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23Due to genetic defects or illness some individuals require higher amounts of thiamin than are typically
24provided by the diet. Lipid-soluble thiamin precursors can achieve high blood levels of thiamin and result in
25increased concentrations in the central nervous system. High intakes of thiamin have been reported as
26beneficial in children with autism and attention deficit/hyperactivity disorder. The current study examined
27the effect of thiamin tetrahydrofurfuryl disulfide (TTFD), a lipophilic precursor, on behavior in the juvenile
28male DBA/2J mouse. Mice given by oral gavage deionized water or deionized water providing 100 mg or
29340 mg TTFD/kg body weight daily for 17 days, starting at postnatal day 18, were tested for effects on operant
30learning, social interaction, general activity level, and prepulse inhibition of acoustic startle, as well as effects
31on growth and select organ weights. Results indicate lower activity and altered social interaction at both
32treatment levels and decreased acoustic startle at the 100 mg/kg level. Compared to controls, percent weight
33gain was lower in the TTFD-treatment groups, but percent body length increase was not affected by TTFD
34treatment. TTFD treatment did not influence percent organ weights as percentage of body weights. TTFD
35treatment resulted in increased whole brain thiamin concentrations. These results support the concept that
36lipophilic thiamin precursors provided during early development can affect a number of behavioral
37parameters. In clinical trials with children with behavior disorders, attention should be given to preventing
38possible adverse gastrointestinal irritant effects associated with TTFD therapy.
39© 2011 Published by Elsevier Inc.
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44 1. Introduction

45 Thiamin, vitamin B-1, has several known functions in the body that
46 have the potential to affect brain activity and behavior. As thiamin
47 diphosphate (ThDP) it serves as a cofactor for enzymes involved in
48 energy metabolism and formation of essential body constituents
49 (McCormick, 2000) as well as the degradation of 3-methyl branched

50chain fatty acids and 2-hydroxy straight chain fatty acids (Casteels et al.,
512007). Thiamin triphosphate (ThTP) activates Cl− uptake throughmaxi
52chloride channels in excised patches of neuroblastoma cells, is involved
53in nicotinic receptor clustering at the neuromuscular junction, and has
54been hypothesized to play a role in brain cell signaling and protection
55against mitochondrial oxidative stress (reviewed by Bettendorff and
56Wins, 2009). Cell signaling functions have also been proposed for
57adenosine thiamin triphosphate (AThTP) and adenosine thiamin
58diphosphate (AThDP) (Frédérich et al., 2009). Other reported or
59hypothesized functions include regulation of enzyme expression (e.g.,
60(Pekovich et al., 1998a)); alteration of neuronalmembrane ion channels
61that result in prolonged depolarization responses (Houzen and Kanno,
621998; Tallaksen and Tauboll, 2000); maintenance of nerve membrane
63potentials (Itokawa, 1996); alteration of neurotransmitter release
64(Yamashita et al., 1993) or uptake (Thomson and Marshall, 2006);
65and antioxidant activity of unphosphorylated thiamin (reviewed by
66(Gibson and Blass, 2007)).
67The signs of thiamin deficiency are protean and manifest differently
68depending on an individual's age, dietary deficiencies and relative
69amounts of dietary carbohydrate, disease status, and genetic makeup
70(Inouye andKatsura, 1965). Cells differ in their ability to uptake thiamin,
71the amounts that are needed, and regulation of the different forms of
72thiamin and their compartmentalization (Bettendorff, 1995; Pekovich
73et al., 1998b). Specialized transporters limit the rate of thiamin uptake
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74 (reviewed by (Bettendorff and Wins, 2009)); therefore, conditions
75 affecting these transporters can influence thiamin requirements. Thus,
76 in disease states that result in defects of upstream factors, such as
77 enzymes or other proteins that interact with thiamin, a means of
78 bypassing thiamin transport can be of value. Thiamin tetrahydrofurfuryl
79 disulfide (TTFD) can be taken orally and absorbed without need for
80 passage through thiamin transporters (Mitoma, 1973; Suzuoki et al.,
81 1968). TTFD has been used clinically in Japan and the U.S. (Lonsdale,
82 2006), and is generally considered safe (Baker and Frank, 1976;
83 Lonsdale, 1987a; Mizutani et al., 1971). The oral LD50 in mice is
84 2200 mg/kg (Anon, 1982).
85 Thiamin or TTFD has shown promise in the treatment of two
86 neurological disorders in children. A pilot human study (Lonsdale et al.,
87 2002) investigating treatment of young autistic children with 50 mg
88 b.i.d. by rectal suppository suggested positive results with respect to
89 improvements in behavior, speech, and sleep. A beneficial effect of high-
90 dose thiamin was also reported in children with hyperkinesis (Brenner,
91 1982)where 8 of 100 children responded favorably to 100 mgq.i.d.; 4 of
92 the children required supplementation long term, a finding that
93 suggested a genetic basis to their high thiamin requirement. Re-
94 searchers (Lonsdale, 1987a, 1982b, 1990, 2006) have reported other
95 multifaceted behavioral and somatic disorders in children that have
96 responded to thiamin or lipophilic thiamin precursor administration. In
97 adults, lipophilic forms of thiamin have been used to treat psychobe-
98 havioral inhibition and asthenia, enhance memory in elderly patients,
99 and improve cognitive function and reduce anxiety in university
100 students with severe psychosomatic fatigue (reviewed by (Van Reeth,
101 1999)), as well as a number of other disorders which will be reviewed
102 below in Section 4.4.
103 This present study was undertaken to focus specifically on
104 behavioral effects of pharmacologic doses of thiamin provided via
105 oral TTFD. The test animal was the juvenile male DBA/2J mouse, an
106 inbred strain that has been widely studied and characterized. The
107 possibility that this mouse may have a defect in thiamin utilization
108 has been advanced, though not substantiated (Eudy et al., 2000;
109 Lonsdale, 1982a). This mouse experiences rapid age-related hearing
110 loss (Johnson et al., 2008). TTFD treatment reportedly extends
111 juvenile DBA/2J susceptibility to audiogenic seizures (Lonsdale,
112 1982a), a finding that could indicate a change in the advance of
113 their hearing loss. The present study used juvenile mice in order to
114 simulate effects of supplementation in young children with behavioral
115 disorders.
116 To assess behavioral effects of TTFD, we developed a rapid,
117 sequential test battery including operant learning, social dyadic
118 interaction, monitoring of activity levels over a 24-h period, and
119 prepulse inhibition of acoustic startle. Low response rates in the
120 juvenile mice during the evaluation of operant learning and technical
121 difficulties with the apparatus minimized the ability to draw
122 conclusions from this assessment, thus these data are not presented.

123 2. Methods and materials

124 2.1. Animals and animal care

125 The animal protocol was approved by the UC Davis Animal Care and
126 Use Administrative Advisory Committee. Eighteen-day-oldmaleDBA/2J
127 mice were purchased from Jackson Laboratory West (Sacramento, CA
128 vivarium) in thirteen cohorts that each included 6 to 8 mice randomly
129 distributed among treatment groups (control and TTFD) plus an equal
130 number used as stimulus mice for the social dyadic interaction test.
131 Assignment to treatment groupwasdoneuponarrival, usingonemouse
132 per litter per treatment group. Treatment groups in each cohort were
133 subdivided into 2 ‘squads’ because of limitations in testing equipment.
134 Treatment groups and squads were balanced for body weight of the
135 mice.

