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Introduction

An increasing number of empirical studies, starting with Mandelbrot (1963) and Fama (1965), have
shown that time series of financial asset returns tend to be serially uncorrected over time but not
independent. Although it is generally accepted that distributions of stock returns are leptokurtic and
skewed, there is no unanimity regarding the best stochastic return generating model to capture these
empirical characteristics. For an extensive list of studies in this area, see Bookstaber and McDonald
(1987).
One of the recently proposed class of return generating processes in the literature is the class of
autoregressive conditional heteroskedastic models introduced by Engle (1982) and its generalized
versions by Bollerslev (1986 and 1987). Empirical studies have shown indeed that such processes are
successful in modelling various time series. See, for example, in the context of foreign exchange
markets, Baillie and Bollerslev (1989) and Hsieh (1989), and in the context of stock markets, French et
al. (1987), Akgiray (1989) and Baillie and De Gennaro (1990).
As far as stock markets are concerned, this class of models has mainly been applied to large American
markets such as the New York Stock Exchange, e.g. by Akgiray (1989), and also to the London Stock
Exchange by Poon and Taylor (1990). The objective of this paper is to investigate whether such models
can adequately describe stock price behaviour in European capital markets which are generally much
smaller and thinner than the American ones. To that end, we have selected the following five countries:
France, Germany, Italy, the Netherlands and the United Kingdom. The study of stock price behaviour
in these markets is interesting because it can provide further evidence in favour of or against the use of
this type of model to describe stock price behaviour.
The remainder of the paper is organised as follows. The next section presents the data, and descriptive
statistics and other statistical properties of the return series of all five countries. In the third section, the
class of autoregressive conditional heteroskedastic models is discussed and applied to these return
series. Conclusions and implications are then presented in the final section.

Data and statistical findings

The Data

The indices of five European stock markets were collected from DATASTREAM for the period
1/1/1980 to 30/9/1990. They are indices for France (CAC General), Germany (Commerzbank), Italy
(Milan Banca), the Netherlands (ANP-CBS general) and the UK (FT All-Shares). All indices, except
the one for the Netherlands, are value weighted. The ANP-CBS index is in fact a weighted average of a
number of sector indices. A complication we faced is that some of these indices are not adjusted for
dividends. This is not ideal from a theoretical point of view, but they are the best available indices for
the period under consideration. However, since the objective of this paper is to model non-linear
dependencies in stock returns, we would expect that dividend adjustment would not affect our results.
This point has already been discussed in French et al. (1987) and Poon and Taylor (1990). Both studies
have shown that the dividend adjustment has little or no effect on the estimates of their models.
The daily returns of the market indices in our sample are continuously compounded returns. They are
calculated as the difference in natural logarithm of the closing index value for two consecutive trading
days, Rt = log(Pt) — log(Pt-1). The number of returns for each country can be found in Table 1.

Descriptive Statistics
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Table 1 presents a range of statistics for the five indices. They are: mean, variance, skewness and
kurtosis. It can be observed that there are differences across the countries regarding the mean and the
variance of the return series. Under the assumption of normality m3 and m4, the standard measures of
skewness and kurtosis, have asymptotic distributions N(0,6/T) and Ar(3,24/T), respectively, where T is
the sample size. All distributions are negatively skewed, indicating that they are non-symmetric.
Furthermore, they all exhibit high levels of kurtosis, which indicates that these distributions have fatter
tails than normal distributions. The Kolmogorov-Smirnov D-statistic to test the null hypothesis of
normality has also been calculated, and it rejects the normality assumption at the significance level of
one per cent in all cases. The results confirm the well known fact that daily stock returns are not
normally distributed, but are leptokurtic and skewed.

Table 1 Sample Statistics on Daily Return Series*
France Germany Italy Nether. UK

Sample size 2525 2656 2666 2584 2714

Mean (X 1O3) 0.5216 0.3096 0.7169 0.6559 0.5276

((mean = 0) 2.4000 1.3757 2.5260 2.9959 2.9910

Variance (X 103) 0.1193 0.1345 0.2148 0.1238 0.0845

m3 -1.4496 — 1.0914 -0.9744 -0.5351 -1.6661

m4 15.0024 14.0985 11.0319 12.1533 18.9604

D-statistic 0.0830 0.0674 0.0941 0.0591 0.0467

First order autocorrelation 0.1395 0.0318 0.1478 -0.0256 0.1336

(0.0307) (0.0442) (0.0364) (0.0513) (0.0651)

Q(25) 54.70 25.52 42.76 12.48 25.33

Q2(25) 427.15 611.93 1020.25 2359.60 1369.37

Note: * t-statistics significant at the one per cent level are underlined. Numbers in parentheses are
heteroskedasticity-consistent standard errors.

