffel, Bernhard, Inv 11, Inv 12
Saiagh, Soraya, P 15
Salatūn, Jean-Yves, P 10
Salehi, Rasoul, P 9
Salvetti, Anna, Or 12
Sanatine, Peggy, Or 6
Santos, Christine Dos, P 3
Sarabayrouse, Guillaume, Or 15
Scherman, Daniel, Inv 15, Or 16
Schlegel, Anne, Inv 15
Schmitt, Françoise, P 2
Servais, Laurent, Or 19, P 17
Sevin, Caroline, Or 18, P 3
Sicard, Flavie, Or 7, Or 17, P 33
Silva, Georges H, P 8
Si-Tayeb, Karim, P 11
Sleep, Susan, Inv 18
Smith, Julianne, P 4
Sondhi, Dolan, Or 18
Spaeth, Erika, Inv 14
Spinelli, Alessandra, Inv 19
Stachurska, Anna, P 34
Stefanutti, Anne, P 32
Sudres, Muriel, Inv 12
Suleman, Muhammad, Inv 13
Szecsi, Judit, Or 12
Taleb, Kahina, P 28
Tartour, Eric, Inv 13
Thanou, Maya, Inv 20
Tesson, Laurent, P 2
Tirode, Franck, P 31
Tissot, Adrien, P 26
Trichet, Valérie, Or 16, P 31
Troquier, Laetitia, Or 11
Tubusawan, Alisa, P 11
Tuddenham, Edward G.D., Inv 18
Vainchenker, William, P 14
Vallier, Ludovic, P 11
Vandermeulen, Gaëlle, P 5
Vanier, Marie-Thérèse, Or 18
Vassaux, Georges, Inv 4
Verhoeyen, Els, Inv 3
Vidaud, Michel, P 19
Voit, Thomas, Or 5, Or 19, P 17
Wakeling, Erin, Or 5
Weber, Anne, P 11
Weber, Michel, Or 14
Wein, Nicolas, P 20
Weinstein, Edward, P 1
Wilmès, Cyril, Inv 12, P 25
Yamagata, Yoshiaki, Or 6
Yee, Thynn, Inv 18
Zeghimi, Aya, P 12
Zerah, Michel, Or 18
Zerbato, Madeleine, Or 1
Zhang, Wenwei, Or 8
Zhou, Junfang, Inv 18