136All experimental and stimulus mice were caged with littermates
137until postnatal day (PND) 21, at which time experimental mice were
138individually caged, whereas stimulus mice were then paired with a
139non-littermate, with change to a different non-littermate each day
140until social dyadic testing was completed. This re-pairing of stimulus
141mice prevented frequent rearing and jumping (escape) behavior seen
142in preliminary studies when stimulus mice were continuously caged
143with littermates.
144Mice were housed under temperature (20–22 °C) and light-
145controlled (reverse phase, lights on 21:15–09:15) conditions and
146fed a complete, purified egg white protein based diet (Dyets modified
147AIN-93G) and deionized water ad lib throughout the study period,
148except as follows: for experimental mice, foodwas restricted 4-h prior
149to the 2-h training session for operant learning and the 2-h operant
150learning test itself. As is common in nutritional studies, treatments for
151experimental mice were initiated upon receipt of the mice.
152From PND 18 to PND 34 experimental mice were given daily oral
153gavage (at 09:00 for squad 1, at 11:30 for squad 2) with 5 μl fluid/g
154body weight. Gavage treatments were deionized water (control, T0,
155n=24), 100 mg TTFD/kg body weight in deionized water (T100,
156n=23), or 340 mg TTFD/kg body weight in deionized water (T340,
157n=24). These dosages correspond on a thiamin molar basis to
158lipophilic forms of thiamin used in previous studies with mice
159(Lonsdale, 1982a; Micheau et al., 1985).
160With the exception of the 24-h activity test, the tests were
161conducted approximately 3-h after gavage, during the first half of the
162dark cycle, a time mice are naturally active. Mice were transported to
163and from test locations in a dark, insulated container.
164Mice used for tissue analysis were divided into the same three
165treatment groups (n=5–6/group), reared under similar conditions as
166the mice used for the behavioral work (without behavior testing),
167provided deionized water and a similar diet (Kwik-Uribe et al., 2000)
168supplementedwith additional thiamin to bring the thiamin content to
169the same level (5 mg/kg diet) as provided to the experimental mice
170and asmeets the recommended intake level formice (N.R.C.U.S.S.o.L.A,
1711995). After 12 days of gavage treatment, themicewere euthanized by
172CO2 inhalation and whole brain was removed for thiamin analysis.

1732.2. Study design

174The timeline for the behavioral study is given in Table 1.

1752.3. Growth and organ weights

176Experimental mice were weighed daily before gavage, and body
177length (nose to rump) was determined at the start of the study and
178before necropsy. Mice were observed at both the start and end of the
179study to detect any changes in general activity, ambulation, posture,

Table 1 t1:1

Timeline for studya.
t1:2
t1:3Postnatal day Animal care and testing

t1:418 Receive mice. Weigh, measure length, observe, assign to squad
and treatment

t1:521 Individually cage experimental mice. Pair cage stimulus mice
with non-littermate.

t1:622–28 Re-pair stimulus mice
t1:725 Dipper training for operant test
t1:826 Operant test
t1:927 Social dyadic interaction, session 1
t1:1028 Social dyadic interaction, session 2
t1:1129 Test of 24-h activity, squad 1
t1:1230 Test of 24-h activity, squad 2
t1:1332 Prepulse inhibition of acoustic startle test
t1:1434 Weigh, measure length, observe, necropsy for organ weights

a n=24 T0 (control), 23 T100 (100 mg TTFD/kg body weight), 24 T340 (340 mg
TTFD/kg body weight) t1:15
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180 appearance, or behavior. On PND 34, 3 h after gavage, mice were
181 euthanized by CO2 inhalation, and the brain, testes, liver, spleen,
182 kidneys, and heart were rapidly removed and weighed.

183 2.4. Behavior tests

184 2.4.1. Social dyadic interaction test
185 Mice proceeded to this test after completing the operant behavior
186 test, which is not discussed due to procedural difficulties with that
187 test (unpublished data). Social behaviors were studied by pairing each
188 experimental mouse with a DBA/2J stimulus mouse (a mouse of the
189 same age and sex that did not receive gavage treatment with TTFD or
190 water) on two consecutive days. Experimental and stimulus mice
191 were ranked and paired according to weight. Stimulusmicewere used
192 once on each of the consecutive test days and were paired with
193 different experimental mice on the two days. Prior to starting the test,
194 the stimulusmouse wasmarkedwith a blackmarker for identification
195 then both mice were placed in separate Plexiglas holding chambers
196 (3.1 cm2) identical to the test chamber and allowed to acclimate for
197 5 min. Followingacclimation, bothmicewere placed in the test chamber
198 at the same time, andvideotaped for 10 min under low illumination. The
199 chambers were cleaned before testing each pair of mice.
200 An experienced observer, blinded to the experimental treatment,
201 scored the number and duration of focal (experimental) mouse
202 behaviors using Noldus Observer 5.0 software (Wageningen, the
203 Netherlands) according to categories adapted from Terranova and
204 Laviola (Terranova and Laviola, 2001). Behaviors were grouped into
205 categories that reflected activity level and orientation of activity
206 (toward the stimulus mouse vs. the environment) (Table 2).

207 2.4.2. 24-h activity monitoring
208 Activity monitoring was conducted in an enclosed, automated
209 ‘open field’ (Integra, Accuscan, Columbus, OH) as previously described
210 (Golub et al., 2004), over a 24 h period, with data collected in 3-min
211 time bins. Each mouse was placed in the apparatus chamber (36 cm2,
212 Plexiglass box) containing access to food and water approximately
213 1¾ h prior to the end of the light cycle (which was uniformly set for
214 the same time for each cohort), after being weighed and receiving its
215 gavage treatment. The first 30 min of activity in the arena (data
216 collected and analyzed in ten 3-min time bins) was used to determine
217 adaptation to a novel environment and assess emotionality. For the
218 remainder of the 24-h period, 3-min time bins were synchronized
219 with respect to day/night cycle by using the time stamp on each 3-min
220 time bin. Four hundred fifty one synchronized 3-min time bins
221 (1353 min total) exclusive of the adaptation period were obtained for
222 each mouse and divided into 23 time bins, the first consisting of 33
223 minutes, and the remaining time bins consisting of 1 h each. Means of
224 activities for each time bin were obtained for each mouse. Activity

225rhythms were also summarized for 75 min (25 3-min time bins)
226following the beginning of the dark cycle, the time of peak activity.

2272.4.3. Acoustic startle/prepulse inhibition (ASPPI)
228This procedure tests the degree to which presentation of a brief low
229intensity sound (the prepulse) provided 30–500 ms prior to a sudden
230intense startle-producing sound (the pulse) inhibits the resulting startle
231reflex. The prepulse normally reduces the startle response and is an
232operational measure of sensorimotor gating, a process by which an
233animal filters out extraneous information and protects against sensory
234overload for (review see (Swerdlow et al., 2008)). Deficits in sensory
235prepulse inhibition (PPI) are studiedwith reference to several disorders,
236including schizophrenia, panic disorder, bipolar disorder, obsessive
237compulsive disorder, comorbid Tourette syndrome/attention deficit
238hyperactivity disorder, and Huntington's disease (for review see
239Swerdlowet al., 2008). In rodents the startle response itself is commonly
240used to assess emotional reactivity and the effects of anti-anxiety drugs
241(Bourin et al., 2007; Grillon, 2008;McCaughran et al., 2000). Species and
242strains within species differ in their regulation of startle and PPI
243(Swerdlow et al., 2008).
244A commercial startle reflex system (SR-LAB, San Diego Instru-
245ments, San Diego, CA), previously described (Berman et al., 2008), was
246used. The mouse was allowed to acclimate in the dark chamber for
2475 min before testing commenced. The 10-min test session consisted of
24850 stimulus trials presented in a pseudo random manner, separated
249by inter-trial intervals of 5- to 20-s (5 s steps). Testing was divided
250into 10 blocks, each consisting of five trial combinations: (i) 120-dB,
25140 ms startle alone, (ii) 120-dB, 40 ms startle preceded by 74-dB
252prepulse, (iii) 120-dB, 40 ms startle preceded by 82-dB prepulse, (iv)
253120-dB, 40 ms startle preceded 90-dB prepulse, and (v) no stimulus
254(background white noise only), as previously described (Berman et
255al., 2008).