Tests of Autocorrelation

Our objective here is to investigate whether stock returns can be represented by a random walk, that is,
if returns Rt are independently distributed random variables with expectation E(Rt) = 0. It should be
noted that market efficiency does not require return series to be distributed independently. Fama (1970)
showed that a market is efficient if the return process is a martingale, i.e. E(Rt) = 0.
The Box-Pierce test statistic adjusted for heteroskedasticity Q(k), as suggested by Diebold (1987), up to
lag 25 is calculated and presented in Table 1. This is a joint test of the null hypothesis that the first k
autocorrelation coefficients are zero. Under the null hypothesis, the adjusted Box-Pierce statistic, Q(k)
=∑k

i=1ρ(i)/S(i))2, follows a ch i-square distribution with k degrees of freedom, where ρ(i) is the zth
autocorrelation. S(i) is a heteroskedasticity-consistent estimate of the standard error for the zth sample
autocorrelation coefficient, √l/n(1 +γR2(i)/σ4), where γR2(i) is the ith sample autocovariance of the
square data and σ is the sample standard deviation of the data. The values of Q(25) are significant at the
one per cent level for France and at the five per cent level for Italy. This suggests that, after adjusting
for heteroskedasticity, there remains some long term dependency in the series of returns for these two
countries.
Table 1 also presents Q2 (25) which is the Box-Pierce statistic based on the squared return series.
Under the null hypothesis of conditional homoskedas-ticity, the statistic Q2(k) has an asymptotic chi-
square distribution with k degrees of freedom. The null hypothesis is strongly rejected at the one per
cent significance level for all countries.

Autoregressive Models

Looking at the first order autocorrelation coefficients, we can observe values of 0.1395 for France,
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0.0318 for Germany, 0.1478 for Italy, -0.0256 for the Netherlands and 0.1336 for the UK. These are
significant at the one per cent level for France and Italy, and at five per cent for the UK, indicating that
the daily index returns for these countries are first order serially correlated. The rather low and
insignificant coefficients of the first order serial correlation coefficient for German and Dutch indices
might be explained by the important weight of a few large, frequently and highly traded firms, of which
returns are not autocorrelated, in the calculation of the indices.
One way to generate an uncorrelated series for France, Italy and the UK is to apply an AR(1) model,
that is:

(1)

The estimates of the above regression model for each country are presented in Table 2. In order to
observe the behaviour of the residuals εt obtained from equation (1), we applied the same tests as for
the return series. The first order,autocorrelation coefficient for all countries is not significantly different
from zero.

Table 2 The Autoregressive Model*
France Italy UK

Estimates of the Model
0.0004 0.0006 0.0004

2.1398 2.1611 2.6302

0.1395 0.1478 0.1337

7.0876 7.7131 7.0259

F-statistic 50.235 59.4927 49.3639

R2 0.0195 0.0218 0.0179

Fuller's test 2172.6 2272.0 2351.2
Statistics on Daily Residuals Series
Sample size 2524 2665 2713

Mean (x 1O3) 0.0000 0.0000 0.0000

((mean  =  0) 0.0000 0.0000 0.0000

Variance (x lO3) 0.1166 0.2101 0.0829

m3 -1.3572 -0.7871 -1.3008

m4 15.5796 11.3745 16.2624

First order autocorrelation -0.0087 0.0098 -0.0046
(0.0339) (0.0411) (0.0660)

Q(25) 27.40 26.12 16.05

Q2(25) 434.09 968.82 1930.51

Notes: * t-statistics significant at the one per cent level are underlined. Numbers in parentheses are
heteroskedasticity-consistent standard errors.

