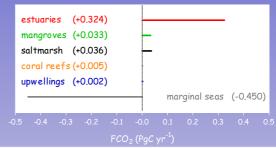
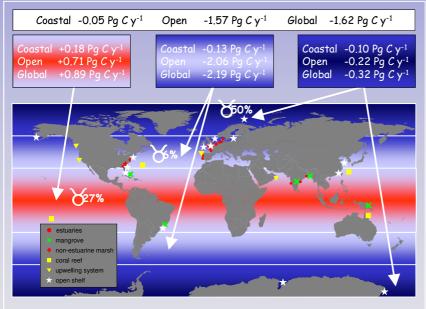

Budgeting sinks and sources of CO_2 in the coastal ocean: Diversity of ecosystems counts


A.V. Borges & B. Delille - Université de Liège, Belgium, alberto.borges@ulg.ac.be


An exhaustive literature survey of air-water CO2 fluxes was conducted and data in 44 coastal environments were gathered in 6 major ecosystems (marginal seas, upwelling systems, estuaries, mangrove and salt-marsh waters, and coral reefs). Near-shore ecosystems located at the land-aquatic interface (estuaries, saltmarsh waters & mangrove waters) act as intense sources of CO_2 to the atmosphere due to inputs of terrestrial organic carbon that fuel the net heterotrophy of the aquatic compartment. Coral reefs act as sources of CO2 due intense calcification and a low net organic carbon production. Coastal upwelling systems characterized by high upwelling index (UI) values (Oman and California coasts) tend to be sources of CO₂ in contrast to those with low UI values (Galician coast, Vancouver Island). **Marginal seas at high (Barents Sea, Bristol** Bay, Pryzd Bay, and Ross Sea) and temperate (Baltic Sea, North Sea, Gulf of Biscay, US Middle Atlantic Bight, and East China Sea) latitudes are net annual sinks of atmospheric CO_2 but at sub-tropical and tropical latitudes they are net annual sources of CO_2 to the atmosphere (US South Atlantic Bight, South China Sea, and Southwest Brazilian coast)

Net air-water CO_2 fluxes in coastal environments

Air-water CO₂ fluxes were up-scaled by multiplying a reasonable flux value for a Air-water CO_2 fluxes were up-scaled by multiplying a reasonable flux value for a given ecosystem by its respective surface area. Marginal seas act as a significant CO_2 sink (-1.62 mol C m⁻² yr⁻¹; -0.45 Pg C yr⁻¹). However, the global sink of CO_2 in marginal seas could be almost fully compensated by the emission of CO_2 (+11.09 mol C m⁻² yr⁻¹; +0.40 Pg C yr⁻¹) from the ensemble of near-shore coastal ecosystems, mostly related to the emission of CO_2 from estuaries (0.32 Pg C yr⁻¹).

An overall integration of CO2 fluxes (global ocean) was carried out using the recent climatology for open oceanic waters from Takahashi et al. (2002). The coastal ocean would act as a net CO2 sink at high and temperate latitudes and as a net CO_2 source at tropical latitudes. The inclusion of coastal air-water CO_2 fluxes would strongly increase the overall CO_2 sink at high latitudes (-0.22 versus -0.32 Pg C yr⁻¹, 50%) and temperate latitudes (-2.06 versus -2.19 Pg C yr⁻¹) ¹, 6%), but would significantly increase the overall CO₂ source at subtropical and tropical latitudes (+0.71 versus +0.89 Pg C yr⁻¹, 27%).

References References: Andersson & Mackenzie (2004) Shallow-water oceans: a source or a sink of atmospheric CO_2^2 , Front. Ecol. Environ. 2:348-353. Borges et al. (2005) Budgeting sinks and sources of CO_2 in the coastal ocean: Diversity of ecosystems counts, Geophys. Res. Lett. 32:114601-doi:10.1029/20056.1023053 Cai & Dai (2005) How significath is the coastal ocean uptake of atmospheric $CO_2^2 - A$ province-based approach, ALSO Summer meeting, 14-24 June 2005, Santiago de Compostela, Spain Takhashi et al. (2002) Global sea-ari CO_2 flux based on climatological surface ocean pCO_2 , and seasonal biological and temperature effects, *Deep-Sea Res.* II 49:1601-1622. Thomas et al. (2004). Enhanced open ocean storage of CO_2 from shelf sea pumping, *Science* 304:1005-1008. Tsunogai et al. (1999), Is there a "continental shelf pump" for the absorption of atmospheric CO_2^2 , *TellusB* 5:701-712.

 CO_2 fluxes (Pg C yr⁻¹) 0.5 ----------0.0 Λ -0.5 -10 -1.5 1700 1800 1900 2000 2100 year Shallow-water Ocean Carbonate Model (SOCM) Andersson & Mackenzie 2004 Borges et al. 2005 \triangle Thomas et al. 2004 • Cai & Dai 2005 🗆 Tsunogai et al. 1999

Our up-scaled air-water CO₂ flux estimate taking into account the latitudinal and ecosystem diversity of the coastal ocean is in fair agreement with the one given by SOCM (Andersson & Mackenzie 2004). Other estimates are based on the extrapolation to worldwide continental shelves of data from the East China Sea (Tsunogai et al. 1999), the North Sea (Thomas et al. 2004) or a province based up-scaling of marginal seas (Cai & Dai 2005). This clearly emphasizes the importance of the diversity of ecosystems, in particular near-shore systems, when integrating CO₂ fluxes at global scale in the coastal ocean.

www.ulg.ac.be/oceanbio/co2/

Seventh International Carbon Dioxide Conference, Boulder, Colorado, U.S.A., September 25-30, 2005