2562.5. Necropsy and tissue analysis for thiamin and thiamin phosphates

257Following euthanasia by CO2 inhalation, the whole brain (including
258olfactory bulb and brainstem) was rapidly excised, immediately frozen
259in liquid nitrogen, and stored at minus 80 °C until extracted and
260analyzed by HPLC according to published methods (Bettendorff et al.,
2611991). The remaining pellet was dissolved in 2 ml 1 N NaOH in a warm
262water bath, then analyzed for protein content by the Bradford method
263(Bradford, 1976) using fatty acid-free bovine serum albumin as the
264protein standard.

2652.6. Chemicals

266Chemical sources were as follows: TTFD from Cardiovascular
267Research, Ltd (Concord, CA, USA); thiamin, ThMP, ThDP, tricholoroacetic
268acid (99+%, ACS), and bovine serum albumin from Sigma Aldrich
269(St. Louis, MO, USA). Diethyl ether and stabilizer-free tetrahydrofuran
270were from Biosolve (Valkenswaard, The Netherlands). ThTP and AThTP
271were prepared as previously described (Bettendorff et al., 2003 and
272Frédérich et al., 2009, respectively). Purifiedwater was obtained using a
273Barnstead NANO-pure system (Van Nuys, CA).

2742.7. Statistical analysis

275Analysis of variance (ANOVA) or covariance (ANCOVA) was
276conducted with SAS 9.2 for Windows (SAS Institute, Inc., Cary, NC)
277using theMixed Procedurewith Tukey–Kramer post hoc comparisons.
278Cohort was used as the random effect. For repeated measures over
279time an auto regressive structure [AR(1)] was used. The group option
280was included where appropriate to optimize model fit. Differences in
281all analyses were considered significant at Pb0.05. P values have been
282rounded to 0.05, 0.01, 0.005, 0.001, 0.0005, or 0.0001, as appropriate.
283The results of analyses showing significance of TTFD effects are

Table 2t2:1

Social dyadic interaction: behavior groups used for ANCOVA.
t2:2
t2:3 Behavioral group Component behaviors

t2:4 Social passive: includes mild-mannered
association with the stimulus mouse

Social inactive, push past, cuddle,
social receptive, turn away

t2:5 Social active: includes vigorous interaction
with the stimulus mouse

Groom partner, push under, crawl
over/under, follow

t2:6 Total active: includes both social active
behavior and other vigorous activity
directed toward the environment

Groom partner, push under, crawl
over/under, follow, explore, jump

t2:7 Other: includes behaviors that were less
active or of uncertain intent regarding
the stimulus mouse

Approach, social sniff, groom self,
rear

Component behaviors were grouped into larger behavioral groups (i.e., social passive,
social active, total active, other) that reflected activity level and orientation of activity
(toward the stimulus mouse vs. the environment). Analyses were conduced on these
behavior groups.t2:8
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284 presented in tables, along with details of the analyses. Where
285 interactions of treatment with covariates occurred, between-group
286 significance of treatment was examined at the 25th, 50th, and 75th
287 percentiles of the covariate.
288 Because mice grow rapidly during the juvenile period, weight was
289 measured at several time points during treatment, and the gain in
290 weight from the pretreatment baseline to necropsy (percent weight
291 change) and growth in length from baseline to necropsy were used as
292 growth endpoints. Organs as percent of bodyweight were determined
293 for each mouse at necropsy.
294 Lower weight gain (represented as percent weight change in
295 analyses) may be an indicator of generally delayed development that
296 could be reflected in behavior. Because weight gain was found to
297 differ between TTFD treatment groups at early stages of behavioral
298 testing, further analyses were conducted for those behavioral
299 endpoints which showed direct effects of both TTFD and weight
300 gain. These analyses produced a measure of total effect of treatment,
301 derived from path analysis, which takes into account how treatment
302 directly affects behavior as well as how it indirectly affects behavior
303 through its effect on weight gain. Comparison of direct and total
304 effects (not shown) indicated that although some behavioral effects of
305 TTFD occurred partially through effects on weight or weight gain, that
306 component was much smaller than the direct effect.
307 For the social dyadic interaction test, the duration and number of
308 episodes for each behavior group for the two sessions were analyzed
309 by repeated measures ANCOVA, and ANCOVA was also performed on
310 the mean of the two sessions for each behavior. Analysis of episode
311 and duration data yielded similar results; only the duration data
312 group comparisons are presented.
313 For the activity test adaptation period, data were analyzed by
314 repeated measures ANCOVA across ten 3-min time samples. Repeated
315 measures ANCOVA of variables over the 24-h period (time bins
316 synchronized for the light/dark cycle, excluding the adaptation
317 period) was conducted using each subject's means for 23 time bins
318 described in Section 2.4.2. Spline graphs were used to examine the
319 rhythm of several activity measurements during the light→dark
320 transition period. Mean values of these variables for each of the
321 twenty-five 3-min time samples following onset of the dark cycle
322 were plotted using sm50 interpolation and analyzed with polynomial
323 mixed models. When interactions of treatment× sample were
324 significant and the model with those interactions showed better fit
325 than the model without the interactions, treatment was considered to
326 significantly affect the activity pattern.
327 For the acoustic startle prepulse inhibition test, means for baseline
328 (i.e., no stimulus) response, startle response, and startle response
329 following each prepulse level were obtained for each mouse. Acoustic
330 startle prepulse inhibition (ASPPI) was calculated as ((1−(startle-
331 following-prepulse/startle-without-prepulse))*100). ANCOVA was
332 performed on mean baseline response, mean startle response, and
333 mean acoustic startle prepulse inhibition using both concurrent
334 weight (a mechanical effect) and percent weight change (a develop-
335 mental effect) as covariates. Since preliminary analyses indicated the
336 mechanical effect of current weight showed greater effects than the
337 developmental effect of percent weight change, only the results with
338 the former covariate are presented. Due to a significant effect of
339 treatment on currentweight, path analyseswereperformed, and the total
340 effects of treatment are presented in the table and figures for this test.

341 3. Results

342 3.1. Growth and organ weights (Table 3)

343 A between-group difference in percent weight change was
344 significant by PND 26, the time of the operant test (F2,10.4=4.04,
345 P=0.0503, T340bT0, Pb0.05, a 28% decrease). At study end (PND 34),
346 compared to T0 percent weight change of both T100 and T340 mice

347was lower (Fig. 1A), but growth in length did not differ between
348treatment groups (Fig. 1B). Greater starting weight (at PND 18) and
349greater starting length were associated with lower weight gain and
350lower length gain, respectively. At the time of the acoustic startle
351prepulse inhibition (ASPPI) test, compared to T0 current weight was
352less in T100 (Pb0.01) and T340 (Pb0.05) mice. Current weight was
353also significantly positively associated with starting weight. No
354significant between-group differences were found in organ weights
355(brain, liver, spleen, heart, kidneys, testes) when expressed as percent
356of body weight (analysis data not shown) (Table 3).