 Furthermore, the insignificant values of Q.(25) indicate that the AR(1) transformation of the returns
provides an uncorrected series of residuals.
The estimates of are statistically significant at the one per cent level and the Dickey-Fuller test for a
unit root indicates that the are significantly less than one. The three series of returns appear to follow
a stationary random walk. As far as distributions of residuals are concerned, it appears that they are still
leptokurtic and skewed in comparison with the normal distribution. Furthermore, the values of Q (25)
decisively reject the null hypothesis of conditional homoskedasticity.
The excess kurtosis observed in both returns and residuals series of the five countries in our sample can
be related to conditional heteroskedasticity, that is, its presence can be due to a time varying pattern of
the volatility.

Conditional heteroskedastic models

The presence of heteroskedasticity in stock prices and in the market model has been documented, for
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example, by Morgan (1976) and Giaccoto and Ali (1982). But while they focused on unconditional
heteroskedasticity, in this paper we use Engle's Autoregressive Conditional heteroskedastic (ARCH)
model which focuses on conditional volatility movements. It is interesting to note that, according to
Diebold et al. (1988), the presence of the ARCH effect appears to be generally independent of
unconditional heteroskedasticity.

(G)ARCH Models

The ARCH process imposes an autoregressive structure on the conditional variance which permits
volatility shocks to persist over time. It can therefore allow for volatility clustering, that is, large
changes are followed by large changes, and small by small, which has long been recognized as an
important feature of stock returns behaviour. In the context of the original model, the conditional error
distribution is normal, with a conditional variance that is a linear function of past squared innovations.
The model, denoted by ARCH(p), is the following:

(2)

with p > 0; αi > 0, i =  0,  . . ., p,

and where is the information set of all information through time t, and the et are the returns for
Germany and the Netherlands and the residuals of an AR(1) model for the other three countries.
An important extension of the ARCH model is the Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) process of Bollerslev (1986), denoted by GARCH(p,q). In this model, the
linear function of the conditional variance includes lagged conditional variances as well. Each country's
returns volatility depends on past period squared errors and its own past conditional variances. The
equation (2) in the case of a GARCH model becomes:

(3)

where also q ≥ 0 and βj > 0,j = 1, . . ., q. The GARCH(p,q) model reduced to an ARCH(p) for q  = 0.
Even though GARCH models with conditional normal distribution allow unconditional error
distributions to be leptokurtic, they might not fully explain the high level of kurtosis in observed
distributions of return series. It has been suggested in the literature that the assumption of a leptokurtic
conditional distribution in GARCH models might be more appropriate since such distribution can
better account for the level of kurtosis observed in financial data than does the normal conditional
distribution. This allows a distinction between conditional heteroskedasticity and a conditional
leptokurtic distribution, either of which could generate the fat tailedness observed in the data. Different
conditional leptokurtic distributions have been applied in the literature (Baillie and Bollerslev, 1989;
and Hsieh, 1989). And it is generally found that the t-distribution, originally proposed by Bollerslev
(1987), performs better than other distributions.
In conditional heteroskedastic models, the stability condition of the variance process requires that the
sum of the estimated parameters, i.e. ∑p

i=1αi + ∑q
j=1βj which measures the persistence of the volatility,

to be less than one. If this sum is equal to one, the process becomes an integrated GARCH or IGARCH
process (Engle and Bollerslev, 1986). Such integrated processes imply the persistence of a forecast of
the conditional variance over all future horizons and also an infinite variance of the unconditional
distribution of et.

Estimation and Testing

All (G)ARCH models are estimated using a FORTRAN program which employs the nonlinear
optimization technique of Berndt et al. (1974) to compute maximum likelihood estimates. Given the
return series and initial values of ε1 and h1 for 1 = 0, . . . , r and with r = max(p,q), the log-likelihood
function we have to maximize for a GARCH(p,q) model with normal distributed conditional errors is
the following:
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(4)

where T is the number of observations;
ht , the conditional variance, is defined by equations (2) and (3) for the ARCH and GARCH models
respectively;
εt

2, are the residuals obtained from the appropriate model for the country under consideration.
In the case of t-distributed conditional errors, the loglikelihood function for this model, denoted
hereafter by GARCH(p,q) — t, is:

(5)

where Γ(*) denotes the gamma function and is the degrees of freedom. If the t-distribution
approaches a normal distribution, but for the
^-distribution has fatter tails.
In order to test for the relative fit of the various models, the likelihood ratio test (LR) will be

employed, where and

denote the maximized likelihood functions estimated under the null hypothesis and the alternate
hypothesis. Under the null hypothesis LR is chi-square distributed with degrees of freedom equal to the
difference in the number of parameters under the two hypotheses. Moreover, to distinguish between an
improvement in the likelihood function due to a better fit and an improvement due to an increase in the

number of parameters, we also calculate Schwarz's order selection criterion,where K is the number
of parameters in the model. According to this criterion, the model with the lowest SIC value fits the
data best.

