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Variability of the gas transfer velocity of 
CO2 in a macrotidal estuary (The Scheldt)  
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Introduction

A rigorous estimation of the exchange of CO2 across the air-water interface is critical to determine 
ecosystem metabolism and to budget the annual sink or source for atmospheric CO2 at local, regional and 
global scales. The flux of CO2 across the air-water interface (F) can be computed according to:

F = k.)CO2 (1)

where )CO2 is the air-water gradient of the concentration of CO2 and k is the gas transfer velocity of CO2 (also 
referred to as piston velocity).

In both open oceanic and coastal environments, highly precise and accurate methods to measure )CO2
are nowadays available, thus, the largest uncertainty in the computation of F comes from the k term.

Estuaries have been shown to be characterized by higher k values than other aquatic systems due to the 
strong contribution of tidal currents to the water turbulence (Zappa et al. 2003; Borges et al. 2004). 
Furthermore, the variable contribution of tidal currents and fetch limitation make k-wind relationships site 
specific in estuaries (Kremer et al. 2003; Borges et al. 2004). This is relevant because constraining adequatetly 
air-water CO2 in estuaries is critical in budgeting air-water CO2 fluxes in the coastal ocean (Borges 2005).

Results & discussion
During two cruises in the Scheldt estuary (November 2002 and April 2003), nine stations were occupied 

during 24 h and flux measurements were carried out approximately every 10 min during daytime. Based on the 
295 interfacial CO2 flux measurements obtained using the floating chamber method and from concomitant 
measurements of )CO2, we computed k. The binned k values are well correlated to wind speed and a simple 
linear regression function gives the most consistent fit to the data (Plot 1). The contribution of the water current 
to the gas transfer velocity was estimated from the frequently referenced conceptual relationship of O’Connor & 
Dobbins (1958): 

k600current = 1.719w0.5h-0.5 (2)

where k600current is the gas transfer velocity in cm h-1, w is the water current in cm s-1 and h depth in m.
The validity for estuarine environments of this relationship developed for streams has recently been 

confirmed by Zappa et al. (2003) based on k measurements using various micro-meteorological methods in 
Plum Island Sound estuary, and by Borges et al. (2004) based on floating dome measurements in the Randers
Fjord. Assuming that:

k600wind = k600observed - k600current (3)

we established, based on (2) and concomitant w and h measurements, a linear relationship between k600wind
and wind speed:

k600wind = 1.0 + 2.58u10 (4)

where k600wind is the gas transfer velocity in cm h-1, u10 is the wind speed referenced at a height of 10 m in m s-1

(Plot 1).
Assuming that the contributions of wind and water current to water turbulence are additive, an equation 

that accounts for both wind speed and water current speed can be constructed by summing (2) and (4):

k600 = 1.0 + 1.719w0.5h-0.5 + 2.58u10 (5)

At three reference stations - Vlissingen, Hansweert and Antwerpen - that correspond, respectively, to the 
lower, middle and upper Scheldt estuary, the k600 was computed from equation (5), using the hourly time series 
of measured u10 and modelled w (CONTRASTE physical model) for the years 1997 to 2001.

The Antwerpen station is characterized on an annual basis by significantly lower k600 values than the two 
other stations, mainly due to the significantly lower wind speeds (Plot 2).

On an annual basis, the contribution of w to k600 (%w) is highly significant at the three reference stations, 
ranging from about 21 to 35% for Vlissingen and Antwerpen, respectively (Plot 3).

For the whole 1997-2001 period, lower monthly wind speed averages are observed during spring and 
summer compared to fall and winter and concomitantly, during spring and summer, k600 values are lower and  
the contribution of w to k600 increases (Plot 4).

Conclusions
• Water currents significantly contribute to k in the Scheldt (between 20 to 35% on annual scale).
• Spatial and temporal variability (from daily to seasonal scales) of k in the Scheldt is mainly related to wind 
speed variability.
• k is highly variable from the lower to the upper Scheldt estuary.
• The use of a constant k to compute air-water CO2 fluxes in estuaries should be avoided and probably induces 
large errors in the estimates of the CO2 emission to the atmosphere and overall carbon budget.
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