3573.2. Behavior tests

3583.2.1. Social dyadic interaction test
359Severe aggressive behavior occurred with two dyads (aggression
360by a control mouse in one instance and by a T340 mouse in the other
361instance), preventing observation of other normal behaviors. These
362two dyads were removed from the analysis (Fig. 2 Q1).
363Repeated measures ANCOVA of data from the two observation
364sessions (Table 4) showed treatment effects for duration of behavior
365in the categories Social Passive (T0 less than T340, P=0.01), Social
366Active (T0 greater than T100 and T340, Pb0.01 each), and Total Active
367(T0 greater than T100 and T340, Pb0.0005 and=0.0001, respective-
368ly) but not the Other behavior category. ANCOVA of the mean
369activities from the two sessions also showed significant treatment
370effects, and the direction of between-group differences was similar
371(Table 4, Fig. 4). Mean episodes of social passive behavior were
372significantly lower (13%) in the second test session, indicating
373adaptation to the test for that behavioral category (data not shown).

Fig. 1. Percent weight change gain (PctWtChg) and percent length change (PctLnChg)
(Table 3). Changes in weight and length (nose to rump) between study start and study
finish were computed for eachmouse. (A) ANCOVA for PctWtChg showed T0NT100 and
T340, Pb0.05 each. (B) ANCOVA for PctLnChg showed no between-group differences.
Between-group differences are indicated by a vs. b notation. Error bars represent S.E.M.
T0=control (n=19), T100=100 mg TTFD/kg body weight (n=20), T340=340 mg
TTFD/kg body weight (n=23).
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3743.2.2. Activity monitoring
375During the first 30 min (adaptation) of the monitoring period,
376TTFD-treated mice differed from control on three activity variables
377(Table 5, Fig. 3). Compared to T0, percent time in the arena center was
378reduced in both the T100 and T340 mice (Fig. 3B); localized repetitive
379movement was significantly reduced for T340 mice (Fig. 3C); and
380resting time was increased for both T100 and T340 mice (Fig. 3D).
381Treatment did not significantly affect horizontal locomotor activity
382(Fig. 3A). Habituation to the testing environment is indicated by
383significant time (3-min sample) effects for each behavior. Greater
384percent weight change (PctWtChg) was overall associated with
385greater horizontal locomotor activity.
386For the remainder of the 24-h period that was synchronized for the
387light/dark cycle (Table 5, Fig. 4), significant treatment effects occurred

Table 3t3:1

Statistical analysis results for growtha.
t3:2
t3:3 Transformed variable ANCOVAb

fixed
effects

F test, PrNF for treatment
and significant covariates

t3:4 Ranked WtCur
(at ASPPI test)

Tx|WtSt Tx F2,66=5.82, P=0.0047
t3:5 WtSt F1,66=84.78, Pb0.0001
t3:6 Squared PctWtChg

(at necropsy)
Tx|WtSt Tx F2,67=4.23, P=0.0186

t3:7 WtSt F1,69=14.67, P=0.0003
t3:8 Ranked PctLnChg

(at necropsy)
Tx|LnSt|PctWtChg Tx F2,60.9=0.30, P=0.7443

t3:9 LnSt F1,60.1=30.49, Pb0.0001

WtCur=current weight, ASPPI test=test for prepulse inhibition of acoustic startle,
PctWtChg= percent change in weight from study start to necropsy,
PctLnChg=percent change in body length from study start to necropsy,
Tx=treatment, WtSt=body weight at study start (PND 18), LnSt=body length
(nose to rump) at study start (PND 18), rPctWtChg=residual from regression of
percent weight change on treatment.

t3:10 a n=19 T0, 20 T100, 23 T340t3:11
b Vertical bars (|) indicate that significance of all indicated effects and their

interactions was tested; however, as noted, the F test and significance levels are only
listed for treatment (whether or not it reached significance) and other effects and
interactions that reached significance.t3:12

Fig. 2. Duration of activity in four behavior categories during social dyadic interaction
(Table 4). Behaviorswere quantified in two10-min sessions for eachmouse, andmeans of
the two sessions are shown in the figure. ANCOVA of sessionmeans showed TTFD-treated
groups differed from controls in three behavior categories: Social Passive, T340NT0
(P=0.01); Social Active, T0NT100 and T340 (Pb0.005 and 0.01, respectively); and Total
Active T0NT100 and T340 (Pb0.0005 each). Between-group differences are indicated by a
vs. b notation. Error bars represent S.E.M. T0=control (n=19), T100=100 mg TTFD/kg
body weight (n=20), T340=340 mg TTFD/kg body weight (n=23).

Table 4t4:1

Statistical analysis results for duration of social dyadic behaviorsa.
t4:2
t4:3 Transformed variable ANCOVAb

fixed effects
F test, PrNF for treatment
and significant covariates

t4:4 Repeated measures
t4:5 Social passive behavior Tx|Session Tx F2,55.4=4.37 P=0.0173
t4:6 sqrt Social active behavior Tx|Session Tx F2,57.3=7.00, P=0.0019
t4:7 sqrt Total active behavior Tx|Session Tx F2,59=12.32, Pb0.0001
t4:8 Other behavior Tx|Session Tx F2,59=0.10, P=0.9065
t4:9 Session means
t4:10 Social passive behavior Tx Tx F2,59=4.50, P=0.0150
t4:11 sqrt Social active behavior Tx Tx F2,59=7.20, P=0.0016
t4:12 sqrt Total active behavior Tx Tx F2,59=12.40, Pb0.0001
t4:13 cubed other behavior Tx Tx F2,59=0.03, P=0.9752

Analyses were conducted on behavior categories using (1) repeated measures on 2 test
sessions and (2) the means of the 2 sessions.

t4:14 Tx=treatment.
t4:15 a n=19 T0, 20 T100, 23 T340t4:16

b Vertical bars (|) indicate that significance of all indicated effects and their
interactions was tested; however, as noted, the F test and significance levels are only
listed for treatment (whether or not it reached significance). Other effects and
interactions did not reach significance.t4:17

Table 5 t5:1

Statistical analysis results for activity monitoring (adaptation and 24-h light cycle
synchronized) a.