Empirical Results

Several (G)ARCH models were estimated using different combinations of p and q for each of the five
countries in our sample. The values of p and q and the corresponding maximized log-likelihood for
each (G)ARCH model as well as that obtained when an unconditional normal distribution is imposed
on the data, are presented in Table 3 by country. Pure ARCH(p) processes of order up to five were first
fitted to the data. The LR test, which compares the fitness of an ARCH(p) model with that of an
unconditional normal distribution, are all statistically significant at the one per cent level, indicating
that all ARCH(p) models fit the data better than the normal distribution. As for the GARCH(p,q)
models, they were estimated for p = 1,2 and q = 1,2. The values of LR tests again indicate that these
models fit the data better than the unconditional normal distribution.

Table 3 Maximum Log Likelihoods for (G)ARCH Models
Model p,q Log Likelihood LR Test SIC Value

France

Normal 7819.44
ARCH (1) 7968.76 298.64 -15929.69
ARCH (2) 8161.77 684.66 -16307.87
ARCH (3) 8189.22 739.56 -16354.94
ARCH (5) 8224.12 809.36 -16409.07
GARCH (1,1) 8247.68 856.48 -16479.69
GARCH (2,1) 8243.90 848.92 -16464.30
GARCH (1,2) 8244.51 850.14 -16465.52
GARCH (2,2) 8248.00 857.12 -16464.66
GARCH-t (1,1) 8327.68 160.00° -16631.86

Germany

Normal 8057.00
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ARCH (1) 8221.67 329.34 -16435.46
ARCH (2) 8302.18 490.36 -16588.59
ARCH (3) 8406.06 698.12 -16788.47
ARCH (5) 8437.42 760.84 -16835.42
GARCH (1,1) 8446.38 778.75 -16876.99
GARCH (2,1) 8436.32 758.64 -16848.99
GARCH (1,2) 8439.41 764.82 -16855.17
GARCH (2,2) —
GARCH-t (1,1) 8554.01 215.26° -17084.37
Italy

Normal 7465.00
ARCH (1) 7636.40 342.80 -15264.91
ARCH (2) 7838.05 746.10 -15660.32
ARCH (3) 7886.53 843.06 -15749.39
ARCH (5) 7915.62 901.24 -15791.80
IGARCH (1,1) 7905.85 881.70 -15795.22
GARCH (2,1) —
GARCH (1,2) —
GARCH (2,2) —
GARCH-t (1,1) 8071.02 330.34° -16118.38
The Netherlands
Normal 7944.42
ARCH (1) 8100.35 331.86 -16192.84
ARCH (2) 8197.61 506.38 -16379.51
ARCH (3) 8211.94 535.04 -16400.31
ARCH (5) 8247.88 606.92 -16456.47
GARCH (1,1) 8251.36 613.88 -16487.01
GARCH (2,1) 8237.99 587.14 -16452.41
GARCH (1,2) —
GARCH (2,2) —
GARCH-.t (1,1) 8307.17 111.62° -16590.77
Model p,q Log Likelihood LR Test SIC Value

The UK

Normal 8864.31
ARCH (i) 9065.35 402.08 -18122.79
ARCH (2) 9126.77 524.92 -18237.73
ARCH (3) 9144.31 560.00 -18264.90
ARCH (5) 9152.34 576.06 -18265.15
GARCH (1.1) 9140.74 552.86 -18265.67
GARCH (2,1) 9126.17 523.72 -18228.62
GARCH (1.2) 9135.76 542.90 -18247.80
GARCH (2,2) —
GARCH-t (1,1) 9214.97 148.76° -18406.22
Notes:— indicates where the optimization routine failed.
° The null hypothesis is that conditional errors of GARCH(1,1) model are normally
distributed.

