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The authors examined the nonequilibrium adaptation length and adaptation coefficient for 

suspended load in a depth-averaged two-dimensional hydrodynamic and sediment transport 

model. This model was used in one-dimensional flow configurations. In particular, the DHL 

experiment was chosen as representative of suspended load dominated case. A sensitivity 

analysis was then conducted to estimate the influence of , the adaptation coefficient  for 

suspended load.  

In the discussed paper, the adaptation coefficient values in Fig.3 were chosen arbitrarily, 

except = 4.5 which results from Armanini and Di Silvio (1981) predictive formula.  

Furthermore, the parameter a  was evaluated using 2 50a d , although, Armanini and Di 

Silvio (1981) originally assumed that a  is equal to the Nikuradse’s roughness of the bed : 
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with Cchézy the Chézy roughness coefficient of the channel and  the von Karman constant. 

This formulation is used in the discussers’ model.  
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In this discussion, the more recent Zhou and Lin (1995) as well as Guo and Jin (1999) 

formulae for the adaptation coefficient were tested in addition to the formula by Armanini and 

Di Silvio (1981). These three formulae are compared for two experiments. In addition, the 

necessity of using time and space dependent values of  is analyzed.  

Numerical model 

A 1D numerical model has been used to compute the flow and sediment transport as well as 

bed evolution. The model is based on the cross-sectional- and Reynolds-averaged Navier-

Stokes equations for flow modeling, on an advection-diffusion equation for suspended 

sediments, and on the Exner equation for bedload transport and bed evolution.  

Discretization of the equations relies on a 2
nd

 order accurate finite volume scheme over a 

uniform one-dimensional grid. Time integration is performed using a two-step Rung-Kutta 

scheme, providing also 2
nd

 order accuracy in time. The hydrodynamic computation is 

implemented using a pseudo-time stepping method which constitutes a particular case of the 

general method developed by Kerger et al. (2009).  

The mathematical model, its discretization and implementation into a computational code 

were validated by comparison with experimental, numerical and analytical data.  

Trench experiment 

Due to some missing data in the original article concerning the trench experiment, a very 

similar experiment is studied here, for which complete modeling data are available. The 

considered experiment was carried out at Delft Hydraulics Laboratory (1980). The value of 

the parameters were the same as in the discussed article, except the settling velocity s = 

0.013 m/s and the trench depth htrench = 0.15 m. The roughness height ks and the inlet 

concentration C0  were 0.025 m and 150 g/l, respectively. 
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The water depth h = 0.39 m was measured at the inlet of the channel. To satisfy this 

condition, the water depth at the outlet, which is the downstream boundary condition of the 

hydrodynamic model, was set to 0.372 m.  

In Eq. (1), the sediment carrying capacity C*  plays a fundamental role.  However, the authors 

do not mention how they calculate it. We use Wuhan (1959)’s formula which expresses 

C  * (kg/m³) as:  
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where U  is the mean flow velocity; s is the particle settling velocity; h is the flow depth; k  

and m  are coefficients. Guo & Jin (2001) established a relation for k  using Bagnold (1966)’s 

formula as: 
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where  and s  are the specific weight of clear water and sediment; eb  and es  are the bed-

load and suspended sediment transport efficiencies. Based on laboratory data, Bagnold (1966) 

suggested that (1 )e esb = 0.01 for straight channel. The parameter m  may be estimated from 

Eq. (9) if the equilibrium concentration is known somewhere in the channel. This formulation 

is incorporated in our model. The inlet concentration C0  is considered to be at equilibrium. 

Thus, the equilibrium concentration formula can be calibrated. This results in k = 0.0098 and 

m = 0.835. Guo and Jin (2001) found the values k  = 0.0097 and m  = 0.84, which agree with 

the values calculated here. In Guo and Jin’s formulation, the bottom layer relative height was 

set to 0.01. 
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The values of  have been predicted based on the three aforementionated formulae, using the 

flow characteristics in the middle of the trench.  

As shown in Fig. 4, the morphological evolution of the trench computed based on Guo and 

Jin’s formula reasonably matches measured data. The value obtained for  as well as the 

agreement with experimental results are consistent with Guo & Jin (2001) and Dewals (2006). 

In contrast, the values predicted by the formulae of Zhou and Lin (1995) as well as Armanini 

and Di Silvio (1981) fail to reproduce the morphological evolution of the trench.  

In Guo and Jin’s case, the discussers also compared predictions obtained assuming α constant 

and uniform with those considering  as time and space dependant. The three statistical 

parameters presented in the original article were calculated to evaluate their relative behavior : 

Bias = 5.28 10
-4 

cm, RMS = 1.39 10
-6

 cm and AGD = 1.00008036. Hence, the time and space 

variation of  are found not to lead to significant changes on the final results for the 

configuration considered here. 

Net entrainment experiment 

In Van Rijn (1981), a 30 m long and 0.5 m wide flume was used with initially clear water 

flowing over a sand bed. No sediments were supplied at the upstream end of the flume 

section. The sediments were entrained into suspension, tending towards the full transport 

capacity. The sediment concentrations were measured in steady uniform flow conditions. 

The flow depth was 0.25 m, while the average flow velocity was 0.67 m/s. The bed material 

was characterized by d50 = 230 µm. The sediment fall velocity and the roughness height were 

evaluated at 0.022 m/s and 0.01 m, respectively.  

Water samples were collected simultaneously at four locations to determine the spatial 

distribution of the sediment concentrations. At each location four water samples were taken 
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over the depth. We have integrated these measured concentrations to obtain the depth-

averaged concentrations. 

In the simulation, a zero-concentration profile was specified at the inlet boundary to simulate 

the clear-water inflow. C*  
was set to the value measured at the downstream end of the 

channel which results in C* = 310 mg/L. 

The influence of the adaptation parameter  on the adapatation rate is shown in Fig. 5: the 

larger the value of , the shorter the adaptation length. It can also be observed that Armanini 

& Di-Silivio’s and Zhou & Lin’s formulations lead to most satisfactory results and are once 

more very close to each other. 

Since the bed level and the hydrodynamic conditions  remain almost uniform and constant, 

is neither time nor space dependant in this particular case. 

Summary and conclusion 

Three predictive formulae for  were compared in two configurations. Armanini & Di Silvio 

and Zhou & Lin’s formulations have shown a similar behavior. They were accurate to 

simulate the net entrainment experiment. Their predictive power (no calibration) makes them 

very powerful for such situations. Guo & Jin’s formula has proved to perform well in the 

moving trench experiment.  

Using a constant value for  is a current practice in sediment transport modeling. This 

assumption is valid for the net entrainment experiment. Indeed, in these particular cases the 

flow conditions are constant, spatially and temporally. This assumption is theoretically non 

valid in the moving trench experiment. The sensitivity of the sediment transport process to 

these spatial and temporal variations was examined. Nonetheless, no significant changes were 
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observed with respect to the final bed elevation. It is concluded that the assumption of a 

constant value for  is justified when flow perturbations remain moderate. 
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Fig. 4: Comparison of computed and measured bed elevations computed in DHL (1980) 

experiment 

Fig. 5: Comparison of computed and measured concentrations in Van Rijn (1981) experiment 
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