t5:2
t5:3Transformed

variable
ANCOVAb

fixed
effects

F test, PrNF for treatment and
significant covariates

t5:4Adaptation activityc

t5:5sqrt HACTV Tx|3-min sample|
rPctWtChg

Tx F2,53.9=1.54,
P=0.2228

t5:63-min sample F9,318=63.13,
Pb0.0001

t5:7rPctWtChg F1,73.8=7.44,
P=0.0080

t5:8ln PctCtr Tx|3-min sample|
rPctWtChg

Tx F2,52.6=7.07,
P=0.0019

t5:93-min sample F9,105=2.46,
P=0.013

t5:10sqrt LRM Tx|3-min sample|
rPctWtChg

Tx F2,97.3=3.44,
Pb0.0361

t5:113-min sample F9,462=12.68,
Pb0.0001

t5:12Cubed RT Tx|3-min sample|
rPctWtChg

Tx F2,242=146.1,
Pb0.0001

t5:133-min sample F2,541=12.08,
Pb0.0001

t5:14

t5:1524-h activityc

t5:16sqrt HACTV Tx|Time bin|
rPctWtChg

Tx F2,337=3.35,
P=0.0363

t5:17Time bin F22,1212=85.09,
Pb0.0001

t5:18ranked
PctCtr

Tx|Time bin|
rPctWtChg

Tx F2,101=3.52,
P=0.0332

t5:19Time bin F22,1183=35.42,
Pb0.0001

t5:20Tx*rPctWtChg F2,101=3.11,
P=0.0491

t5:21sqrt LRM Tx|Time bin|
rPctWtChg

Tx F2,179=5.90,
P=0.0033

t5:22Time bin F22,1125=68.83,
P=0.0001

t5:23Tx*Time bin*
rPctWtChg

F44,1072=1.45,
P=0.0301

t5:24ranked RT Tx|Time bin|
rPctWtChg

Tx F2,868=4.80,
P=0.0084

t5:25Time bin F22,479=231.78,
Pb0.0001

HACTV=horizontal locomotor activity beam breaks, PctCtr=percent of time in the
arena center, LRM=localized repetitive movement, RT=resting time, Tx=treatment,
3-min sample=time bins in which data were collected for analysis during adaptation,
rPctWtChg=residual from regression of percent weight change on treatment, Time
bin=composite time samples used for light cycle-synchronized 24-h analysis (see
Section 2.4.2), *=interaction between effects.

t5:26a n=20 T0, 21 T100, 22 T340 t5:27
b Vertical bars (|) indicate that significance of all indicated effects and their

interactions was tested; however, as noted, the F test and significance levels are only
listed for treatment (whether or not it reached significance) and other effects and
interactions that reached significance. t5:28

c Repeated measures analyses were conducted on behaviors during (1) the 30-min
adaptation period and (2) the remainder of the 24-h period that was synchronized for
onset of the dark cycle. t5:29
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388 for mean horizontal locomotor activity (Fig. 4A), with T0 greater than
389 T100; for percent time in the arena center (Fig. 4B), with T100 greater
390 than T0 at covariate means; for mean localized repetitive movement
391 (Fig. 4C), with T0 greater than T100; and resting time (Fig. 4D), with
392 T100 greater than T0. In the analysis of percent time in the arena
393 center, the interaction of treatment with rPctWtChgwas evidenced by
394 significant between-group effects (T100 greater than T0) at the 25th
395 (P=0.001) and 50th (Pb0.05), but not the 75th , percentiles of
396 PctWtChg. Close examination of subset analyses and figures of
397 localized repetitive movement data did not clarify the nature of the
398 3-way interaction (rPctWtChg*Treatment*Time bin*). Significant
399 time bin effects occurred for all activity measurements (TableQ2 6).
400 During the day→night transition period (Fig. 5A–D, analysis data
401 not shown), significant treatment effects occurred for horizontal
402 locomotor activity, localized repetitive movement, percent time in
403 center, and resting time. The spline plot for resting time shows a more
404 marked decrease and slower rebound for controls compared to TTFD
405 groups, and plots for the other measurements show decreased
406 response amplitude for both TTFD treatment groups and delayed
407 peaks for T100 mice relative to control.

408 3.2.3. Acoustic startle/prepulse inhibition (ASPPI) (Table 7)
409 Compared to control (T0), mean baseline (no stimulus) response
410 (MBR) was greater for T100 and T340 (Fig. 6A), and greater current
411 body weight (WtCur) was significantly positively associated with
412 MBR. Themean startle response of T100was lower than that of T0. For
413 the 82-dB prepulse, percent startle inhibition of T100 was lower than
414 that of T0 and T340. The analysis was repeated usingmicematched for
415 magnitude of startle response to pulse alone (n=10 per treatment
416 group). These analyses showed no between-group differences in
417 startle inhibition; the lower startle inhibition by the T100 group in the
418 larger data set was due to their lower startle response. Treatment did

419not affect startle inhibition by the 74-dB or 90 dB prepulses. Although
420a 3-way interaction (Treatment*rMBR*rWtCur) occurred in the 74-dB
421analysis, no between-group differences were found at the 25th, 50th,
422or75th percentile combinations of the covariates.

4233.3. Brain thiamin and thiamin phosphates

424TTFD treatment affected whole brain thiamin concentrations
425(Table 8, Fig. 7). Significantly higher concentrations of thiamin
426occurred in the T100 and T340 treatment groups compared to the
427T0 group. No significant differences in brain tissue levels of the
428phosphorylated thiamin derivatives ThDP or ThMP were observed,
429and levels of ThTP and AThTPwere too low for accurate quantification.

4304. Discussion

4314.1. Growth and organ weights

432TTFD treatment resulted in a reduction in percent body weight
433gain in both the T100 and T340 groups but there was no change in
434percent body length gain. The effect on percent weight gain was
435evident in the T340 group by the time of the first behavioral test. The
436lower percent weight gain of TTFD-treated mice was not anticipated.
437A previous study in which 14–16 week-old BALB/c mice were
438administered 300 mg of the lipophilic thiamin sulbutiamine daily by
439oral intragastric intubation for 10 d did not report relative changes in
440bodyweight (Micheau et al., 1985). Rodents given food supplemented
441with another lipophilic thiamin precursor, thiamin propyl disulfide,
442were reported to increase in body weight faster than those receiving
443water soluble thiamin salts or no thiamin supplement (Shimazono
444and Katsura, 1965).

Fig. 3. Activity during open field adaptation (Table 5). (A–E) Plots depict mean levels of activities for each 3-min time segment during the first 30-min in the open field chamber.
(A) Treatment did not significantly affect horizontal activity horizontal activity (HACTV). Significant treatment effects occurred for (B) percent time in arena center (PctCtr), with
T0NT100 and T340 (Pb0.05 and b0.01, respectively); (C) localized repetitive movements (LRM), with T340bT0 (Pb0.05); and (D) resting time (RT), with T0bT100 and T340
(Pb0.0005 and Pb0.0001, respectively). Significant time effects occurred for ABCDE, indicating habituation. T0=control (n=20), T100=100 mg TTFD/kg body weight (n=21),
T340=340 mg TTFD/kg body weight (n=22).
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445 Two possible explanations for the lower body weight gain in the
446 TTFD groups are (1) an irritant effect of the treatment on the GI tract,
447 leading to reduced food intake (Lonsdale et al., 2002; Mizutani et al.,
448 1972) or (2) a metabolic stimulant effect of TTFD via enhanced
449 noradrenaline secretion and thermogenesis (Oi et al., 1999). TTFD-
450 treated mice used for tissue analysis were observed to eat less, as

451indicated by the frequency with which their food cups required filling,
452which suggests that decreased food intake, possibly due to an irritant
453effect of TTFD gavage or decreased appetite, contributed to the lower
454weight gain observed in these animals.
455The dosages of TTFD used in this study were selected based on
456previously published studies with lipophilic thiamin derivatives in
457mice. However, one of those studies (Micheau et al., 1985) used older
458mice, whose GI tracts may have been more robust, and a different
459lipophilic thiamin (sulbutiamine) was used. In the second (Lonsdale
460et al., 2002), TTFD was administered intraperitoneally. Should gavage
461delivery of TTFD be causing irritation of the gastrointestinal tract, an
462alternative method of delivery would need to be considered in future
463studies. Lower dosages of TTFD could also be considered. TTFD
464therapy in children (Lonsdale, 1987a, 2006, 2001, 2004; Lonsdale et
465al., 1982, 2002) used doses lower than those used in the present study.
466Attention to the route of administration or to buffering agents may be
467needed in human studies.
468Treatment resulted in a lower current body weight in both T100
469and T340 mice at the time of the acoustic startle prepulse inhibition
470(ASPPI) test. Because current weight can affect the mechanism of
471startle detection, current weight was used as a covariate in the path
472analysis model for components of that test.