Italy excepted, SIC values are the lowest for the GARCH(1,1), indicating that this model generally
outperforms other (G)ARCH models, as can be seen in Table 3. Concerning Italy, the unrestricted
GARCH(1,1), i.e. without imposing any restriction on the α1 + β1, was non-stationary. Therefore, we
proceeded to estimate an IGARCH(1,1) model for this country, which on the basis of the LR test and
the SIC value fits best, as reported in Table 3.
Finally, we estimate the GARCH(1,1) model assuming that conditional errors follow a t-distribution
instead of a normal one. It can be observed that all values of the log-likelihood are substantially larger
than those for the GARCH(1,1) model with normally distributed conditional errors. All likelihood ratio

tests for the null hypothesis, i.e. conditional errors are normally distributed, and are
statistically significant, indicating that a GARCH-t(1,1) fits the data better.
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Table 4 contains the results of fitting this process to the return series of France, Germany, Italy, the
Netherlands and the UK. All estimated coefficients, except α0 for the UK, are statistically significant at
the one per cent level. We observe that estimated values of the inverse of the degrees of freedom
parameter in the t-distribution, range from 0.0503 to 0.0642 and are highly statistically significant.
As for the stationarity of the variance process, it can be observed that α1 + β1 are respectively 0.9743,
0.9919, 0.9753, 0.9833 and 0.9858 for France, Germany, Italy, the Netherlands and the UK. They are
all less than unity, indicating no violation of the stability condition, i.e. the GARCH-t(1,1) is second
order stationary and the second moment exists for each country. These sums are, however, rather close
to one, which indicates a long persistence of shocks in volatility.

Table 4 GARCH-t (1,1) Estimates*
France Germany Italy Netherl. UK

(thousands) 0.8383 0.6425 0.6881 0.8989 0.7889

5.77 4.15 4.05 5.59 5.84

0.2045 — 0.1812 — 0.1529

10.45 — 9.80 — 7.92

α0 (thousands) 0.0017 0.0012 0.0011 0.0014 0.0009

t(α0) 6.63 2.26 2.96 2.77 2.00

α1 0.1205 0.1248 0.810 0.988 0.1077

t(α1) 10.21 9.47 12.01 9.26 9.42

β1 0.8538 0.8671 0.8943 0.8845 0.8781

t(β1) 67.32 67.14 117.08 77.25 68.74

α1+ β1 0.9743 0.9919 0.9753 0.9833 0.9858

0.0633 0.0514 0.0642 0.0517 0.0503

u u u u 176.68

Q(25) 34.17 49.03 43.94 26.69 31.69

Q2(25) 9.38 3.31 12.67 13.68 11.34

Notes: * t-statistics significant at the one per cent level are underlined.
u indicates very large significant t-values.

All values of the Box-Pierce statistic on the standardized residuals, Q(25), and all values of the Box-
Pierce statistic on the squared residuals, Q2 (25), do not reveal any first and second order dependence,
with the exception of Germany in the case of which there remains some first order dependence. This
confirms that the GARCH-t(1,1) model fits the return series in our sample reasonably well. Each
country's returns volatility depends on last period's squared error and its own past conditional variance.

Conclusion and implications

Our results clearly indicate that conditional heteroskedasticity is a prime feature of daily returns
behaviour of five European equity indices. They exhibit non linear dependence that cannot be captured
by the random walk model. The class of autoregressive conditional heteroskedastic models is generally
consistent with the stochastic behaviour of these return series. The evidence presented in this paper
reveals that the GARCH-t(1,1), i.e. a GARCH model with conditional errors that are t-distributed, fits
the data best. Thus our results confirm that this class of models is also appropriate for studying the
behaviour of stock returns on smaller equity markets.
Such empirical evidence can have important implications for research in finance. GARCH models may,
for example, be used to analyse the relationships between volatility and expected returns. In the Capital
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Asset Pricing Model, the expected return or risk premium can be influenced by the conditional second
moment of returns. As for empirical research, event study methodology, for example, assumes
homoskedasticity. As it is not the case, one can cast doubt on the way abnormal returns are calculated
and consequently interpreted. Volatility estimation is also an important feature for pricing derivative
securities. GARCH models can indeed provide better forecasts of volatility than the usual historical
estimates and lead to improved valuation models.

Note

1     This program has been developed by Ken Kroner at the University of California. It was kindly
provided to us by Robert Engle.
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