4734.2. Behavior tests

4744.2.1. Social dyadic interaction
475Control and TTFD-treated mice spent similar amounts of time with
476the stimulus mouse, but the nature of their social interaction differed.
477Compared to control, TTFD-treated mice showed more passive
478(cuddling-type) interaction and less boisterous interaction with the

Fig. 4. 24-h open field activity, with time bins synchronized for the light/dark cycle (Table 6). The arrow indicates placement of mice into the chambers, which was immediately
followed by the 30-min adaptation period presented in Fig. 3. The last adaptation measurement mean is indicated; the first adaptation measurement mean is indicated when the Y
axis for the remaining light synchronized time period permitted. The discontinuity on the X axis represents the variable time elapsed to permit synchronization of the time bins
following the adaptation period. The first time bin was 33 min long; the remaining time bins were 1 h long. Behavior means for each mouse were computed for each time bin and
used for repeated measures ANCOVA. The figures represent treatment group means derived from individual means. Significant treatment effects occurred for (A) horizontal activity
(HACTV) (T0NT100, Pb0.05), (B) percent time in arena center (PctCtr) (T0bT100, Pb0.05 at covariate means), (C) localized repetitive movement (LRM) (T0NT100, Pb0.005 at
covariate means), and (D) resting time (RT) (T0bT100, Pb0.01). A significant time bin effect occurred for eachmeasurement (Pb0.0001 each). Interactions of covariates occurred for
(B) and (C), as discussed in Section 3.2.2. T0=control (n=20), T100=100 mg TTFD/kg body weight (n=21), T340=340 mg TTFD/kg body weight (n=22).

Table 6t6:1

Statistical analysis results for prepulse inhibition of acoustic startlea.
t6:2
t6:3 Transformed

variable
ANCOVAb

fixed
effects

F test, PrNF for treatment and
significant covariates

t6:4 sqrt MBR Tx|rWtCur Tx F2,66=8.62, P=0.0005
t6:5 rWtCur F1,66=10.27,

P=0.0021
t6:6 ln MSR Tx|rWtCur|

rMBR
Tx F2,67=3.23, P=0.0457

t6:7 74-dB ASPPI Tx|rWtCur|
rMBR

Tx F2,58=0.34, P=0.7166
t6:8 rMBR*Tx F2,58=3.74, P=0.0298
t6:9 rWtCur*rMBR*Tx F2,58=4.87, P=0.0111
t6:10 82-dB ASPPI Tx|rWtCur|

rMBR
Tx F2,67=7.23, P=0.0014

t6:11 cubed 90-dB ASPPI Tx|rWtCur|
rMBR

Tx F2,52.2=1.41,
P=0.2530

MBR=mean baseline (no stimulus) response, MSR=mean startle response to pulse
alone, dB=decibels of sound, ASPPI=acoustic startle prepulse inhibition,
Tx=treatment, rWtCur=residual from regression of current weight on treatment,
rMBR=residual from regression of mean baseline response on treatment | rWtCur,
*=interaction between effects.

t6:12 a n=23 T0, 24 T100, 23 T340t6:13
b Vertical bars (|) indicate that significance of all indicated effects and their

interactions was tested (however, as noted, the F test and significance levels are only
listed for treatment (whether or not it reached significance) and other effects and
interactions that reached significance.t6:14
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479 stimulus mouse. Results of the test suggest a dose-related lower total
480 activity level in TTFD-treated mice.
481 Social proximity has previously been observed to be rewarding for
482 the DBA/2J mouse (Moy et al., 2007; Panksepp and Lahvis, 2007).
483 Further study is needed to determine whether the altered social
484 activity observed in the TTFD-treated mice extends to animal models
485 of childhood behavior disorders that are characterized by hyperac-
486 tivity and disruptive interactions with peers. It has been suggested
487 that nicotinic acetylcholine receptor (nAChR) function is involved in
488 regulation of social behavior (Granon et al., 2003), and a cholinergic
489 mechanism underlying thiamin effects has been proposed (see
490 Section 4.2.2). Some childhood cases of hyperactivity have responded
491 to high-dose thiamin (Brenner, 1982). Improved behavior has also
492 been reported in autistic children treated with TTFD, but the nature of
493 the improvements was not described (Lonsdale et al., 2002).

494 4.2.2. 24-h activity monitoring
495 Open field testing yielded 3 main findings: (1) activity levels were
496 generally lower in TTFD-treated mice than in controls, (2) different
497 activities were altered in the adaptation period vs. the 24-h period,
498 and (3) during the light-dark transition period TTFD-treated groups
499 showed a dose-related decrease in peak amplitudes of active
500 behaviors and the T100 group showed a delay in active behaviors
501 relative to controls.
502 During the adaptation period, for all treatment groups active
503 behaviors generally decreased over time while resting time increased.
504 Compared to control, the overall higher resting time for both TTFD
505 groups, as well as lower localized repetitive movement for the T340
506 group, suggests decreased activity with TTFD treatment. Locomotor
507 difficulties were not observed in TTFD-treated mice in the social
508 dyadic test, suggesting innatemotor deficits probably did not underlie
509 decreased activity. The decrease in percent of time in the arena center
510 for TTFD groups could signify increased anxiety or decreased risk
511 taking, or it may have been a result of overall lower activity. The latter

512explanation may apply since center time was higher than T0 in the
513T100 group during the 24-h period. Also, decreased acoustic startle
514response in T100 compared to T0 mice in the ASPPI test may possibly
515indicate decreased (rather than increased) anxiety (discussed below).
516Further behavioral experiments could clarify whether thigmotaxis
517(reduced center time in the open field) signified increased anxiety vs.
518decreased risk taking during the adaptation period and whether there
519were coordination problems that may not have been detected in the
520current testing regimen (Curzon et al., 2009).
521The 24-h data again indicate overall lower activity in TTFD-treated
522mice compared to control, but in different components. Here control
523mice showed greater horizontal activity than T100 mice (vs. no
524between-group differences during adaptation); control mice showed
525greater localized repetitive movement than only T100 (vs. T0 greater
526than T340 during adaptation); and the average resting time for
527controls was less than that of the T100 group (vs. T0 less than both
528T100 and T340 during adaptation). Percent time in the arena center
529was increased for T100 mice compared to controls (indicating
530adaptation to that area with longer exposure), a result contrasting
531to that found in the adaptation period where time in center was
532greater for controls than for the T100 and T340 groups. Thus, the
533dosage of TTFD resulted in differing effects on activity during each
534activity period (adaptation and 24-h), and effects were not always
535dose related.
536The mechanism(s) underlying TTFD's effects on activity are
537unknown, but several lines of evidence suggest that altered
538cholinergic function could play a role. Previous experimental animal
539and human studies have proposed that stimulation of cholinergic
540function by TTFD could underlie its effect on brain function (Lonsdale,
5411987a, 1987b, 1982a; Micheau et al., 1985; Mimori et al., 1996). In
542normal human volunteers high-dose thiamin has been reported to
543counteract hippocampal behavioral deficits induced by the non-
544selective mAChR antagonist scopolamine (Meador et al., 1993). A
545number of behavioral deficits seen in thiamin-deficient rodents are

Fig. 5.Openfield activity following onset of dark cycle. (A, B, C, D, E)Mean levels of activitieswere computed for each 3-min interval for 75 min following onset of the dark cycle and are
plotted with sm50 interpolation. Polynomial mixed model analysis (explained in Section 2.7) indicated a significant treatment effect for each activity shown, with treatment×3-min
sample significant (P≤0.05) at one or more levels of interaction in each case (data not shown). Active behaviors were decreased in amplitude for both T100 and T340, and were
delayed in the T100 group. T0=control (n=20), T100=100 mg TTFD/kg body weight (n=21), T340=340 mg TTFD/kg body weight (n=22).
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546 remediated by pro-cholinergic agents (Nakagawasai et al., 2001, 2000,
547 2007, 2004). Thiamin can affect acetylcholine levels by (1) increasing
548 levels of acetylcholine precursors via its cofactor roles in the pyruvate
549 dehydrogenase complex (acetyl Co-A production) and transketolase
550 (NADPH/antioxidant protective effect) (Gibson and Blass, 2007;
551 Gloire et al., 2006; Jones, 2000; McGrane, 2000; Salminen and
552 Kaarniranta, 2010; Sheline and Wei, 2006) and increasing the rate
553 of neuronal high affinity uptake of choline (Micheau et al., 1985), and
554 (2) preventing (via antioxidant protective effects) reduction of nerve
555 growth factor induced transcription of choline acetyltransferase, the
556 enzyme responsible for synthesis of acetylcholine (Toliver-Kinsky et
557 al., 2000). Thiamin may differentially affect acetylcholine receptors;
558 for example, thiochrome, an oxidation product and metabolite of
559 thiamin, enhances the binding and actions of acetylcholine at
560 muscarinic M4 relative to other muscarinic receptors (Lazareno et
561 al., 2004).

Fig. 6. Acoustic startle/prepulse inhibition (Table 7). Behaviormeans for eachmousewere computed for eachmeasurement and used for ANCOVA. Thefigures represent treatment group
means derived from individual means. Significant treatment effects occurred for (A) mean baseline (no stimulus) response (MBR) with only background noise in the acoustic startle
apparatus (T0bT100 and T340, Pb0.05 and Pb0.0005, respectively); (B)mean startle response to pulse alone (MSR) (T100bT0, Pb0.05); and (C) startle inhibition by the 82-dB prepulse
(ASPPI) (T100bT0 and T340, Pb0.01 each). For the 74-dB and 90-dB prepulses, no significant treatment effect occurred. Between-group differences are indicated by a vs. b notation. Error
bars represent S.E.M. T0=control (n=23), T100=100 mg TTFD/kg body weight (n=23), T340=340 mg TTFD/kg body weight (n=23).

Table 7t7:1

Statistical analysis results for HPLC analysis of whole brain content of thiamin and
thiamin phosphate (per mg protein)a.

t7:2
t7:3 Transformed variable ANOVA fixed effect F test, PrNF for treatment

t7:4 1/Thiamin Tx F2,5.62=27.05, P=0.0013
t7:5 ranked ThMP Tx F2,13=0.48, P=0.6317
t7:6 1/cubed ThDP Tx F2,10=0.85, P=0.1383

ThMP=thiamin monophosphate, ThDP=thiamin diphosphate
t7:7 a n=5 T0, 5 T100, 6 T340t7:8

Fig. 7. Effect of treatment on the thiamin and thiamin phosphate content of whole
mouse brain (Table 8). Tissue analysis showed between-group differences in the level
of thiamin (Thi) (T0bT100, Pb0.01; T0bT340, Pb0.001), but no between-group
differences in levels of thiamin monophosphate (ThMP) or thiamin diphosphate
(ThDP). Levels of thiamin triphosphate (ThTP) and adenosine thiamin triphosphate
(AThTP) were too low to quantify accurately. Between-group differences are indicated
by a vs. b notation. Error bars represent S.E.M. T0=control (n=5), T100=100 mg
TTFD/kg body weight (n=23), T340=340 mg TTFD/kg body weight (n=6).
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562 Thiamin-related cholinergic enhancement may also be involved in
563 regulation of circadian rhythm for reviews see (Datta, 2010;
564 Rosenwasser, 2009; Turner et al., 2010), which could explain
565 differences observed here during the light/dark transition. Subclinical
566 dietary thiamin deficiency altered circadian rhythm in 6 week-old
567 C57BL/6J mice (Bennett and Schwartz, 1999). Studies using other
568 species have shown circadian activity effects of the lipophilic thiamin
569 precursor sulbutiamine (Van Reeth, 1999). Limited human reports
570 suggest effects of thiamin deficiency (Wilkinson et al., 1997) and
571 thiamin augmentation via TTFD (Lonsdale et al., 2002) on sleep.
572 Further study is needed to elucidate the mechanism of the effect of
573 TTFD on activity, sleep, and body rhythms and to determine if
574 lipophilic thiamin precursors might benefit disorders of these
575 functions in humans.

576 4.2.3. Acoustic startle/prepulse inhibition (ASPPI)
577 Although the DBA/2J mouse suffers juvenile-onset high frequency
578 hearing loss (HFHL), previous tests demonstrated that the acoustic
579 startle response is independent of HFHL in juvenile mice when the
580 prepulse is broad-bandwhite noise rather thanpure tones (McCaughran
581 et al., 1999). Our test protocol used broad-band noise in 32-d old mice.
582 Our ASPPI study yielded 4 main findings regarding TTFD effects:
583 (1) TTFD produced a dose-related increase in mean baseline response
584 (the no stimulus response during only broad-band background
585 noise); (2) the response to the startle pulse alone was lower for
586 T100 compared to T0 mice; (3) prepulse inhibition with the 82 dB
587 prepulse was reduced for T100 compared to both T0 and T340 mice;
588 and (4) when mice were matched for startle response, no change in
589 82-dB prepulse inhibition was observed.
590 Mean baseline (no stimulus) response increased with increasing
591 current weight over the entire group of mice and also within each
592 treatment group. Yet, despite their lower mean body weights, the
593 T100 and T340 groups showed higher mean baseline response than
594 controls, findings that suggest the increase in mean baseline response
595 was not due primarily to the TTFD effect on weight. A rising baseline
596 response in adult DBA/2 mice has been reported in response to high
597 doses of stimulants (Flood et al., 2010) which was attributed to
598 hyperactivity, such as increased turning behavior in the test cylinders,
599 or finer stereotypic movements. An increased general activity in the
600 startle chamber has also been noted in nicotine withdrawn DBA/2
601 mice (Semenova et al., 2003)whichwas suggested to reflect increased
602 body tremor or agitation. The accentuated response in the confined
603 environment by TTFD-treated mice contrasted with their decreased
604 activity in the open field test and the social dyadic interaction test. A
605 confined, isolated environment, such as the restraint cylinder used for
606 acoustic startle testing, may solicit unique behaviors. Observation of
607 control and TTFD-treated mice in tightly restrained containers would
608 shed light on what behaviors are involved and whether T100 and
609 T340 mice demonstrate less anxiety-induced freezing behavior.
610 T100, but not T340, mice showed decreased startle response
611 compared to T0 mice, a finding that suggests activation of different
612 neurotransmitter pathways depending on dosage. Pre-clinical thiamin
613 deficiency in rodents has been shown to increase the startle response to
614 electric shock and was correlated with reduced activity of erythrocyte
615 transketolase, an enzyme for which thiamin diphosphate is a cofactor
616 (Peskin et al., 1967). Increased startle response was attributed to
617 neurological hyperexcitability and was thought to correlate with
618 reported observations of increased spontaneous activity in preclinically
619 thiamin-deficient rats. We know of no previous reports of supranormal
620 thiamin intakedecreasingauditory startle or startle due toother sensory
621 input, however. In rodents the startle response is commonly used to
622 assess emotional reactivity and the effects of anti-anxiety drugs (Bourin
623 et al., 2007; Grillon, 2008; McCaughran et al., 2000). How TTFD affects
624 various neurotransmitter systems impinging on startle and whether
625 decreased startle in T100 mice indicates an anxiolytic effect at that
626 dosage merits further study.

627Compared to several other mouse strains, the DBA/2 strain has
628shown spontaneously low auditory PPI (McCaughran et al., 1997;
629Paylor and Crawley, 1997) and has been proposed as a model for
630testing drugs intended for psychiatric conditions that demonstrate PPI
631deficits (Olivier et al., 2001). Our study showed no improvement in
632PPI with TTFD treatment. TTFD doesn't appear to offer potential for
633treatment of disorders with disrupted sensory gating if PPI facilitation
634is used as the criterion.

6354.3. Whole brain analysis for thiamin and thiamin phosphates

636TTFD treatment markedly increased the level of thiamin in whole
637brain, but had no significant effect on concentrations of ThMP or ThDP.
638Levels of ThTP and AThTP are extremely low in mice compared to rats
639(Frédérich et al., 2009), and improved methods of detection are
640needed.
641Two recent studies, one in rats (Nozaki et al., 2009) and the other
642in mice (Pan et al., 2010), also showed elevated levels of thiamin, but
643not ThMP or ThDP with TTFD treatment. Results (unpublished) in our
644laboratory suggest that ThDP levels in brainstem (medulla, pons,
645inferior colliculi) of DBA/2J mice may bemarginally increased by TTFD
646administered via drinking water. Necropsy of a larger number of mice
647is needed to obtain pooled samples of various brain regions for
648analysis. Turnover of coenzyme-bound ThDP is slow (Bettendorff et
649al., 1994), but it is possible that higher intracellular thiamin could
650increase flux through the rapid turnover pools of ThDP and ThTP
651without increasing the ThDP level.

6524.4. Other considerations

653Through studies in humans, animals, and cell cultures, highly
654absorbable thiamin precursors have been shown to have beneficial
655effects via a variety of mechanisms: e.g., on complications of diabetes
656mellitus (e.g., (Du et al., 2010; Hammes et al., 2003; Karachalias et al.,
6572010)), vascular endothelial dysfunction (Verma et al., 2010), cognitive
658function (Bizot et al., 2005;Micheau et al., 1985;Mimori et al., 1996; Pan
659et al., 2010), endotoxin induced uveitis and lipopolysaccharide-induced
660cytotoxic effect (e.g., (Yadavet al., 2010)), other inflammatory conditions
661(e.g., (Matsui et al., 1985)), toxicity due to heavy metals and various
662chemicals (Fujiwara, 1965; Lonsdale et al., 2002; Reddy et al., 2010),
663alcoholic andnutritional polyneuropathies andmyopathies (Djoenaidi et
664al., 1992;Woelk et al., 1998), dysautonomic symptoms (Lonsdale, 2009),
665infant brainstem dysfunction and apnea (Lonsdale, 2001), postinfectious
666asthenia (Shah, 2003), psychobehavioral inhibition occurring during
667major depression (Loo et al., 2000), and various disorders possibly
668associated with thiamin dependency that are expressed particularly
669under conditions of physical or emotional stress (Lonsdale, 1987a, 2006).
670Thiamin requirements are not only influenced by various disease
671conditions, as mentioned above, but by individual differences in
672thiamin utilization. While a few notable examples of genetic disorders
673influencing thiamin requirements have been well-studied [e.g. Leigh
674disease and West syndrome, thiamin responsive megaloblastic
675anemia with diabetes and deafness, and neuropathy and bilateral
676striatal necrosis with exacerbation during febrile illnesses (Ames et
677al., 2002; Spiegel et al., 2009), others that produce more subtle
678behavioral changes or susceptibility to disease may well be awaiting
679discovery and may underlie case reports of beneficial effects of
680pharmacologic use of thiamin or its lipophilic derivatives (Lonsdale,
6812006). Low frequencymissense alleles of many different enzymes that
682result in impaired function are hypothesized to be common and may
683be nutrient sensitive (Marini et al., 2008). Combinations of nutrients
684may be required in cases where vitamin function is compromised
685(Ames et al., 2002). Also, when a pharmacologic dose of a nutrient is
686used, downstream shifts in metabolic pathways may require
687adjustment in the dietary intake of other nutrients (Lonsdale,
6881987a, 1990).
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689 Even without underlying disease conditions or metabolic abnor-
690 malities that may increase thiamin requirement, children in Western
691 nations may be at risk of inadequate thiamin nutriture. Because of its
692 role in oxidative metabolism, the requirement for thiamin is increased
693 with higher carbohydrate intake. Whereas the normal rodent diet
694 contains high levels of thiamin relative to rodent requirements, the
695 typical human diet does not (Fleming et al., 2003). Body stores of
696 thiamin are limited, and the requirement for thiamin in infancy and
697 childhood is relatively high (I.o.M. (U.S.), 2002). Concern has been
698 expressed that in Western cultures relative thiamin deficiency may
699 occur due to diets high in calories from refined carbohydrates, and that
700 treatment of resulting functional disorders with physiological doses of
701 thiamin provided in multivitamin preparations may not be sufficient to
702 address defective enzyme/cofactor bonding that results from prolonged
703 poor dietary habits (Lonsdale, 2006).
704 Apart from human case studies, long-term effects of TTFD on a
705 range of behaviors have not been systematically studied to our
706 knowledge. Alterations in morphology and neurotransmission during
707 development can have long-term behavioral effects, even when the
708 initiating nutrient or pharmaceutical is discontinued (e.g., Stevens et
709 al., 2008). Study of behavioral effects of TTFD at different life stages
710 with follow-up to assess residual effects on behavior is needed.

711 5. Conclusion

712 Behavioral and growth effects of diet supplementation with a
713 lipophilic thiamin precursor, TTFD, were studied in the juvenile male
714 DBA/2J mouse. TTFD was administered by gavage (100 mg/kg and
715 340 mg/kg body weight). Compared to control, dose-related reduction
716 in weight gain occurred. Treatment did not affect gain in body length or
717 organ weights as percent of body weight. A sequential battery of
718 behavioral tests was conducted, and data were analyzed taking into
719 account treatment effects on weight gain. TTFD-treated mice showed
720 decreased locomotor activity in solitary openfield testing and alsowhen
721 interacting with a conspecific. During social interaction TTFD-treated
722 mice engaged in more passive (cuddling-type) as opposed to vigorous
723 play-type behavior.Mice treatedwith the lower dosage of TTFD showed
724 decreased startle response to loudnoise. Both treatment groups showed
725 a significant increase in whole brain levels of thiamin, but no change in
726 levels of the phosphorylated derivatives ThMP and ThDP. Further work
727 is needed to ascertain the mechanisms underlying behavioral effects
728 and to determine the potential for beneficial effects in treating children
729 with behavioral disorders.
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